Estimations of the Erythemal UV Doses and the Amount of the Sun-Synthesized Vitamin D by Adults during the Cruise to Spitsbergen–Polar Measurement Campaign (2–21 July 2017)
Abstract
:1. Introduction
2. Measurements and Methods
2.1. Observations on Board of the MS Horyzont II
2.2. UVI Observations
2.3. Calculations of the Erythemal Doses
2.4. Model Estimates of the Vitamin D3 Intake
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Date | Hour | Lat° N | Lon° E | UVI | Date | Hour | Lat° N | Lon° E | UVI |
---|---|---|---|---|---|---|---|---|---|
2 July 2017 | 16 | 55.25 | 12.87 | 0.8 | 5 July 2017 | 17 | 62.62 | 4.20 | 0.6 |
3 July 2017 | 10 | 57.38 | 11.48 | 4.5 | 5 July 2017 | 18 | 62.78 | 4.20 | 0.4 |
3 July 2017 | 13 | 57.38 | 11.00 | 3.5 | 6 July 2017 | 10:30 | 65.52 | 5.85 | 1.7 |
3 July 2017 | 16 | 57.80 | 10.03 | 0.2 | 6 July 2017 | 11 | 65.65 | 5.73 | 1.8 |
4 July 2017 | 8 | 57.92 | 6.35 | 2.2 | 6 July 2017 | 11:30 | 65.77 | 5.78 | 1.9 |
4 July 2017 | 9 | 57.95 | 6.30 | 3.4 | 6 July 2017 | 12 | 66.27 | 6.12 | 1.6 |
4 July 2017 | 10 | 58.02 | 6.12 | 4 | 6 July 2017 | 16 | 66.48 | 6.32 | 0.6 |
4 July 2017 | 11 | 58.10 | 5.93 | 4.2 | 6 July 2017 | 17 | 66.62 | 6.40 | 0.1 |
4 July 2017 | 11:30 | 58.10 | 5.75 | 4.4 | 6 July 2017 | 18 | 66.83 | 6.53 | 0.1 |
4 July 2017 | 12 | 58.20 | 5.70 | 4.3 | 6 July 2017 | 20 | 67.25 | 6.82 | 0 |
4 July 2017 | 12:30 | 58.23 | 5.70 | 3.6 | 7 July 2017 | 10 | 69.43 | 8.32 | 1.1 |
4 July 2017 | 13 | 58.27 | 5.40 | 3.8 | 7 July 2017 | 11 | 69.55 | 8.42 | 1.5 |
4 July 2017 | 13:30 | 58.35 | 5.33 | 3.5 | 7 July 2017 | 12 | 69.78 | 8.55 | 1.7 |
4 July 2017 | 14 | 58.40 | 5.32 | 3.2 | 7 July 2017 | 13 | 69.92 | 8.67 | 1.1 |
4 July 2017 | 14:30 | 58.47 | 5.17 | 2.5 | 7 July 2017 | 14 | 70.07 | 8.78 | 0.8 |
4 July 2017 | 15 | 58.83 | 5.10 | 1.7 | 7 July 2017 | 16 | 70.35 | 9.00 | 0.5 |
5 July 2017 | 10 | 61.47 | 4.18 | 4 | 7 July 2017 | 17 | 70.52 | 9.12 | 0.2 |
5 July 2017 | 10:30 | 61.55 | 4.18 | 4 | 7 July 2017 | 18 | 70.75 | 9.30 | 0.1 |
5 July 2017 | 11 | 61.65 | 4.20 | 4.6 | 7 July 2017 | 19 | 70.90 | 9.42 | 0 |
5 July 2017 | 11:30 | 61.68 | 4.20 | 4 | 8 July 2017 | 0 | 71.65 | 10.02 | 0 |
5 July 2017 | 12 | 61.87 | 4.20 | 4.1 | 8 July 2017 | 10 | 73.32 | 11.42 | 1.2 |
5 July 2017 | 12:30 | 62.18 | 4.20 | 3.5 | 8 July 2017 | 13 | 73.77 | 11.83 | 1.4 |
5 July 2017 | 13:30 | 62.13 | 4.20 | 3.2 | 8 July 2017 | 14 | 73.95 | 11.98 | 1.1 |
5 July 2017 | 14 | 62.17 | 4.20 | 2.9 | 8 July 2017 | 15 | 74.10 | 12.12 | 0.7 |
5 July 2017 | 14:30 | 62.22 | 4.20 | 2.8 | 8 July 2017 | 15:10 | 74.10 | 12.12 | 0.9 |
5 July 2017 | 15 | 62.28 | 4.18 | 2.1 | 8 July 2017 | 16:30 | 74.37 | 12.38 | 0.3 |
5 July 2017 | 15:30 | 62.32 | 4.18 | 1.8 |
Date | Hour | Lat° N | Lon° E | UVI | Date | Hour | Lat° N | Lon° E | UVI |
---|---|---|---|---|---|---|---|---|---|
9 July 2017 | 9 | 76.98 | 15.57 | 0.5 | 11 July 2017 | 10 | 78.23 | 15.63 | 1.4 |
9 July 2017 | 10 | 76.98 | 15.57 | 0.5 | 11 July 2017 | 11 | 78.23 | 15.63 | 1.2 |
9 July 2017 | 12 | 76.98 | 15.57 | 0.8 | 11 July 2017 | 12 | 78.23 | 15.63 | 1.2 |
