Feasibility of Calculating Standardized Precipitation Index with Short-Term Precipitation Data in China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data
2.2. SPI
2.3. Method for Calculating the Precipitation Distribution Parameters for Stations with Short Sequences
2.3.1. Nearest Neighbor Substitution Method
2.3.2. Regional Average Method
2.3.3. Kriging Interpolation Method
3. Results and Analysis
3.1. The Characteristic Analysis of SPI Error
3.2. The Reason Analysis of the SPI Error and the Drought Monitoring Examples
4. Summary and Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wilhite, D.A. Drought and Water Crises: Science, Technology, and Management Issues; CRC Press: Boca Raton, FL, USA, 2005. [Google Scholar]
- Huang, S.; Huang, Q.; Chang, J.; Leng, G. Linkages between hydrological drought, climate indices and human activities: A case study in the Columbia River basin. Int. J. Climatol. 2016, 36, 280–290. [Google Scholar] [CrossRef]
- Fang, W.; Huang, S.; Ren, K.; Huang, Q.; Huang, G.; Cheng, G.; Li, K. Examining the applicability of different sampling techniques in the development of decomposition-based streamflow forecasting models. J. Hydrol. 2019, 568, 534–550. [Google Scholar] [CrossRef]
- Zhang, Q.; Yao, Y.; Li, Y.; Huang, J.; Ma, Z.; Wang, Z.; Wang, S.; Wang, Y.; Zhang, Y. Causes and Changes of Drought in China: Research Progress and Prospects. J. Meteorol. Res. 2020, 34, 460–481. [Google Scholar] [CrossRef]
- Hänsel, S.; Ustrnul, Z.; Łupikasza, E.; Skalak, P. Assessing seasonal drought variations and trends over Central Europe. Adv. Water Resour. 2019, 127, 53–75. [Google Scholar] [CrossRef]
- Huang, J.; Yi, Y.; Wang, S.; Chou, J. An analogue-dynamical long-range numerical weather prediction system incorporating historical evolution. Q. J. R. Meteorol. Soc. 1993, 119, 547–565. [Google Scholar]
- Jenkins, K.; Warren, R. Quantifying the impact of climate change on drought regimes using the Standardised Precipitation Index. Appl. Clim. 2015, 120, 41–54. [Google Scholar] [CrossRef] [Green Version]
- Hao, Z.C.; Hao, F.H.; Singh, V.P.; Ouyang, W. Quantitative risk assessment of the effects of drought on extreme temperature in eastern China. J. Geophys. Res.-Atmos. 2017, 122, 9050–9059. [Google Scholar] [CrossRef]
- Chamani, R.; Monkam, D.; Djomou, Z.Y. Analysis of return periods and return levels of Yearly July-September extreme droughts in the West African Sahel. Clim. Dyn. 2019, 52, 3421–3433. [Google Scholar] [CrossRef]
- Zhang, Q.; Han, Y.Y.; Zhang, L.Y.; Wang, J.S. Analysis on the Character and Management Strategy of Drought Disaster and Risk under the Climatic Warming. Adv. Earth Sci. 2014, 29, 80–91. (In Chinese) [Google Scholar]
- Wang, Y.; Zhao, W.; Zhang, Q.; Yao, Y.B. Characteristics of drought vulnerability for maize in the eastern part of Northwest China. Sci. Rep. 2019, 9, 1–9. [Google Scholar]
- Svoboda, M.; LeComte, D.; Hayes, M.; Heim, R.; Gleason, K.; Angel, J.; Rippey, B.; Tinker, R.; Palecki, M.; Stooksbury, D. The drought monitor. Bull. Am. Meteorol. Soc. 2002, 83, 1181–1190. [Google Scholar] [CrossRef] [Green Version]
- Venkataraman, K.; Tummuri, S.; Medina, A.; Perry, J. 21st century drought outlook for major climate divisions of Texas based on CMIP5 multimodel ensemble: Implications for water resource management. J. Hydrol. 2016, 534, 300–316. [Google Scholar] [CrossRef] [Green Version]
