Temporal Distribution and Gas/Particle Partitioning of Polycyclic Aromatic Hydrocarbons (PAHs) in the Atmosphere of Strasbourg, France
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents and Chemicals
2.2. Sampling Site and Collection
2.3. Extraction Sample Preparation of Filters and Foams
2.4. Analysis of PAHs in Sample Extracts
2.5. SPME for GC-MS/MS Analysis
2.6. QA/QC
2.7. G/P Partitioning
3. Results
3.1. Annual Concentration and Seasonal Variability of PAHs
3.2. Gas-Particle Partitioning
3.3. Diagnostic Ratios for Source Identification of PAHs
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Baek, S.O.; Field, R.A.; Goldstone, M.E.; Kirk, P.W.; Lester, J.N.; Perry, R. A review of atmospheric polycyclic aromatic hydrocarbons: Sources, fate and behavior. Water Air Soil Pollut. 1991, 60, 279–300. [Google Scholar] [CrossRef]
- Pozo, K.; Harner, T.; Shoeib, M.; Urrutia, R.; Barra, R.; Parra, O.; Focardi, S. Passive-Sampler Derived Air Concentrations of Persistent Organic Pollutants on a North−South Transect in Chile. Environ. Sci. Technol. 2004, 38, 6529–6537. [Google Scholar] [CrossRef]
- Tasdemir, Y.; Esen, F. Urban air PAHs: Concentrations, temporal changes and gas/particle partitioning at a traffic site in Turkey. Atmos. Res. 2007, 84, 1–12. [Google Scholar] [CrossRef]
- Halsall, C.; Sweetman, A.J.; Barrie, L.; Jones, K.C. Modeling the behavior of PAHs during atmospheric transport from the UK to the Arctic. Atmos. Environ. 2001, 35, 255–267. [Google Scholar] [CrossRef]
- Ma, W.-L.; Liu, L.-Y.; Jia, H.-L.; Yang, M.; Li, Y.-F. PAHs in Chinese atmosphere Part I: Concentration, source and temperature dependence. Atmos. Environ. 2018, 173, 330–337. [Google Scholar] [CrossRef]
- Ma, W.-L.; Zhu, F.-J.; Liu, L.-Y.; Jia, H.-L.; Yang, M.; Li, Y.-F. PAHs in Chinese atmosphere Part II: Health risk assessment. Ecotoxicol. Environ. Saf. 2020, 200, 110774. [Google Scholar] [CrossRef]
- Kim, K.-H.; Jahan, S.A.; Kabir, E.; Brown, R.J. A review of airborne polycyclic aromatic hydrocarbons (PAHs) and their human health effects. Environ. Int. 2013, 60, 71–80. [Google Scholar] [CrossRef] [PubMed]
- Balcıoğlu, E.B. Potential effects of polycyclic aromatic hydrocarbons (PAHs) in marine foods on human health: A critical review. Toxin Rev. 2016, 35, 98–105. [Google Scholar] [CrossRef]
- Li, X.; Yang, Y.; Xu, X.; Xu, C.; Hong, J. Air pollution from polycyclic aromatic hydrocarbons generated by human activities and their health effects in China. J. Clean. Prod. 2016, 112, 1360–1367. [Google Scholar] [CrossRef]
- Drwal, E.; Rak, A.; Gregoraszczuk, E.L. Review: Polycyclic aromatic hydrocarbons (PAHs)—Action on placental function and health risks in future life of newborns. Toxicology 2019, 411, 133–142. [Google Scholar] [CrossRef]
- Jensen, J.; Sverdrup, L.E. Polycyclic aromatic hydrocarbon ecotoxicity data for developing soil quality criteria. Rev. Environ. Contam. Toxicol. 2003, 179, 73–97. [Google Scholar] [CrossRef]
- Sverdrup, L.E.; Nielsen, T.; Krogh, P.H. Soil Ecotoxicity of Polycyclic Aromatic Hydrocarbons in Relation to Soil Sorption, Lipophilicity, and Water Solubility. Environ. Sci. Technol. 2002, 36, 2429–2435. [Google Scholar] [CrossRef] [PubMed]