9 July 2017 | 13 | 76.98 | 15.57 | 0.7 | 11 July 2017 | 18 | 78.23 | 15.63 | 0.3 |
9 July 2017 | 14 | 76.98 | 15.57 | 0.9 | 12 July 2017 | 10 | 78.65 | 11.75 | 0.8 |
9 July 2017 | 15 | 76.98 | 15.57 | 0.5 | 12 July 2017 | 11 | 78.65 | 11.75 | 0.8 |
9 July 2017 | 16 | 76.98 | 15.57 | 0.3 | 12 July 2017 | 12 | 78.65 | 11.75 | 0.7 |
10 July 2017 | 7 | 76.98 | 15.57 | 0.8 | 12 July 2017 | 13 | 78.23 | 12.78 | 0.6 |
10 July 2017 | 11 | 76.98 | 15.57 | 2.2 | 12 July 2017 | 14 | 78.15 | 12.78 | 0.3 |
10 July 2017 | 13 | 76.98 | 15.57 | 1.5 | 12 July 2017 | 15 | 78.12 | 12.82 | 0.3 |
10 July 2017 | 14 | 76.98 | 15.57 | 1.2 | 12 July 2017 | 16 | 77.98 | 13.13 | 0.3 |
10 July 2017 | 16 | 76.98 | 15.57 | 0.7 | 12 July 2017 | 17 | 77.98 | 13.13 | 0.1 |
10 July 2017 | 17 | 76.98 | 15.57 | 0.5 | 13 July 2017 | 9 | 76.98 | 15.57 | 0.7 |
10 July 2017 | 18 | 76.98 | 15.57 | 0.3 | 13 July 2017 | 13 | 76.98 | 15.57 | 0.9 |
11 July 2017 | 7 | 78.18 | 14.32 | 0.4 | 13 July 2017 | 17 | 76.98 | 15.57 | 0.3 |
11 July 2017 | 8 | 78.22 | 15.58 | 1.4 | 14 July 2017 | 6 | 76.98 | 15.57 | 0.3 |
Date | Hour | Lat° N | Lon° E | UVI | Date | Hour | Lat° N | Lon° E | UVI |
---|---|---|---|---|---|---|---|---|---|
15 July 2017 | 8.5 | 74.10 | 12.12 | 0.2 | 19 July 2017 | 13:30 | 58.18 | 5.52 | 3.8 |
15 July 2017 | 14 | 73.12 | 11.25 | 0.2 | 19 July 2017 | 14:30 | 58.08 | 5.73 | 2.6 |
15 July 2017 | 19 | 72.43 | 10.37 | 0 | 19 July 2017 | 15 | 58.03 | 5.83 | 2.1 |
16 July 2017 | 10 | 71.10 | 8.90 | 0.4 | 19 July 2017 | 16 | 57.95 | 6.03 | 1.2 |
16 July 2017 | 13 | 69.32 | 8.25 | 2.4 | 19 July 2017 | 17 | 57.80 | 6.55 | 0.8 |
16 July 2017 | 16 | 68.98 | 8.00 | 0.4 | 19 July 2017 | 19 | 57.70 | 6.85 | 3.2 |
17 July 2017 | 9 | 66.53 | 6.35 | 1.6 | 20 July 2017 | 9 | 57.60 | 11.10 | 3.8 |
17 July 2017 | 9:30 | 66.43 | 6.27 | 1.1 | 20 July 2017 | 9:30 | 57.55 | 11.20 | 4.5 |
17 July 2017 | 10 | 66.33 | 6.23 | 1.5 | 20 July 2017 | 10 | 57.48 | 11.32 | 4.5 |
17 July 2017 | 10:30 | 66.27 | 6.17 | 2.4 | 20 July 2017 | 10:30 | 57.43 | 11.37 | 5.1 |
17 July 2017 | 12 | 66.00 | 5.98 | 1.2 | 20 July 2017 | 11 | 57.40 | 11.40 | 4.2 |
17 July 2017 | 13 | 65.87 | 5.90 | 1 | 20 July 2017 | 11:30 | 57.33 | 11.42 | 4.7 |
17 July 2017 | 14 | 65.73 | 5.72 | 1.9 | 20 July 2017 | 12 | 57.20 | 11.48 | 4.7 |
17 July 2017 | 16 | 65.43 | 5.60 | 1 | 20 July 2017 | 12:30 | 57.03 | 11.55 | 4.4 |
18 July 2017 | 10 | 62.58 | 4.03 | 1.3 | 20 July 2017 | 13 | 56.98 | 11.65 | 3.2 |
18 July 2017 | 11 | 62.43 | 4.02 | 1.2 | 20 July 2017 | 13:30 | 56.92 | 11.72 | 3.1 |
18 July 2017 | 12 | 62.23 | 4.02 | 2.8 | 20 July 2017 | 14 | 56.80 | 11.77 | 2.4 |
18 July 2017 | 13 | 62.02 | 4.03 | 2.4 | 20 July 2017 | 14:30 | 56.77 | 11.82 | 1.1 |
18 July 2017 | 14 | 61.62 | 5.13 | 1 | 20 July 2017 | 15 | 56.70 | 11.87 | 0.9 |
18 July 2017 | 16 | 61.62 | 4.03 | 0.5 | 21 July 2017 | 10 | 54.77 | 14.87 | 2 |
19 July 2017 | 9:30 | 58.68 | 4.57 | 3 | 21 July 2017 | 11 | 54.75 | 15.08 | 1.9 |
19 July 2017 | 10 | 58.60 | 4.72 | 3.3 | 21 July 2017 | 12 | 54.75 | 15.47 | 0.9 |
