The Variation Characteristics and Influencing Factors of Base Flow of the Hexi Inland Rivers
Abstract
:1. Introduction
2. Study Area
3. Data Sources and Research Methods
3.1. Data Sources
3.2. Research Methods
3.2.1. Base Flow Segmentation Method
3.2.2. Data Analysis Method
3.2.3. Principal Component Analysis
3.2.4. Double-Mass Curve Method
4. Results
4.1. Base Flow Segmentation Results
4.2. Characteristics of Base Flow
4.2.1. Characteristics of the Intra-Annual Base Flow
4.2.2. Inter-Annual Distribution of the Base Flow and BFI
4.2.3. Characteristic Analysis of the Mutation of Base Flow
4.3. Determination of the Factors Influencing the Base Flow
4.4. The Result of Double-Mass Curve
4.5. Analysis of Climatic Factors
5. Discussion
5.1. Non-Uniform Distribution of the Intra-Annual Base Flow
5.2. Contributions of the Influencing Factors to Base Flow
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dai, M.Y. Base flow separation and characteristic analyses of tributaries in the middle reach of Yellow River. Yellow River 1996, 18, 40–43. (In Chinese) [Google Scholar]
- Tallaksen, L.M. A review of baseflow recession analysis. J. Hydrol. 1995, 165, 349–370. [Google Scholar] [CrossRef]
- Lan, Y.C.; Kang, E.S. Changing trend and features of the runoff from mountain areas of some main rivers in the Hexi inland region. J. Glaciol. Geocryol. 2000, 22, 147–152. (In Chinese) [Google Scholar]
- Wang, Y.; Yang, H. Frozen ground degradation may reduce future runoff in the headwaters of an inland river on the northeastern Tibetan Plateau. J. Hydrol. 2018, 564, 1153–1164. [Google Scholar] [CrossRef]
- Shi, Y.F.; Zhang, X. Influence and future trends of climate variation on water resources in the arid area in the northern China. Sci. China Ser. A Chem. 1995, 25, 968–977. [Google Scholar] [CrossRef]
- Lan, Y.C.; Liu, J.P.; Ding, H.W.; Lu, C.Y.; Shen, Y.P.; Hu, X.L.; Gao, L.M. Changes of precipitation in mountainous areas of the three large inland river basins in the Hexi Corridor and their regional difference during 1960–2012. J. Glaciol. Geocryol. 2013, 35, 1474–1480. [Google Scholar] [CrossRef]
- Zhang, Y.; Ma, J.; Chang, X.; Van Wonderen, J.; Yan, L.; Han, J. Water resources assessment in the Minqin Basin: An arid inland river basin under intensive irrigation in northwest China. Environment. Earth Sci. 2012, 65, 1831–1839. [Google Scholar] [CrossRef]
- Zhang, T.; Zhou, Y.; Guo, D.; Qiu, G.; Cheng, G.; Li, S. Geocryology in China. Arct. Antarct. Alp. Res. 2001, 33, 245. [Google Scholar]
- Wang, Q.F.; Zhang, T.; Wu, J.C.; Peng, X.; Zhong, X.; Mou, C.C.; Wang, K.; Wu, Q.; Cheng, G. Investigation of permafrost distribution over the upper reaches of the Heihe River in the Qilian Mountains. Glaciol. Geocryol. 2013, 35, 19–29. [Google Scholar] [CrossRef]
- St Jacques, J.M.; Sauchyn, D.J. Increasing winter baseflow and mean annual streamflow from possible permafrost thawing in the Northwest Territories, Canada. Geophys. Res. Lett. 2009, 36, 329–342. [Google Scholar] [CrossRef]