- Morville, S.; Delhomme, O.; Millet, M. Seasonal and diurnal variations of atmospheric PAH concentrations between rural, suburban and urban areas. Atmos. Pollut. Res. 2011, 2, 366–373. [Google Scholar] [CrossRef] [Green Version]
- Delhomme, O.; Millet, M. Characterization of particulate polycyclic aromatic hydrocarbons in the east of France urban areas. Environ. Sci. Pollut. Res. 2011, 19, 1791–1799. [Google Scholar] [CrossRef]
- Albuquerque, M.; Coutinho, M.; Borrego, C. Long-term monitoring and seasonal analysis of polycyclic aromatic hydrocarbons (PAHs) measured over a decade in the ambient air of Porto, Portugal. Sci. Total. Environ. 2016, 543, 439–448. [Google Scholar] [CrossRef]
- Liu, B.; Xue, Z.; Zhu, X.; Jia, C. Long-term trends (1990–2014), health risks, and sources of atmospheric polycyclic aromatic hydrocarbons (PAHs) in the U.S. Environ. Pollut. 2017, 220, 1171–1179. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Wang, P.; Li, J.; Mendola, P.; Sherman, S.; Ying, Q. Estimating population exposure to ambient polycyclic aromatic hydrocarbon in the United States—Part II: Source apportionment and cancer risk assessment. Environ. Int. 2016, 97, 163–170. [Google Scholar] [CrossRef]
- Zhang, J.; Li, J.; Wang, P.; Chen, G.; Mendola, P.; Sherman, S.; Ying, Q. Estimating population exposure to ambient polycyclic aromatic hydrocarbon in the United States—Part I: Model development and evaluation. Environ. Int. 2017, 99, 263–274. [Google Scholar] [CrossRef]
- Ma, W.-L.; Zhu, F.-J.; Liu, L.-Y.; Jia, H.-L.; Yang, M.; Li, Y.-F. PAHs in Chinese atmosphere: Gas/particle partitioning. Sci. Total. Environ. 2019, 693, 133623. [Google Scholar] [CrossRef] [PubMed]
- Nielsen, T.; Jørgensen, H.E.; Larsen, J.C.; Poulsen, M. City air pollution of polycyclic aromatic hydrocarbons and other mutagens: Occurrence, sources and health effects. Sci. Total. Environ. 1996, 189–190, 41–49. [Google Scholar] [CrossRef]
- Prevedouros, K.; MacLeod, M.; Jones, K.C.; Sweetman, A.J. Modelling the fate of persistent organic pollutants in Europe: Parameterisation of a gridded distribution model. Environ. Pollut. 2004, 128, 251–261. [Google Scholar] [CrossRef] [PubMed]
- Sienra, M.D.R.; Rosazza, N.G.; Préndez, M. Polycyclic aromatic hydrocarbons and their molecular diagnostic ratios in urban atmospheric respirable particulate matter. Atmos. Res. 2005, 75, 267–281. [Google Scholar] [CrossRef]
- Al-Alam, J.; Lévy, M.; Ba, H.; Pham-Huu, C.; Millet, M. Passive air samplers based on ceramic adsorbent for monitoring of pesticides, polycyclic aromatic hydrocarbons and polychlorinated biphenyls in outdoor air. Environ. Technol. Innov. 2020, 20, 101094. [Google Scholar] [CrossRef]
- Levy, M.; Alam, J.-; Delhomme, O.; Millet, M. An integrated extraction method coupling pressurized solvent extraction, solid phase extraction and solid-phase micro extraction for the quantification of selected organic pollutants in air by gas and liquid chromatography coupled to tandem mass spectrometry. Microchem. J. 2020, 157, 104889. [Google Scholar] [CrossRef]
- Yamasaki, H.; Kuwata, K.; Miyamoto, H. Effects of ambient temperature on aspects of airborne polycyclic aromatic hydrocarbons. Environ. Sci. Technol. 1982, 16, 189–194. [Google Scholar] [CrossRef]