- Liu, S.; Huang, S.; Xie, Y.; Huang, Q.; Leng, G.; Hou, B.; Zhang, Y.; Wei, X. Spatial-temporal changes of maximum and minimum temperatures in the Wei River Basin, China: Changing patterns, causes and implications. Atmos. Res. 2018, 204, 1–11. [Google Scholar] [CrossRef]
- Dow, K.; Murphy, R.L.; Carbone, G.J. Consideration of User Needs and Spatial Accuracy in Drought Mapping. J. Am. Water Resour. Assoc. 2009, 45, 187–197. [Google Scholar] [CrossRef]
- DeGaetano, A.T.; Belcher, B.N.; Noon, W. Temporal and spatial interpolation of the standardized precipitation index for computational efficiency in the dynamic drought index tool. J. Appl. Meteorol. Climatol. 2015, 54, 795–810. [Google Scholar] [CrossRef]
- Wilhite, D.A.; Sivakumar, M.V.; Pulwarty, R. Managing drought risk in a changing climate: The role of national drought policy. Weather Clim. Extrem. 2014, 3, 4–13. [Google Scholar] [CrossRef] [Green Version]
- Mishra, A.K.; Singh, V.P. A review of drought concepts. J. Hydrol. 2010, 391, 202–216. [Google Scholar] [CrossRef]
- Council, A. AMS statement on meteorological drought. Bull. Am. Meteorol. Soc. 2004, 85, 771–773. [Google Scholar]
- Huang, S.; Li, P.; Huang, Q.; Leng, G.; Hou, B.; Ma, L. The propagation from meteorological to hydrological drought and its potential influence factors. J. Hydrol. 2017, 547, 184–195. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhang, L.; Cui, X.C.; Zeng, J. Progresses and challenges in drought assessment and monitoring. Adv. Earth Sci. 2011, 26, 763–778. (In Chinese) [Google Scholar]
- McKee, T.B.; Doesken, N.J.; Kleist, J. The relationship of drought frequency and duration to time scales. In Proceedings of the 8th Conference on Applied Climatology, Anaheim, CA, USA, 17–22 January 1993; pp. 179–183. [Google Scholar]
- Zhang, Q.; Xu, C.Y.; Zhang, Z.X. Observed changes of drought/wetness episodes in the Pearl River basin, China, using the standardized precipitation index and aridity index. Appl. Clim. 2009, 98, 89–99. [Google Scholar] [CrossRef]
- Yang, P.; Xia, J.; Zhan, C.; Zhang, Y.; Hu, S. Discrete wavelet transform-based investigation into the variability of standardized precipitation index in Northwest China during 1960–2014. Appl. Clim. 2018, 132, 167–180. [Google Scholar] [CrossRef]
- Odewale, O.; Adebola, A. Integration of standardized precipitation index and drought severity index for assessment of drought in the Sudano-Sahelian ecological zone of Nigeria. Clim. Chang. 2019, 5, 188–199. [Google Scholar]
- Hayes, M.; Svoboda, M.; Wall, N.; Widhalm, M. The Lincoln declaration on drought indices: Universal meteorological drought index recommended. Bull. Am. Meteorol. Soc. 2011, 92, 485–488. [Google Scholar] [CrossRef] [Green Version]
- Hao, Z.; Yuan, X.; Xia, Y.; Hao, F.; Singh, V.P. An overview of drought monitoring and prediction systems at regional and global scales. Bull. Am. Meteorol. Soc. 2017, 98, 1879–1896. [Google Scholar]
- World Meteorological Organization. Standardized Precipitation Index User Guide; World Meteorological Organization: Geneva, Switzerland, 2012. [Google Scholar]
- McRoberts, D.B.; Nielsen-Gammon, J.W. The Use of a High-Resolution Standardized Precipitation Index for Drought Monitoring and Assessment. J. Appl. Meteorol. Climatol. 2012, 51, 68–83. [Google Scholar] [CrossRef]