- Wang, Y.; Yang, D.; Lei, H.; Yang, H. Impact of cryosphere hydrological processes on the river runoff in the upper reaches of Heihe River. J. Hydraul. 2015, 46, 1064–1071. [Google Scholar] [CrossRef]
- Connon, R.F.; Quinton, W.L.; Craig, J.R.; Hayashi, M. Changing hydrologic connectivity due to permafrost thaw in the lower Liard River valley, NWT, Canada. Hydrol. Process. 2014, 28, 4163–4178. [Google Scholar] [CrossRef]
- Zhao, C.C.; Wang, Y.; Ding, Y.J.; Ye, B.S.; Yao, S.X. Spatial-Temporal Variations of temperature and precipitation in Northwest China in Recent 50 Years. Plateau Meteorol. 2011, 30, 385–390. [Google Scholar]
- Shi, Y.F.; Shen, Y.P.; Hu, R.J. Preliminary study on signal, impact and foreground of climatic shift from warm-dry to warm-humid in Northwest China. J. Glaciol. Geocryol. 2002, 24, 219–226. [Google Scholar] [CrossRef]
- Zhang, Y.; Fu, G.; Sun, B.; Zhang, S.; Men, B. Simulation and classification of the impacts of projected climate change on flow regimes in the arid Hexi Corridor of Northwest China. J. Geophys. Res. Atmos. 2015, 120, 7429–7453. [Google Scholar] [CrossRef]
- Immerzeel, W.W.; Van Beek, L.P.H.; Konz, M.; Shrestha, A.B.; Bierkens, M.F.P. Hydrological response to climate change in a glacierized catchment in the Himalayas. Clim. Chang. 2012, 110, 721–736. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, Y.; Xu, C.; Chen, Y.; Li, W.; Liu, J. Response of glacial-lake outburst floods to climate change in the Yarkant River basin on northern slope of Karakoram Mountains, China. Quat. Int. 2010, 226, 75–81. [Google Scholar] [CrossRef]
- Zhu, Y.H.; Wu, Y.Q.; Drake, S. A survey: Obstacles and strategies for the development of ground-water resources in arid inland river basins of Western China. J. Arid Environ. 2005, 59, 351–367. [Google Scholar] [CrossRef]
- Mwakalila, S.; Feyen, J.; Wyseure, G. The influence of physical catchment properties on baseflow in semi- arid environments. J. Arid Environ. 2002, 52, 245–258. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, B.; Zhao, C.Y. Annual base flow change and its causes in the upper reaches of Heihe River. Geogr. Res. 2011, 30, 1421–1430. [Google Scholar] [CrossRef] [Green Version]
- Dong, W.W.; Ding, Y.J.; Wei, X. Variation of the base flow and its causes in the upper reaches of the Shule River in the Qilian Mountains. J. Glaciol. Geocryol. 2014, 36, 661–669. [Google Scholar] [CrossRef]
- Zhang, J.; Song, J.; Cheng, L.; Zheng, H.; Wang, Y.; Huai, B.; Sun, W.; Qi, S.; Zhao, P.; Wang, Y.; et al. Baseflow estimation for catchments in the Loess Plateau, China. J. Environ. Manag. 2019, 233, 264–270. [Google Scholar] [CrossRef] [PubMed]
- Quan, J.; Ma, J.L. Baseflow Separation and Its Characteristics Analysis in Shiyang River Basin. Water Resour. Power 2010, 28, 15–17. [Google Scholar]
- Wei, H.D.; Li, Y.; Ding, F.; Chen, F.; Zhou, L.P.; Hu, X.K. Characteristics of climate change in Shiyang River Basin from 1951 to 2005. Pratacultural Sci. 2014, 4, 590–598. [Google Scholar] [CrossRef]