- Albinet, A.; Leoz-Garziandia, E.; Budzinski, H.; ViIlenave, E. Polycyclic aromatic hydrocarbons (PAHs), nitrated PAHs and oxygenated PAHs in ambient air of the Marseilles area (South of France): Concentrations and sources. Sci. Total. Environ. 2007, 384, 280–292. [Google Scholar] [CrossRef] [Green Version]
- Tomaz, S.; Shahpoury, P.; Jaffrezo, J.-L.; Lammel, G.; Perraudin, E.; Villenave, E.; Albinet, A. One-year study of polycyclic aromatic compounds at an urban site in Grenoble (France): Seasonal variations, gas/particle partitioning and cancer risk estimation. Sci. Total. Environ. 2016, 565, 1071–1083. [Google Scholar] [CrossRef]
- Tian, F.; Chen, J.; Qiao, X.; Wang, Z.; Yang, P.; Wang, D.; Ge, L. Sources and seasonal variation of atmospheric polycyclic aromatic hydrocarbons in Dalian, China: Factor analysis with non-negative constraints combined with local source fingerprints. Atmos. Environ. 2009, 43, 2747–2753. [Google Scholar] [CrossRef]
- Li, J.; Zhang, G.; Li, X.D.; Qi, S.H.; Liu, G.Q.; Peng, X.Z. Source seasonality of polycyclic aromatic hydrocarbons (PAHs) in a subtropical city, Guangzhou, South China. Sci. Total. Environ. 2006, 355, 145–155. [Google Scholar] [CrossRef]
- Sanderson, E. Comparison of particulate polycyclic aromatic hydrocarbon profiles in different regions of Canada. Atmos. Environ. 2004, 38, 3417–3429. [Google Scholar] [CrossRef]
- Tsapakis, M.; Stephanou, E.G. Occurrence of gaseous and particulate polycyclic aromatic hydrocarbons in the urban atmosphere: Study of sources and ambient temperature effect on the gas/particle concentration and distribution. Environ. Pollut. 2005, 133, 147–156. [Google Scholar] [CrossRef]
- Esen, F.; Tasdemir, Y.; Vardar, N. Atmospheric concentrations of PAHs, their possible sources and gas-to-particle partitioning at a residential site of Bursa, Turkey. Atmos. Res. 2008, 88, 243–255. [Google Scholar] [CrossRef]
- Wang, D.; Yang, M.; Jia, H.; Zhou, L.; Li, Y. Seasonal variation of polycyclic aromatic hydrocarbons in soil and air of Dalian areas, China: An assessment of soil–air exchange. J. Environ. Monit. 2008, 10, 1076–1083. [Google Scholar] [CrossRef]
- Bi, X.; Sheng, G.; Peng, P.; Chen, Y.; Zhang, Z.; Fu, J. Distribution of particulate- and vapor-phase n-alkanes and polycyclic aromatic hydrocarbons in urban atmosphere of Guangzhou, China. Atmos. Environ. 2003, 37, 289–298. [Google Scholar] [CrossRef]
- Park, S.S.; Kim, Y.J.; Kang, C.H. Atmospheric polycyclic aromatic hydrocarbons in Seoul, Korea. Atmos. Environ. 2002, 36, 2917–2924. [Google Scholar] [CrossRef]
- Dimashki, M.; Lim, L.H.; Harrison, R.M.; Harrad, S. Temporal Trends, Temperature Dependence, and Relative Reactivity of Atmospheric Polycyclic Aromatic Hydrocarbons. Environ. Sci. Technol. 2001, 35, 2264–2267. [Google Scholar] [CrossRef]
- Odabasi, M.; Vardar, N.; Sofuoglu, A.; Tasdemir, Y.; Holsen, T.M. Polycyclic aromatic hydrocarbons (PAHs) in Chicago air. Sci. Total. Environ. 1999, 227, 57–67. [Google Scholar] [CrossRef]
- Lohmann, R.; Northcott, G.L.; Jones, K.C. Assessing the Contribution of Diffuse Domestic Burning as a Source of PCDD/Fs, PCBs, and PAHs to the U.K. Atmosphere. Environ. Sci. Technol. 2000, 34, 2892–2899. [Google Scholar] [CrossRef]