- Ren, Z.H.; Zhao, P.; Zhang, Q.; Zhang, Z.F.; Cao, L.J.; Yang, Y.R.; Zou, F.L.; Zhao, Y.F.; Zhao, H.M.; Chen, Z. Quality contral procedured for hourly precipitaion data from automatic weather stations in China. Meteorol. Mon. 2010, 36, 123–132. (In Chinese) [Google Scholar]
- Ren, Z.H.; Zhang, Z.F.; Sun, C.; Liu, Y.M.; Li, J.; Ju, X.H.; Zhao, Y.F.; Li, Z.P.; Zhang, W.; Li, H.K.; et al. Development of three-step quality control system of real-time observation data from AWS in China. Meteorol. Mon. 2015, 41, 1268–1277. (In Chinese) [Google Scholar]
- Lloyd-Hughes, B.; Saunders, M.A. A drought climatology for Europe. Int. J. Climatol. 2002, 22, 1571–1592. [Google Scholar]
- Elbasiouny, H.; Abowaly, M.; Abu_Alkheir, A.; Gad, A. Spatial variation of soil carbon and nitrogen pools by using ordinary Kriging method in an area of north Nile Delta, Egypt. Catena 2014, 113, 70–78. [Google Scholar]
- Wu, H.; Hayes, M.J.; Wilhite, D.A.; Svoboda, M.D. The effect of the length of record on the standardized precipitation index calculation. Int. J. Climatol. A J. R. Meteorol. Soc. 2005, 25, 505–520. [Google Scholar] [CrossRef] [Green Version]
- Carbone, G.; Lu, J.; Brunetti, M. Estimating uncertainty associated with the standardized precipitation index: Estimating uncertainty associated with the SPI. Int. J. Climatol. 2018, 38, 607–616. [Google Scholar] [CrossRef]
Altitude (Meter) | Proportion (%) |
---|---|
H ≤ 20 | 9.5 |
20 < H ≤ 50 | 11.5 |
50 < H ≤ 100 | 10.3 |
100 < H ≤ 200 | 11.7 |
200 < H ≤ 500 | 19.2 |
500 < H ≤ 1000 | 14.5 |
1000 < H ≤ 2000 | 17.4 |
2000 < H ≤ 3000 | 3.9 |
3000 < H | 2.0 |
SPI Value | Category | Probability |
---|---|---|
2.00 ≤ SPI | Extremely wet | 0.023 |
1.50 ≤ SPI ≤ 1.99 | Severely wet | 0.044 |
1.00 ≤ SPI ≤ 1.49 | Moderately wet | 0.092 |
0.00 ≤ SPI ≤ 0.99 | Mildly wet | 0.341 |
−0.99 ≤ SPI ≤ 0.00 | Mild drought | 0.341 |
−1.49 ≤ SPI ≤ −1.00 | Moderate drought | 0.092 |
−1.99 ≤ SPI ≤ −1.5 | Severe drought | 0.044 |
SPI ≤ −2.00 | Extreme drought | 0.023 |
Month | Jan. | Feb. | Mar. | Apr. | May | June | July | Aug. | Sept. | Oct. | Nov. | Dec. |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Proportion (%) | 93.7 | 94.3 | 96.2 | 97.3 | 98.7 | 98.3 | 98.8 | 98.7 | 98.5 | 96.0 | 93.3 | 93.6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zuo, D.; Hou, W.; Wu, H.; Yan, P.; Zhang, Q. Feasibility of Calculating Standardized Precipitation Index with Short-Term Precipitation Data in China. Atmosphere 2021, 12, 603. https://doi.org/10.3390/atmos12050603
Zuo D, Hou W, Wu H, Yan P, Zhang Q. Feasibility of Calculating Standardized Precipitation Index with Short-Term Precipitation Data in China. Atmosphere. 2021; 12(5):603. https://doi.org/10.3390/atmos12050603
Chicago/Turabian StyleZuo, Dongdong, Wei Hou, Hao Wu, Pengcheng Yan, and Qiang Zhang. 2021. "Feasibility of Calculating Standardized Precipitation Index with Short-Term Precipitation Data in China" Atmosphere 12, no. 5: 603. https://doi.org/10.3390/atmos12050603
APA StyleZuo, D., Hou, W., Wu, H., Yan, P., & Zhang, Q. (2021). Feasibility of Calculating Standardized Precipitation Index with Short-Term Precipitation Data in China. Atmosphere, 12(5), 603. https://doi.org/10.3390/atmos12050603