- Meng, X.J.; Zhang, S.F.; Zhang, Y.Y. The Temporal and Spatial Change of Temperature and Precipitation in Hexi Corridor in Recent 57 Years. Acta Geogr. Sin. 2015, 67, 1482–1492. [Google Scholar]
- Bai, M.; Niu, L.J.; Wei, R.N.; Zhen, X.J. Spatial and Temporal Distribution of Temperature in Hexi Corridor. J. Gansu Sci. 2019, 31, 46–48. [Google Scholar] [CrossRef]
- Niu, Z.R.; Liu, J.Q.; Zhao, W.Z.; Ma, Z.Y. Study on the Impacts of Land Utilization on Surface Water Resources in Hexi inland rivers basin. J. China Hydrol. 2009, 29, 73–78. [Google Scholar] [CrossRef] [Green Version]
- Yang, Z.N. Glacier Water Resources in China; Gansu Science and Technology Press: Lanzhou, China, 1991; pp. 1–158. [Google Scholar]
- Wang, Y.; Li, Y.H.; Yao, Y.B.; Zhao, F.N. Spatial and Temporal Patterns in Surface Humidity Changes in the Shiyang River Basin. Resour. Sci. 2013, 35, 2112–2120. [Google Scholar]
- Cheng, G.; Jin, H. Permafrost and groundwater on the Qinghai-Tibet Plateau and in northeast China. Hydrogeol. J. 2013, 21, 5–23. [Google Scholar] [CrossRef]
- Jiang, Y.W.; Zhang, X.F.; Yang, L.X.; He, C.S. Comparative Analysis of Temporal and Spatial Variations of Meteorological and Hydrological Drought Index in Upper Heihe River. Resour. Sci. 2014, 36, 1842–1851. [Google Scholar]
- Sheng, Y.; Li, J.; Wu, J.C.; Ye, B.S.; Wang, J. Based on GIS characteristics of multi-year freeze-stop distribution in upper reaches of Shule River Basin. J. China Univ. Min. Technol. 2010, 39, 32–39. [Google Scholar]
- Penman, H.L. Natural evaporation from open water, bare soil and grass. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 1948, 193, 120–146. [Google Scholar] [CrossRef] [Green Version]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop PET-Guidelines for Computing Crop Water Requirements; United Nations Food and Agriculture Organization: Rome, Italy, 1998. [Google Scholar]
- Posavec, K.; Bacani, A.; Nakic, Z. A visual basic spreadsheet macro for recession curve analysis. Groundwater 2006, 44, 764–767. [Google Scholar] [CrossRef]
- Chen, L.Q.; Liu, C.M.; Li, F.D. Reviews on base flow researches. Prog. Geogr. 2006, 25, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Thomas, B.F.; Vogel, R.M.; Famiglietti, J.S. Objective hydrograph baseflow recession analysis. J. Hydrol. 2015, 525, 102–112. [Google Scholar] [CrossRef] [Green Version]
- Jang, W.S.; Engel, B.; Ryu, J. Efficient flow calibration method for accurate estimation of baseflow using a watershed scale hydrological model (SWAT). Ecol. Eng. 2018, 125, 50–67. [Google Scholar] [CrossRef]
- Bonneau, J.; Burns, M.J.; Fletcher, T.D.; Witt, R.; Drysdale, R.N.; Costelloe, J.F. The impact of urbanization on subsurface flow paths-A paired-catchment isotopic study. J. Hydrol. 2018, 561, 413–426. [Google Scholar] [CrossRef]
- Blumstock, M.; Tetzlaff, D.; Malcolm, I.A.; Nuetzmann, G.; Soulsby, C. Baseflow dynamics: Multi-tracer surveys to assess variable groundwater contributions to montane streams under low flows. J. Hydrol. 2015, 527, 1021–1033. [Google Scholar] [CrossRef]