- Verma, P.K.; Sah, D.; Kumari, K.M.; Lakhani, A. Atmospheric concentrations and gas–particle partitioning of polycyclic aromatic hydrocarbons (PAHs) and nitro-PAHs at Indo-Gangetic sites. Environ. Sci. Process. Impacts 2017, 19, 1051–1060. [Google Scholar] [CrossRef]
- Tobiszewski, M.; Namieśnik, J. PAH diagnostic ratios for the identification of pollution emission sources. Environ. Pollut. 2012, 162, 110–119. [Google Scholar] [CrossRef]
- Katsoyiannis, A.; Sweetman, A.J.; Jones, K.C. PAH Molecular Diagnostic Ratios Applied to Atmospheric Sources: A Critical Evaluation Using Two Decades of Source Inventory and Air Concentration Data from the UK. Environ. Sci. Technol. 2011, 45, 8897–8906. [Google Scholar] [CrossRef]
- Pies, C.; Hoffmann, B.; Petrowsky, J.; Yang, Y.; Ternes, T.A.; Hofmann, T. Characterization and source identification of polycyclic aromatic hydrocarbons (PAHs) in river bank soils. Chemosphere 2008, 72, 1594–1601. [Google Scholar] [CrossRef]
- Blasco, M.; Domeño, C.; Nerín, C. Use of Lichens as Pollution Biomonitors in Remote Areas: Comparison of PAHs Extracted from Lichens and Atmospheric Particles Sampled in and Around the Somport Tunnel (Pyrenees). Environ. Sci. Technol. 2006, 40, 6384–6391. [Google Scholar] [CrossRef]
- Zhou, J.; Wang, T.; Huang, Y.; Mao, T.; Zhong, N. Size distribution of polycyclic aromatic hydrocarbons in urban and suburban sites of Beijing, China. Chemosphere 2005, 61, 792–799. [Google Scholar] [CrossRef]
- De La Torre-Roche, R.J.; Lee, W.-Y.; Campos-Díaz, S.I. Soil-borne polycyclic aromatic hydrocarbons in El Paso, Texas: Analysis of a potential problem in the United States/Mexico border region. J. Hazard. Mater. 2009, 163, 946–958. [Google Scholar] [CrossRef] [Green Version]
- Yunker, M.B.; Macdonald, R.W.; Vingarzan, R.; Mitchell, R.H.; Goyette, D.; Sylvestre, S. PAHs in the Fraser River basin: A critical appraisal of PAH ratios as indicators of PAH source and composition. Org. Geochem. 2002, 33, 489–515. [Google Scholar] [CrossRef]
- CITEPA. Le Rapport de Référence sur les Emissions de Gaz à Effet de Serre et de Polluants Atmosphériques en France. 2019. Available online: https://www.citepa.org/fr/activites/inventaires-des-emissions/secten (accessed on 5 March 2021).
- ASPA: Association for the Monitoring and Study of Atmospheric Pollution in Alsace. Available online: http://www.atmo-alsace.net/medias/produits/Bilan_de_la_qualite_de_2.pdf (accessed on 5 March 2021).
- Akyüz, M.; Çabuk, H. Gas–particle partitioning and seasonal variation of polycyclic aromatic hydrocarbons in the atmosphere of Zonguldak, Turkey. Sci. Total. Environ. 2010, 408, 5550–5558. [Google Scholar] [CrossRef]
- Zhao, J.; Zhang, F.; Xu, L.; Chen, J.; Xu, Y. Spatial and temporal distribution of polycyclic aromatic hydrocarbons (PAHs) in the atmosphere of Xiamen, China. Sci. Total. Environ. 2011, 409, 5318–5327. [Google Scholar] [CrossRef] [PubMed]
- U.S. EPA. 1999 National Emissions Inventory; US EPA: Washington, DC, USA, 2003. Available online: ftp://ftp.epa.gov/EmisInventory/finalnei99ver3/haps/ (accessed on 5 March 2021).