19 July 2017 | 11 | 58.48 | 4.92 | 4 | 21 July 2017 | 13 | 54.75 | 15.65 | 1 |
19 July 2017 | 11:30 | 58.43 | 5.03 | 4.3 | 21 July 2017 | 14 | 54.77 | 15.95 | 1 |
19 July 2017 | 12 | 58.35 | 5.28 | 4.8 | 21 July 2017 | 16 | 54.75 | 16.37 | 0.5 |
19 July 2017 | 12:30 | 58.32 | 5.23 | 4.3 | 21 July 2017 | 17 | 54.75 | 16.95 | 0.1 |
19 July 2017 | 13 | 58.25 | 5.37 | 4.1 |
References
- Bilbao, J.; De Migue, A. Erythemal Solar Irradiance, UVER, and UV Index from Ground-Based Data in Central Spain. Appl. Sci. 2020, 10, 6589. [Google Scholar] [CrossRef]
- Fountoulakis, I.; Diémoz, H.; Siani, A.-M.; Laschewski, G.; Filippa, G.; Arola, A.; Bais, A.F.; De Backer, H.; Lakkala, K.; Webb, A.R.; et al. Solar UV Irradiance in a Changing Climate: Trends in Europe and the Significance of Spectral Monitoring in Italy. Environments 2019, 7, 1. [Google Scholar] [CrossRef] [Green Version]
- Armstrong, B.K.; Kricker, A. The epidemiology of UV induced skin cancer. J. Photochem. Photobiol. B Biol. 2001, 63, 8–18. [Google Scholar] [CrossRef]
- Lityńska, Z.; Schmalwieser, A.W.; Bais, A.; Ettler, K.L.; Gröbner, J.; Köpke, P.; Krzyścin, J.; den Outer, P.; Verdebout, J.; Zipoli, G.; et al. UV Radiation and Life; Publications Office of the European Union: Luxembourg, 2012. [Google Scholar]
- Calbó, J.; Pagès, D.; González, J.-A. Empirical studies of cloud effects on UV radiation: A review. Rev. Geophys. 2005, 43, RG2002. [Google Scholar] [CrossRef] [Green Version]
- Young, A.R. Acute effects of UVR on human eyes and skin. Prog. Biophys. Mol. Biol. 2006, 92, 80–85. [Google Scholar] [CrossRef]
- Holick, M.F.; Chen, T.C. Vitamin D deficiency: A worldwide problem with health consequences. Am. J. Clin. Nutr. 2008, 87, 1080S–1086S. [Google Scholar] [CrossRef] [Green Version]
- Moukayed, M.; Grant, W.B. The roles of UVB and vitamin D in reducing risk of cancer incidence and mortality: A review of the epidemiology, clinical trials, and mechanisms. Rev. Endocr. Metab. Disord. 2017, 18, 167–182. [Google Scholar] [CrossRef]
- Baggerly, C.A.; Cuomo, R.E.; French, C.B.; Garland, C.F.; Gorham, E.D.; Grant, W.B.; Heaney, R.P.; Holick, M.F.; Hollis, B.W.; McDonnell, S.L.; et al. Sunlight and Vitamin D: Necessary for Public Health. J. Am. Coll. Nutr. 2015, 34, 359–365. [Google Scholar] [CrossRef] [Green Version]
- McKenzie, R.L.; Liley, J.B.; Björn, L.O. UV Radiation: Balancing Risks and Benefits. Photochem. Photobiol. 2009, 85, 88–98. [Google Scholar] [CrossRef]
- Liu, D.; Fernandez, B.O.; Hamilton, A.; Lang, N.N.; Gallagher, J.M.; Newby, D.E.; Feelisch, M.; Weller, R.B. UVA irradiation of human skin vasodilates arterial vasculature and lowers blood pressure independently of nitric oxide synthase. J. Investig. Dermatol. 2014, 134, 1839–1846. [Google Scholar] [CrossRef] [Green Version]
- Alfredsson, L.; Armstrong, B.K.; Butterfield, D.A.; Chowdhury, R.; De Gruijl, F.R.; Feelisch, M.; Garland, C.F.; Hart, P.H.; Hoel, D.G.; Jacobsen, R.; et al. Insufficient Sun Exposure Has Become a Real Public Health Problem. Int. J. Environ. Res. Public Health 2020, 17, 5014. [Google Scholar] [CrossRef] [PubMed]