- Furey, P.R.; Gupta, V.K. A physically based filter for separating base flow from streamflow time series. Water Resour. Res. 2001, 37, 2709–2722. [Google Scholar] [CrossRef] [Green Version]
- Li, L.; Maier, H.R.; Partington, D.; Lambert, M.F.; Simmons, C.T. Performance assessment and improvement of recursive digital baseflow filters for catchments with different physical characteristics and hydrological inputs. Environ. Model. Softw. 2014, 54, 39–52. [Google Scholar] [CrossRef]
- Nathan, R.J.; McMahon, T.A. Evaluation of automated techniques for baseflow and recession analyses. Water Resour. Res. 1990, 29, 1465–1473. [Google Scholar] [CrossRef]
- Chapman, T.G.; Maxwell, A.I. Baseflow separation-comparison of numerical methods with tracer experiments. In Proceedings of the 23rd Hydrology and Water Resources Symposium, Hobart, Australia, 21–24 May 1996; Institution of Engineers: Camberra, Australia, 1996; Volume 5, pp. 539–545. [Google Scholar]
- Boughton, W.C. A hydrograph-based model for estimating the water yield of ungauged catchments. In Proceedings of the Hydrology and Water Resources Symposium, Newcastle, Australia, 30 June–2 July 1993; Institution of Engineers: Camberra, Australia, 1993; Volume 14, pp. 317–324. [Google Scholar]
- Dang, S.Z.; Wang, Z.G.; Liu, C.M. Baseflow separation and its characteristics in the upper reaches of the Heihe River basin. Resour. Sci. 2011, 33, 2232–2237. [Google Scholar]
- Arnold, J.G.; Allen, P.M.; Muttiah, R.; Bernhardt, G. Automated base flow separation and recession analysis techniques. Groundwater 1995, 33, 1010–1018. [Google Scholar] [CrossRef]
- Eckhardt, K. A comparison of baseflow indices, which were calculated with seven different baseflow separation methods. J. Hydrol. 2008, 352, 168–173. [Google Scholar] [CrossRef]
- Piggott, A.R.; Moin, S.; Southam, C. A revised approach to the UKIH method for the calculation of baseflow. Hydrol. Sci. J. 2005, 50, 911–920. [Google Scholar] [CrossRef]
- Tang, Q.C.; Qu, Y.G.; Zhou, Y.C. Hydrology and Water Resources Utilization in Arid Areas of China; Science Press: Beijing, China, 1992; pp. 44–48. [Google Scholar]
- Lei, Y.N. Analysis on Trend and Driving Factors of Base Flow in Kuye Catchment; Research Center of Soil and Water Conservation and Ecological Environment, Chinese Academy of Sciences and Ministry of Education: Beijing, China, 2012. [Google Scholar]
- Cheng, Q.-B.; Chen, X.; Xu, C.-Y.; Reinhardt-Imjela, C.; Schulte, A. Improvement and comparison of likelihood functions for model calibration and parameter uncertainty analysis within a Markov chain Monte Carlo scheme. J. Hydrol. 2014, 519, 2202–2214. [Google Scholar] [CrossRef]
- Burn, D.H.; Elnur, M.A.H. Detection of hydrological trend and variability. J. Hydrol. 2002, 255, 107–122. [Google Scholar] [CrossRef]
- Zhang, X.P.; Zhang, L.; Wang, Y.; Mu, X. Tempo-spatially responses of the annual streamflow to LUCC in the middle reaches of Yellow River, China. Sci. Soil Water Conserv. 2009, 7, 19–26. [Google Scholar] [CrossRef]