- Rogge, W.F.; Hildemann, L.M.; Mazurek, M.A.; Cass, G.R.; Simoneit, B.R.T. Sources of fine organic aerosol. 2. Non-catalyst and catalyst-equipped automobiles and heavy duty diesel trucks. Environ. Sci. Technol. 1993, 27, 636–651. [Google Scholar] [CrossRef]
- Manoli, E.; Kouras, A.; Samara, C. Profile analysis of ambient and source emitted particle-bound polycyclic aromatic hydrocarbons from three sites in northern Greece. Chemosphere 2004, 56, 867–878. [Google Scholar] [CrossRef] [PubMed]
- Simcik, M.F.; Eisenreich, S.J.; Lioy, P.J. Source apportionment and source/sink relationships of PAHs in the coastal atmosphere of Chicago and Lake Michigan. Atmos. Environ. 1999, 33, 5071–5079. [Google Scholar] [CrossRef]
- Sicre, M.; Marty, J.; Saliot, A.; Aparicio, X.; Grimalt, J.; Albaiges, J. Aliphatic and aromatic hydrocarbons in different sized aerosols over the Mediterranean Sea: Occurrence and origin. Atmos. Environ. 1987, 21, 2247–2259. [Google Scholar] [CrossRef]
- Li, C.K.; Kamens, R.M. The use of polycyclic aromatic hydrocarbons as source signatures in receptor modeling. Atmos. Environ. Part A Gen. Top. 1993, 27, 523–532. [Google Scholar] [CrossRef] [Green Version]
- Grimmer, G.; Jacob, J.; Naujack, K.W. Profile of the polycyclic aromatic compounds from crude oils- Part3: Inventory by GC, GC6MS PAH in environmental Materials. Fres. Z. Anal. Chem. 1983, 316, 29–36. [Google Scholar] [CrossRef]
n (%) | Annual Average Concentration (min–max) | ||||
---|---|---|---|---|---|
Gas | Particle | Gas (ng m−3) | Particle (ng m−3) | ƩG + P (ng m−3) | |
Naphtalene (NAP) | 96 | 48 | 4.20 (0.005–25.87) | 0.05 (0.001–0.78) | 4.25 (0.005–25.90) |
Acenaphtene (ACE) | 97 | 57 | 0.63 (0.030–2.56) | 0.03 (0.001–1.89) | 0.66 (0.03–2.56) |
Fluorene (FLU) | 98 | 84 | 0.51 (0.003–2.33) | 0.01 (0.001–0.08) | 0.52 (0.04–2.33) |
Phenanthrene (PHE) | 100 | 100 | 1.66 (0.003–19.05) | 0.06 (0.005–0.23) | 1.72 (0.005–19.20) |
Anthracene (ACE) | 74 | 48 | 0.33 (0.003–6.20) | 0.07 (0.001–0.91) | 0.40 (0.003–6.20) |
Fluoranthrene (FLA) | 97 | 91 | 0.82 (0.002–11.55) | 0.42 (0.024–1.83) | 1.24 (0.002–11.98) |
Pyrene (PYR) | 97 | 93 | 0.66 (0.004–13.28) | 0.23 (0.005–2.06) | 0.89 (0.05–13.65) |
Benz(a)anthracene (BaA) | 97 | 100 | 0.77 (0.004–7.53) | 0.65 (0.014–2.44) | 1.42 (0.035–8.79) |
Chrysene (CHR) | 97 | 100 | 0.33 (0.002–3.21) | 0.28 (0.006–1.04) | 0.61 (0.015–3.54) |
Benzo(b)/(k)fluoranthrene (BaF/BkF) | 81 | 97 | 0.27 (0.004–2.87) | 0.30 (0.022–1.81) | 0.57 (0.004–3.44) |
Benzo(e)pyrene (BeP) | 86 | 98 | 0.23 (0.002–2.94) | 0.21 (0.008–1.57) | 0.44 (0.008–3.46) |