- Hernández, J.L.; Nan, D.; Fernandez-Ayala, M.; García-Unzueta, M.; A Hernández-Hernández, M.; López-Hoyos, M.; Muñoz-Cacho, P.; Olmos, J.M.; Gutiérrez-Cuadra, M.; Ruiz-Cubillán, J.J.; et al. Vitamin D Status in Hospitalized Patients with SARS-CoV-2 Infection. J. Clin. Endocrinol. Metab. 2021, 106, e1343–e1353. [Google Scholar] [CrossRef] [PubMed]
- Meltzer, D.O.; Best, T.J.; Zhang, H.; Vokes, T.; Arora, V.; Solway, J. Association of Vitamin D Status and Other Clinical Characteristics with COVID-19 Test Results. JAMA Netw. Open 2020, 3, e2019722. [Google Scholar] [CrossRef]
- Kaufman, H.W.; Niles, J.K.; Kroll, M.H.; Bi, C.; Holick, M.F. SARS-CoV-2 positivity rates associated with circulating 25-hydroxyvitamin D levels. PLoS ONE 2020, 15, e0239252. [Google Scholar] [CrossRef] [PubMed]
- Feister, U.; Meyer, G.; Kirst, U. Solar UV Exposure of Seafarers along Subtropical and Tropical Shipping Routes. Photochem. Photobiol. 2013, 89, 1497–1506. [Google Scholar] [CrossRef] [PubMed]
- Modenese, A.; Ruggieri, F.P.; Bisegna, F.; Borra, M.; Burattini, C.; Della Vecchia, E.; Grandi, C.; Grasso, A.; Gugliermetti, L.; Manini, M.; et al. Occupational Exposure to Solar UV Radiation of a Group of Fishermen Working in the Italian North Adriatic Sea. Int. J. Environ. Res. Public Health 2019, 16, 3001. [Google Scholar] [CrossRef] [Green Version]
- Vanicek, K.; Frei, T.; Litynska, Z.; Schmalwieser, A. UV-Index for the Public: A Guide for Publication and Interpretation of Solar UV Index Forecasts for the Public, Prepared by the Working Group 4 of the COST-713 Action “UVB forecasting” Report; European Union: Brussels, Belgium, 2000; 26p. [Google Scholar]
- Schmalwieser, A.W.; Gröbner, J.; Blumthaler, M.; Klotz, B.; De Backer, H.; Bolsée, D.; Werner, R.; Tomsic, D.; Metelka, L.; Eriksen, P.; et al. UV Index monitoring in Europe. Photochem. Photobiol. Sci. 2017, 16, 1349–1370. [Google Scholar] [CrossRef] [Green Version]
- Lehmann, M.; Pfahlberg, A.B.; Sandmann, H.; Uter, W.; Gefeller, O. Public Health Messages Associated with Low UV Index Values Need Reconsideration. Int. J. Environ. Res. Public Health 2019, 16, 2067. [Google Scholar] [CrossRef] [Green Version]
- Rusińska, A.; Pludowski, P.; Walczak, M.; Borszewska-Kornacka, M.K.; Bossowski, A.; Chlebna-Sokół, D.; Czech-Kowalska, J.; Dobrzanska, A.; Franek, E.; Helwich, E.; et al. Vitamin D Supplementation Guidelines for General Population and Groups at Risk of Vitamin D Deficiency in Poland—Recommendations of the Polish Society of Pediatric Endocrinology and Diabetes and the Expert Panel with Participation of National Specialist Consultants and Representatives of Scientific Societies—2018 Update. Front. Endocrinol. 2018, 9, 246. [Google Scholar] [CrossRef]
- Kimball, S.M.; Holick, M.F. Official recommendations for vitamin D through the life stages in developed countries. Eur. J. Clin. Nutr. 2020, 74, 1514–1518. [Google Scholar] [CrossRef]