- Zhang, Y.-F.; Wang, X.-P.; Hu, R.; Pan, Y.-X. Meteorological influences on process-based spatial-temporal pattern of throughfall of a xerophytic shrub in arid lands of northern China. Sci. Total Environ. 2018, 619–620, 1003–1013. [Google Scholar] [CrossRef]
- Wu, J.W.; Miao, C.Y.; Zhang, X.M. Detecting the quantitative hydrological response to changes in climate and human activities. Sci. Total Environ. 2017, 586, 328–337. [Google Scholar] [CrossRef] [PubMed]
- Liu, E.J.; Zhang, X.P.; Xie, M.L.; Chen, N.; Zhang, T.T.; Guo, M.J.; Zhang, J.J. Hydrologic responses to vegetation restoration and their driving forces in a catchment in the Loess hilly-gully area: A case study in the upper Beiluo River. Acta Ecol. Sin. 2015, 35, 622–629. [Google Scholar]
- Ryberg, K.R.; Hodgkins, G.A.; Dudley, R.W. Change points in annual peak streamflows: Method comparisons and historical change points in the United States. J. Hydrol. 2020, 583, 124307. [Google Scholar] [CrossRef]
- Wei, F.Y. Modern Statistical Climate Diagnosis and Prediction Techniques; China Meteorological Press: Beijing, China, 2007; pp. 57–60. [Google Scholar]
- Van Engelenburg, J.; Hueting, R.; Rijpkema, S.; Teuling, A.J.; Uijlenhoet, R.; Ludwig, F. Impact of changes in groundwater extractions and climate change on groundwater-dependent ecosystems in a complex hydrogeological setting. Water Resour. Manag. 2018, 32, 259–272. [Google Scholar] [CrossRef] [Green Version]
- Koskelo, A.I.; Fisher, T.R.; Utz, R.M.; Jordan, T.E. A new precipitation-based method of baseflow separation and event identification for small watersheds (<50 km2). J. Hydrol. 2012, 450–451, 267–278. [Google Scholar] [CrossRef]
- Li, X.; Wang, G.; Xu, T.; Huang, W. Varimax-Based Rotation Algorithm for Factor Analysis. Nanotechnol. Precston Eng. 2013, 11, 557–561. [Google Scholar] [CrossRef]
- Jiao, J.Z. The Study of Temporal-Spatial Changing and Simulation of Land-Use/Cover in Minqin Oasis. Ph.D. Thesis, Lanzhou University, Lanzhou, China, 2012; pp. 77–87. [Google Scholar]
- Zhou, G.L.; Liang, H. Factor score, principal component score coefficient calculation are referred to some papers. J. Nat. Resour. 2006, 21, 827–833. [Google Scholar]
- Fu, X.; Ji, C.M. A comprehensive evaluation of the regional water resource carrying capacity—Application of main component analysis method. Resour. Environ. Yangtze Basin 1999, 8, 168–173. [Google Scholar]
- Cagdas, C.; Sait, B. Relationship between Academicians’ Organizational Identification Levels and Cynicism Attitudes in Sports Sciences. Eur. J. Educ. Res. 2019, 8, 349–360. [Google Scholar] [CrossRef] [Green Version]
- Lan, Y.; Hu, X.; Ding, H. Multiple Time Scales Analysis of Jump and Variation of Air Temperature in Mountain Area of Hexi Inland River Basin in the Past More than 50 Years. Mt. Res. 2014, 32, 163–170. [Google Scholar]
- Zu, M.J.; Guan, Y.Q.; Zhang, D.R.; Shen, X.J.; Li, X.H.; Shao, G.W. Analysis of base flow variation characteristic in Hailiutu river in past 50 years. J. Water Resour. Water Eng. 2013, 24, 38–42. [Google Scholar]
- Ding, Y.J.; Ye, B.S.; Liu, S.Y. Effect of climatic factors on streamflow in the Alpine catchment of the Qilian Mountain. J. Geogr. 1999, 54, 431–437. [Google Scholar]