Benzo(a)pyrene (BaP) | 88 | 100 | 0.14 (0.002–1.68) | 0.35 (0.004–3.99) | 0.49 (0.006–5.53) |
Dibenz(a.h)anthracene (DBahA) | 38 | 67 | 0.25 (0.02–0.57) | 0.66 (0.08–2.16) | 0.91 (0.08–2.20) |
Indenol(1,2,3)pyrene (IndP) | 33 | 40 | 0.29 (0.03–0.87) | 1.04 (0.125–3.73) | 1.33 (0.13–3.73) |
Benzo(g,h,i)perylene (BghiP) | 45 | 72 | 0.27 (0.057–0.84) | 1.15 (0.094–4.38) | 1.42 (0.094–5.19) |
Ʃ16PAH | 11.36 (0.174–101.35) | 5.51 (0.391–28.90) | 16.87 (0.51–117.70) |
Seasons | Diagnostic Ratio | |||||
---|---|---|---|---|---|---|
PHE/(ANT + PHE) | FLA/(FLA + PYR) | BaP/(BaP + CHR) | IcdP/(IcdP + BghiP) | BeP/(BaP + BeP) | ||
This study | SP2018 | 0.77 ± 0.13 | 0..69 ± 0.20 | 0.47 ± 0.14 | 0.41 ± 0.02 | 0.44 ± 0.24 |
SP2019 | 0.78 ± 0.21 | 0.68 ± 0.16 | 0.42 ± 0.07 | 0.47 ± 0.06 | 0.30 ± 0.07 | |
S2018 | 0.69 ± 0.21 | 0.42 ± 0.13 | 0.36 ± 0.17 | 0.38 ± 0.11 | 0.44 ± 0.30 | |
S2019 | 0.87 ± 0.02 | 0.45 ± 0.20 | 0.39 ± 0.18 | 0.24 ± 0.15 | 0.55 ± 0.08 | |
A2018 | 0.87 ± 0.12 | 0.67 ± 0.23 | 0.40 ± 0.15 | 0.32 ± 0.10 | 0.53 ± 0.16 | |
A2019 | 0.84 ± 0.11 | 0.61 ± 0.17 | 0.42 ± 0.16 | 0.47 ± 0.04 | 0.47 ± 0.11 | |
W2018 | 0.80 ± 0.12 | 0.82 ± 0.13 | 0.48 ± 0.14 | 0.51 ± 0.09 | 0.33 ± 0.11 | |
W2019 | 0.92 ± 0.03 | 0.54 ± 0.14 | 0.51 ± 0.16 | 0.42 ± 0.12 | 0.73 ± 0.16 | |
Source emission | Gasoline | 0.77 ± 0.10 a | 0.40 b | 0.22–0.55 d | 0.32 ± 0.17 a | |
Diesel | 0.73 ± 0.18 a | 0.43 c | 0.38–0.64 e | 0.37 g | 0.4–0.5 e | |
Wood | 0.84 ± 0.16 a | 0.62 c | 0.43 f | 0.42 ± 0.18 a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chimjarn, S.; Delhomme, O.; Millet, M. Temporal Distribution and Gas/Particle Partitioning of Polycyclic Aromatic Hydrocarbons (PAHs) in the Atmosphere of Strasbourg, France. Atmosphere 2021, 12, 337. https://doi.org/10.3390/atmos12030337
Chimjarn S, Delhomme O, Millet M. Temporal Distribution and Gas/Particle Partitioning of Polycyclic Aromatic Hydrocarbons (PAHs) in the Atmosphere of Strasbourg, France. Atmosphere. 2021; 12(3):337. https://doi.org/10.3390/atmos12030337
Chicago/Turabian StyleChimjarn, Supansa, Olivier Delhomme, and Maurice Millet. 2021. "Temporal Distribution and Gas/Particle Partitioning of Polycyclic Aromatic Hydrocarbons (PAHs) in the Atmosphere of Strasbourg, France" Atmosphere 12, no. 3: 337. https://doi.org/10.3390/atmos12030337
APA StyleChimjarn, S., Delhomme, O., & Millet, M. (2021). Temporal Distribution and Gas/Particle Partitioning of Polycyclic Aromatic Hydrocarbons (PAHs) in the Atmosphere of Strasbourg, France. Atmosphere, 12(3), 337. https://doi.org/10.3390/atmos12030337