- Holick, M.F.; Binkley, N.C.; Bischoff-Ferrari, H.A.; Gordon, C.M.; Hanley, D.A.; Heaney, R.P.; Murad, M.H.; Weaver, C.M. Evaluation, Treatment, and Prevention of Vitamin D Deficiency: An Endocrine Society Clinical Practice Guideline. J. Clin. Endocrinol. Metab. 2011, 96, 1911–1930. [Google Scholar] [CrossRef] [Green Version]
- Veugelers, P.J.; Pham, T.-M.; Ekwaru, J.P. Optimal Vitamin D Supplementation Doses that Minimize the Risk for Both Low and High Serum 25-Hydroxyvitamin D Concentrations in the General Population. Nutrients 2015, 7, 10189–10208. [Google Scholar] [CrossRef] [Green Version]
- Corrêa, M.D.P.; Godin-Beekmann, S.; Haeffelin, M.; Brogniez, C.; Verschaeve, F.; Saiag, P.; Pazmiño, A.; Mahé, E. Comparison between UV index measurements performed by research-grade and consumer-products instruments. Photochem. Photobiol. Sci. 2010, 9, 459–463. [Google Scholar] [CrossRef]
- Guzikowski, J.; Czerwińska, A.E.; Krzyścin, J.W.; Czerwiński, M.A. Controlling sunbathing safety during the summer holidays—The solar UV campaign at Baltic Sea coast in 2015. J. Photochem. Photobiol. B Biol. 2017, 173, 271–281. [Google Scholar] [CrossRef] [PubMed]
- Czerwińska, A.; Krzyścin, J. Numerical estimations of the daily amount of skin-synthesized vitamin D by pre-school children in Poland. J. Photochem. Photobiol. B Biol. 2020, 208, 111898. [Google Scholar] [CrossRef] [PubMed]
- McKinlay, A.F.; Diffey, B.L. A Reference spectrum for Ultraviolet Induced Erythema in Human Skin. CIE J. 1987, 6, 17–22. [Google Scholar]
- Krzyścin, J.W.; Narbutt, J.; Lesiak, A.; Jarosławski, J.; Sobolewski, P.; Rajewska-Więch, B.; Szkop, A.; Wink, J.; Czerwińska, A. Perspectives of the antipsoriatic heliotherapy in Poland. J. Photochem. Photobiol. B Biol. 2014, 140, 111–119. [Google Scholar] [CrossRef]
- Allaart, M.; Van Weele, M.; Fortuin, P.; Kelder, H. An empirical model to predict the UV-index based on solar zenith angles and total ozone. Meteorol. Appl. 1999, 11, 59–65. [Google Scholar] [CrossRef] [Green Version]
- Guzikowski, J.; Krzyścin, J.; Czerwińska, A.; Raszewska, W. Adequate vitamin D3 skin synthesis versus erythema risk in the Northern Hemisphere midlatitudes. J. Photochem. Photobiol. B Biol. 2018, 179, 54–65. [Google Scholar] [CrossRef]
- CIE (Commision Internationalle de L’Eclairage). Technical Report: Action Spectrum for the Production of Previtamin D3 in Human Skin. CIE J. 2006, 174, 1–12. [Google Scholar]
- Sallander, E.; Wester, U.; Bengtsson, E.; Edström, D.W. Vitamin D levels after UVB radiation: Effects by UVA additions in a randomized controlled trial. Photodermatol. Photoimmunol. Photomed. 2013, 29, 323–329. [Google Scholar] [CrossRef]
- Fitzpatrick, T.B. The Validity and Practicality of Sun-Reactive Skin Types I through VI. Arch. Dermatol. 1988, 124, 869–871. [Google Scholar] [CrossRef]
- Vernez, D.; Milon, A.; Vuilleumier, L.; Bulliard, J.-L.; Koechlin, A.; Boniol, M.; Doré, J.F. A general model to predict individual exposure to solar UV by using ambient irradiance data. J. Expo. Sci. Environ. Epidemiol. 2015, 25, 113–118. [Google Scholar] [CrossRef]