- Xu, H.J.; Yang, T.B.; Zhang, X.X. Climate change in upstream area of Shule River and its effects on runoff yield in last 50 years. Bull. Soil Water Conserv. 2014, 34, 39–45. [Google Scholar]
- Tague, C.; Grant, G.E. Groundwater dynamics mediate low-flow response to global warming in snow-dominated alpine regions. Water Resour. Res. 2009, 45, W07421. [Google Scholar] [CrossRef]
- Barnhart, T.B.; Molotch, N.P.; Livneh, B.; Harpold, A.A.; Knowles, J.F.; Schneider, D. Snowmelt rate dictates streamflow. Geophys. Res. Lett. 2016, 43, 8006–8016. [Google Scholar] [CrossRef]
- Jiang, X.R.; Li, D.; Pang, G.J. Analysis of land use/cover change and its driving factors in Shiyang River basin in the early 21 century. J. Arid Land Resour. Environ. 2010, 24, 61–66. [Google Scholar] [CrossRef]
- Jia, J.J.; Zhao, J.; Wang, J.B.; Gao, C.; Chang, R.Y. Ecological vulnerability assessment of Shiyang River basin based on SRP model. J. Arid Land Resour. Environ. 2020, 34, 34–41. (In Chinese) [Google Scholar]
Basin (Area) | Stations (Area) | Climate Parameter | Longitude/E | Latitude/N | Height/m | Time Scale |
---|---|---|---|---|---|---|
Shiyang River basin (44,000 km2) | Zamusi (660 km2) | R a | 102.57 | 38.70 | 2010.0 | 1980–2015 |
Jiutiaoling (1450 km2) | R | 102.05 | 37.87 | 2250.0 | 1980–2015 | |
Alashanyouqi | P b T c | 101.68 | 39.22 | 1510.1 | 1980–2015 | |
Yongchang | P T | 101.97 | 38.23 | 1976.9 | 1980–2015 | |
Wuwei | P T | 102.67 | 37.92 | 1531.5 | 1980–2015 | |
Minqin | P T | 103.08 | 38.63 | 1367.5 | 1980–2015 | |
Menyuan | P T | 101.62 | 37.38 | 7850.0 | 1980–2015 | |
Wuqiaoling | P T | 102.87 | 37.20 | 3045.1 | 1980–2015 | |
Jingtai | P T | 104.05 | 37.18 | 1630.9 | 1980–2015 | |
Heihe River basin (68,200 km2) | Yingluoxia (10,400 km2) | R P | 100.18 | 38.82 | 3737.7 | 1980–2015 |
Zhamashenke | P | 99.98 | 38.23 | 2820.0 | 1980–2015 | |
Dingxin | P T | 99.52 | 40.30 | 1177.4 | 1980–2015 | |
Jiuquan | P T | 98.48 | 39.77 | 1477.2 | 1980–2015 | |
Gaotai | P T | 99.83 | 39.37 | 1332.2 | 1980–2015 | |
Tuole | P T | 98.42 | 38.80 | 3367.0 | 1980–2015 | |
Sunan | P T | 99.62 | 38.83 | 2311.8 | 1980–2015 | |
Yeniugou | P T | 99.58 | 38.42 | 8320.0 | 1980–2015 | |
Zhangye | P T | 100.43 | 38.93 | 1482.7 | 1980–2015 | |
Qilian | P T | 100.25 | 38.18 | 2787.4 | 1980–2015 | |
Shandan | P T | 101.08 | 38.80 | 1764.6 | 1980–2015 | |
Shule River basin (127,000 km2) | Changmabao (11,400 km2) | R | 96.85 | 39.82 | 2080.0 | 1980–2015 |
Hongliuhe | P T | 94.67 | 41.53 | 1573.8 | 1980–2015 | |
Mazongshan | P T | 97.03 | 41.80 | 1770.4 | 1980–2015 | |
Dunhuang | P T | 94.68 | 40.15 | 1139.0 | 1980–2015 | |
Anxi | P T | 95.77 | 40.53 | 1170.9 | 1980–2015 | |
Yumenzhen | P T | 97.03 | 40.27 | 1526.0 | 1980–2015 |
Basin (Hydrological Site) | Statistical Characteristics | Digital Filter Method | MSM | ||||
---|---|---|---|---|---|---|---|
F1 | F2 | F3 | F4 | ||||
Shule River basin (Changmabao) | Max (m3/s) | 45.6 | 50.3 | 53.6 | 43.8 | 41.5 | |
Min (m3/s) | 9.4 | 5.8 | 8.1 | 6.1 | 10.3 | ||
Mean (m3/s) | 18.8 | 17.0 | 20.2 | 16.2 | 20.0 | ||
Kpa | 4.84 | 8.70 | 6.59 | 7.25 | 4.03 | ||
CV b | 0.62 | 0.88 | 0.77 | 0.76 | 0.56 | ||
Heihe River basin (Yingluoxia) | Max (m3/s) | 70.0 | 64.9 | 72.5 | 61.5 | 68.8 | |
Min (m3/s) | 8.3 | 6.8 | 8.3 | 7.0 | 9.3 | ||
Mean (m3/s) | 28.6 | 27.1 | 31.3 | 26.0 | 30.8 | ||
Kpa | 8.41 | 9.56 | 8.71 | 8.73 | 7.41 | ||
CV | 0.77 | 0.82 | 0.78 | 0.79 | 0.72 | ||
Shiyang River basin | Xiying River (Jiutiaoling) | Max (m3/s) | 12.7 | 11.3 | 11.9 | 11.2 | 12.5 |
Min (m3/s) | 1.2 | 0.7 | 0.8 | 0.8 | 1.3 | ||
Mean (m3/s) | 5.0 | 4.9 | 5.1 | 4.8 | 5.3 | ||
Kpa | 10.67 | 15.99 | 14.03 | 14.51 | 9.94 | ||
CV | 0.86 | 0.86 | 0.86 | 0.83 | 0.82 | ||
Zamu River (Zamusi) | Max (m3/s) | 8.5 | 7.9 | 8.3 | 7.7 | 8.6 | |
Min (m3/s) | 0.8 | 0.5 | 0.6 | 0.5 | 0.8 | ||
Mean (m3/s) | 3.6 | 3.6 | 3.8 | 3.6 | 3.8 | ||
Kpa | 11.25 | 16.89 | 14.52 | 14.62 | 10.91 | ||
CV | 0.83 | 0.82 | 0.82 | 0.79 | 0.79 |
Separation Methods | Shule River | Heihe River | Xiying River | Zamu River | ||||
---|---|---|---|---|---|---|---|---|
E a | R b | E | R | E | R | E | R | |
F1 | 0.74 | 8.63% | 0.02 | 7.08% | 0.34 | 3.65% | 0.45 | 6.57% |
F2 | 0.46 | 17.09% | −0.03 | 12.00% | 0.75 | 1.52% | 0.56 | 6.55% |
F3 | 0.88 | 1.48% | 0.62 | 1.64% | 0.51 | 5.17% | 0.14 | 11.29% |
F4 | 0.20 | 21.20% | −0.58 | 15.45% | 0.76 | 0.33% | 0.60 | 5.50% |
MSM | 0.67 | 2.70% | −0.32 | 0.11% | −0.75 | 10.28% | −0.06 | 12.33% |
Basin | River | Mean (million m3) | Equation of Linear Regression | Coefficient of Correlation (R2) | |Z| | P |
---|---|---|---|---|---|---|
Heihe River basin | Heihe River | 992 | y = 0.033x + 9.29 | 0.07 | 1.58 | 0.114 |
Shule River basin | Shule River | 596 | y = 0.103x + 4.00 | 0.50 | 4.07 * | <0.01 |
Shiyang River basin | Xiying River | 153 | y = 0.003x + 1.47 | 0.01 | 0.77 | 0.440 |
Zamu River | 113 | y = 0.001x + 1.11 | 0.00 | 0.46 | 0.674 |
Factor | Component of Shule River | Component of Heihe River | Component of Shiyang River | ||||||
---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 1 | 2 | 3 | 1 | 2 | 3 | |
Temperature | 0.94 | 0.13 | −0.09 | 0.35 | 0.92 | −0.04 | 0.84 | 0.06 | −0.42 |
Precipitation | 0.36 | 0.65 | −0.65 | 0.42 | −0.01 | −0.86 | 0.94 | 0.29 | −0.13 |
PET | −0.16 | −0.13 | −0.96 | −0.94 | −0.32 | 0.01 | −0.21 | 0.93 | 0.21 |
Cultivated land | 0.86 | 0.49 | −0.01 | 0.78 | 0.58 | −0.20 | 0.87 | 0.15 | −0.39 |
Forestland | −0.19 | −0.15 | 0.90 | 0.36 | 0.87 | −0.21 | −0.21 | −0.14 | 0.96 |
Grassland | 0.21 | 0.94 | −0.02 | −0.42 | −0.88 | 0.13 | −0.72 | −0.53 | 0.19 |
Waters | 0.45 | 0.27 | 0.81 | 0.24 | −0.18 | 0.84 | −0.16 | −0.89 | 0.35 |
Glacier | −0.60 | −0.28 | 0.70 | −0.04 | −0.61 | 0.64 | −0.68 | 0.24 | 0.62 |
Urban land | −0.29 | −0.94 | −0.02 | −0.88 | −0.45 | 0.14 | −0.94 | 0.24 | −0.14 |
Sand | 0.80 | 0.58 | −0.03 | 0.96 | 0.24 | 0.01 | 0.90 | −0.06 | −0.38 |
Gobi Desert | 0.47 | 0.87 | 0.02 | 0.93 | 0.31 | 0.08 | 0.86 | −0.34 | −0.24 |
Unused land | 0.87 | 0.43 | 0.17 | 0.94 | 0.16 | −0.10 | 0.79 | 0.10 | −0.45 |