- Schmalwieser, A.W. Possibilities to estimate the personal UV radiation exposure from ambient UV radiation measurements. Photochem. Photobiol. Sci. 2020, 19, 1249–1261. [Google Scholar] [CrossRef]
- Czerwińska, A.; Krzyścin, J. Analysis of Measurements and Modelling of the Biologically Active UV Solar Radiation for Selected Sites in Poland—Assessment of Photo-Medical Effects; Publications of the Institute of Geophysics, Polish Academy of Sciences: Warsaw, Poland, 2020; Volume 428, 111p. [Google Scholar] [CrossRef]
- Mosteller, R.D. Simplified Calculation of Body-Surface Area. N. Engl. J. Med. 1987, 317, 1098. [Google Scholar] [CrossRef]
- MacLaughlin, J.A.; Holick, M.F. Aging decreases the capacity of human skin to produce vitamin D3. J. Clin. Investig. 1985, 76, 1536–1538. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lucas, R.M.; Neale, R.E.; Madronich, S.; McKenzie, R.L. Are current guidelines for sun protection optimal for health? Exploring the evidence. Photochem. Photobiol. Sci. 2018, 17, 1956–1963. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huotari, A.; Herzig, K.-H. Vitamin D and living in northern latitudes—An endemic risk area for vitamin D deficiency. Int. J. Circumpolar Health 2008, 67, 164–178. [Google Scholar] [CrossRef] [PubMed]
- Engelsen, O. The Relationship between Ultraviolet Radiation Exposure and Vitamin D Status. Nutrients 2010, 2, 482–495. [Google Scholar] [CrossRef] [Green Version]
- Kozlov, A.I.; Vershubsky, G.G. Systematic Review on 25-HydroxyvitaminD Levels in Various Populations of the Russian North. Hum. Physiol. 2019, 45, 565–575. [Google Scholar] [CrossRef]
- Ovesen, L.; Andersen, R.; Jakobsen, J. Geographical differences in vitamin D status, with particular reference to European countries. Proc. Nutr. Soc. 2003, 62, 813–821. [Google Scholar] [CrossRef] [Green Version]
- Ramnemark, A.; Norberg, M.; Pettersson-Kymmer, U.; Eliasson, M. Adequate vitamin D levels in a Swedish population living above latitude 63° N: The 2009 Northern Sweden MONICA study. Int. J. Circumpolar Health 2015, 74, 27963. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Andersen, S.; Laurberg, P.; Hvingel, B.; Kleinschmidt, K.; Heickendorff, L.; Mosekilde, L. Vitamin D status in Greenland is influenced by diet and ethnicity: A population-based survey in an Arctic society in transition. Br. J. Nutr. 2012, 109, 928–935. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nielsen, N.O.; Jørgensen, M.E.; Friis, H.; Melbye, M.; Soborg, B.; Jeppesen, C.; Lundqvist, M.; Cohen, A.; Hougaard, D.M.; Bjerregaard, P. Decrease in Vitamin D Status in the Greenlandic Adult Population from 1987–2010. PLoS ONE 2014, 9, e112949. [Google Scholar] [CrossRef] [Green Version]
- Spiro, A.; Buttriss, J.L. Vitamin D: An overview of vitamin D status and intake in Europe. Nutr. Bull. 2014, 39, 322–350. [Google Scholar] [CrossRef] [Green Version]
- Brader, L.; Rejnmark, L.; Carlberg, C.; Schwab, U.; Kolehmainen, M.; Rosqvist, F.; Cloetens, L.; Landin-Olsson, M.; Gunnarsdottir, I.; Poutanen, K.S.; et al. Effects of a healthy Nordic diet on plasma 25-hydroxyvitamin D concentration in subjects with metabolic syndrome: A randomized, placebo-controlled trial (SYSDIET). Eur. J. Nutr. 2014, 53, 1123–1134. [Google Scholar] [CrossRef]
- Crowe, F.L.; Steur, M.; E Allen, N.; Appleby, P.N.; Travis, R.C.; Key, T.J. Plasma concentrations of 25-hydroxyvitamin D in meat eaters, fish eaters, vegetarians and vegans: Results from the EPIC–Oxford study. Public Health Nutr. 2011, 14, 340–346. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jarosz-Krzemińska, E.; Mikołajczyk, N.; Adamiec, E. Content of toxic metals and as in marine and freshwater fish species available for sale in EU supermarkets and health risk associated with its consumption. J. Sci. Food Agric. 2021, 101, 2818–2827. [Google Scholar] [CrossRef]
- Holick, M.F. The Vitamin D Epidemic and its Health Consequences. J. Nutr. 2005, 135, 2739S–2748S. [Google Scholar] [CrossRef] [PubMed]
- Webb, A.R.; Kazantzidis, A.; Kift, R.C.; Farrar, M.D.; Wilkinson, J.; Rhodes, L.E. Colour Counts: Sunlight and Skin Type as Drivers of Vitamin D Deficiency at UK Latitudes. Nutrients 2018, 10, 457. [Google Scholar] [CrossRef] [Green Version]
- Kift, R.; Berry, J.L.; Vail, A.; Durkin, M.T.; Rhodes, L.E.; Webb, A.R. Lifestyle factors including less cutaneous sun exposure contribute to starkly lower vitamin D levels in U.K. South Asians compared with the white population. Br. J. Dermatol. 2013, 169, 1272–1278. [Google Scholar] [CrossRef] [PubMed]
- Young, A.R.; Morgan, K.A.; Ho, T.-W.; Ojimba, N.; Harrison, G.I.; Lawrence, K.P.; Jakharia-Shah, N.; Wulf, H.C.; Cruickshank, J.K.; Philipsen, P.A. Melanin has a Small Inhibitory Effect on Cutaneous Vitamin D Synthesis: A Comparison of Extreme Phenotypes. J. Investig. Dermatol. 2020, 140, 1418–1426.e1. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Czerwińska, A.; Czuchraj, W. Estimations of the Erythemal UV Doses and the Amount of the Sun-Synthesized Vitamin D by Adults during the Cruise to Spitsbergen–Polar Measurement Campaign (2–21 July 2017). Atmosphere 2021, 12, 474. https://doi.org/10.3390/atmos12040474
Czerwińska A, Czuchraj W. Estimations of the Erythemal UV Doses and the Amount of the Sun-Synthesized Vitamin D by Adults during the Cruise to Spitsbergen–Polar Measurement Campaign (2–21 July 2017). Atmosphere. 2021; 12(4):474. https://doi.org/10.3390/atmos12040474
Chicago/Turabian StyleCzerwińska, Agnieszka, and Wiktoria Czuchraj. 2021. "Estimations of the Erythemal UV Doses and the Amount of the Sun-Synthesized Vitamin D by Adults during the Cruise to Spitsbergen–Polar Measurement Campaign (2–21 July 2017)" Atmosphere 12, no. 4: 474. https://doi.org/10.3390/atmos12040474
APA StyleCzerwińska, A., & Czuchraj, W. (2021). Estimations of the Erythemal UV Doses and the Amount of the Sun-Synthesized Vitamin D by Adults during the Cruise to Spitsbergen–Polar Measurement Campaign (2–21 July 2017). Atmosphere, 12(4), 474. https://doi.org/10.3390/atmos12040474