Area | Period | F1 | F2 | F3 | F |
---|---|---|---|---|---|
Shule River | 1980 | −0.62 | −0.44 | 2.04 | −0.29 |
1990 | −1.14 | 0.07 | −0.18 | −0.69 | |
1995 | −0.88 | −0.18 | −1.02 | −0.70 | |
2000 | −0.27 | −0.48 | −0.76 | −0.38 | |
2005 | 1.02 | −0.79 | −0.35 | 0.35 | |
2010 | 1.50 | −0.37 | 0.19 | 0.82 | |
2015 | 0.40 | 2.19 | 0.08 | 0.88 | |
Heihe River | 1980 | −0.12 | −1.45 | 1.28 | −0.23 |
1990 | −0.44 | −0.99 | −0.12 | −0.51 | |
1995 | −0.87 | 0.13 | −0.54 | −0.64 | |
2000 | −1.06 | 1.24 | 0.55 | −0.43 | |
2005 | 0.01 | 0.93 | −0.02 | 0.19 | |
2010 | 0.59 | −0.43 | −1.82 | 0.13 | |
2015 | 1.89 | 0.56 | 0.68 | 1.50 | |
Shiyang River | 1980 | −1.24 | −1.71 | 0.20 | −1.20 |
1990 | −0.61 | 1.13 | 0.58 | −0.12 | |
1995 | −0.39 | 0.25 | 0.57 | −0.16 | |
2000 | −0.35 | 0.18 | −0.22 | −0.22 | |
2005 | 0.47 | 0.91 | 0.49 | 0.57 | |
2010 | 0.24 | 0.16 | −2.17 | −0.02 | |
2015 | 1.88 | −0.93 | 0.56 | 1.15 |
Basin | River | Period | Equation of Linear Regression | Coefficient of Correlation (R2) |
---|---|---|---|---|
Shule River basin | Shule River | 1980–1997 | y = 0.64x + 1.95 | 0.9975 |
1998–2016 | y = 0.90x − 38.47 | 0.9986 | ||
Heihe River basin | Heihe River | 1980–2002 | y = 0.08x + 2.17 | 0.9956 |
2003–2016 | y = 0.07x + 30.37 | 0.9949 | ||
Shiyang River basin | Xiying River | 1980–2001 | y = 1.24 × 10−3x + 0.91 | 0.9962 |
2002–2016 | y = 1.37 × 10−3x − 1.72 | 0.9972 | ||
Zamu River | 1980–2001 | y = 9.56 × 10−4x + 0.20 | 0.9968 | |
2002–2016 | y = 9.88 × 10−4x − 0.31 | 0.9966 |
Area | Period | Segmented Base Flow/108 m3 | Calculated Base Flow/108 m3 | Total Variation/108 m3 | By Land-Use Change/% | By Climate Change/% |
---|---|---|---|---|---|---|
Shule River | 1980–1997 | 4.70 | - | - | - | - |
1998–2016 | 7.15 | 5.37 | 1.78 | 27 | 73 | |
Heihe River | 1980–2002 | 9.51 | - | - | - | - |
2003–2016 | 10.59 | 11.08 | 0.49 | 55 | 45 | |
Xiying River | 1980–2001 | 1.44 | - | - | - | - |
2002–2016 | 1.66 | 1.50 | 0.16 | 27 | 73 | |
Zamu River | 1980–2001 | 1.08 | - | - | - | - |
2002–2016 | 1.20 | 1.17 | 0.03 | 75 | 25 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lei, Y.; Jiang, X.; Geng, W.; Zhang, J.; Zhao, H.; Ren, L. The Variation Characteristics and Influencing Factors of Base Flow of the Hexi Inland Rivers. Atmosphere 2021, 12, 356. https://doi.org/10.3390/atmos12030356
Lei Y, Jiang X, Geng W, Zhang J, Zhao H, Ren L. The Variation Characteristics and Influencing Factors of Base Flow of the Hexi Inland Rivers. Atmosphere. 2021; 12(3):356. https://doi.org/10.3390/atmos12030356
Chicago/Turabian StyleLei, Yuxin, Xiaohui Jiang, Wenjie Geng, Jinyan Zhang, Huan Zhao, and Liqing Ren. 2021. "The Variation Characteristics and Influencing Factors of Base Flow of the Hexi Inland Rivers" Atmosphere 12, no. 3: 356. https://doi.org/10.3390/atmos12030356
APA StyleLei, Y., Jiang, X., Geng, W., Zhang, J., Zhao, H., & Ren, L. (2021). The Variation Characteristics and Influencing Factors of Base Flow of the Hexi Inland Rivers. Atmosphere, 12(3), 356. https://doi.org/10.3390/atmos12030356