Review of IAQ in Premises Equipped with Façade–Ventilation Systems
Abstract
:1. Introduction
2. Contaminants
2.1. House Hold Dust Mites
2.2. Fungi and Moulds
2.3. Humidity
2.4. Carbon Monoxide
2.5. Carbon Dioxide
2.6. Nitrogen Oxides
2.7. Volatile Organic Compounds
2.8. Formaldehyde
2.9. Radon
2.10. Landfill Gas
2.11. Particulate Matter
3. Improving the Indoor Air Quality
4. Façade, Decentralised Ventilation
5. What Should Be Done in the Field of IAQ?
6. Conclusions
- these solutions are sufficient to maintain IAQ;
- they do not recycle the exhaust air stream;
- they require further research, especially in the field of: Noise reduction; elimination of the impact of wind and outside air temperature on the operation of such units (especially the impact on the amount of heat recovery); capacity of particulate matters removal and ways of filtration;
- the legal regulations of some countries require verification (integrated air intake and outtake are allowed to be mounted only on the roof, not on the façade).
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- ASHRAE-ANSI-ASHRAE Standard 62.1-2016 Ventilation for Acceptable Indoor Air Quality; ASHRAE: Atlanta, GA, USA, 2016.
- Miśkiewicz, P. Jakość powietrza wewnętrznego—Perspektywa światowej organizacji zdrowia. In Problemy Jakości Powietrza Wewnętrznego Polsce; Wydział Instalacji Budowlanych, Hydrotechniki i Inżynierii Środowiska Politechniki Warszawskiej: Warszawa, Poland, 2005; pp. 137–140. [Google Scholar]
- Colbeck, I.; Sidra, S.; Ali, Z.; Ahmed, S.; Nasir, Z.A. Spatial and temporal variations in indoor air quality in Lahore, Pakistan. Int. J. Environ. Sci. Technol. 2018, 16, 2565–2572. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization. World Health Statistics (HO-WHS): Monitoring Health for the SDGS; World Health Organization: Geneva, Switzerland, 2018. [Google Scholar]
- Xie, T. Indoor air pollution and control technology. In Proceedings of the IOP Conference Series: Earth and Environmental Science, 2nd International Symposium on Resource Exploration and Environmental Science, Ordos, China, 28–29 April 2018; Volume 170, p. 032084. [Google Scholar]
- Rumana, H.S.; Sharma, R.C.; Beniwal, V.; Sharma, A.K. A retrospective approach to assess human health risks associated with growing air pollution in urbanized area of Thar Desert, western Rajasthan, India. J. Environ. Health Sci. Eng. 2014, 12, 23. [Google Scholar] [CrossRef] [Green Version]
- Sharma, V.K. Importance of source apportionment modeling in air pollution abatement policy. Clean Technol. Environ. Policy 2010, 12, 3–4. [Google Scholar] [CrossRef] [Green Version]
- Ilyas, S.Z.; Khattak, A.I.; Nasir, S.M.; Quarashi, T.; Durrani, R. Air pollution assessment in urban areas and its impact on human health in the city of Quetta, Pakistan. Clean Technol. Environ. Policy 2010, 12, 291–299. [Google Scholar] [CrossRef]
- Dudzińska, M.R.; Staszowska, A.; Połednik, B. Preliminary Study of Effect of Furniture and Finishing Materials on Formaldehyde Concentration in Office Rooms. Environ. Prot. Eng. 2009, 35, 225–233. [Google Scholar]
- Topp, R.; Thefeld, W.; Wichmann, H.-E.; Heinrich, J. The effect of environmental tobacco smoke exposure on allergic sensitization and allergic rhinitis in adults. Indoor Air 2005, 15, 222–227. [Google Scholar] [CrossRef]
- Lindgren, T.; Norbäck, D. Health and perceptron of cabin air quality among Swedish commercial airline crew. Indoor Air 2005, 15, 65–72. [Google Scholar] [CrossRef]
- Carrer, P.; Wargocki, P.; Fanetti, A.; Bischof, W.; Fernandes, E.; De, O.; Hartmann, T.; Kephalopoulos, S.; Palkonen, S.; Sepäpnen, O. What does the scientific literature tell us about the ventilation-health relationship in public and residential buildings? Build Environ. 2015, 94, 273–286. [Google Scholar] [CrossRef]
- Huttunen, K. Indoor Air Pollution. In Clinical Handbook of Air Pollution—Related Diseases; Capello, F., Gaddi, A.V., Eds.; Springer: Berlin, Germany, 2018; pp. 107–114. [Google Scholar]
- Daisey, J.M.; Angell, W.J.; Apte, M. Indoor air quality, ventilation and health symptoms in schools: An analysis of existing information. Indoor Air 2003, 13, 53–64. [Google Scholar] [CrossRef] [PubMed]
- Mendell, M.J.; Heath, G.A. Do indoor pollutants and thermal conditions in schools influence student performance? A critical review of the literature. Indoor Air 2005, 15, 27–52. [Google Scholar] [CrossRef] [PubMed]
- Seppanen, O.A.; Fisk, W.J.; Mendell, M.J. Association of ventilation rates and CO2 concentrations with health and other responses in commercial and industrial buildings. Indoor Air 1999, 9, 226–252. [Google Scholar] [CrossRef] [PubMed]
- Haverinen-Shaughnessy, U.; Moschandreas, D.J.; Shaughnessy, R.J. Association between substandard classroom ventilation rates and students’ academic achievement. Indoor Air 2010, 21, 121–131. [Google Scholar] [CrossRef]
- Tham, K.W. Effects of temperature and outdoor air supply rate on the performance of call center operators in the tropics. Indoor Air 2004, 14, 119–125. [Google Scholar] [CrossRef]
- Apte, M.G.; Fisk, W.J.; Daisey, J.M. Associations Between Indoor CO2 Concentrations and Sick Building Syndrome Symptoms in U.S. Office Buildings: An Analysis of the 1994–1996 BASE Study Data. Indoor Air 2000, 10, 246–257. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Apte, M.G.; Fisk, W.J.; Daisey, J.M. Indoor carbon dioxide concentrations and SBS in office workers. In Proceedings Healthy Building; Indoor Environment Department, Lawrence Berkeley National Laborator: Berkeley, CA, USA, 2000; Volume 1, pp. 133–138. [Google Scholar]
- Sowa, J. Jakość Powietrza we Wnętrzach Jako Istoty Element Pływający na Komfort Pracy, Cyrkulacje; Kielce University of Technology: Kielce, Poland, 2017; Volume 37, pp. 32–33. [Google Scholar]
- Pulimeno, M.; Piscitelli, P.; Colazzo, S.; Colao, A.; Miani, A. Indoor air quality at school and students’ performance: Recom-mendations of the UNESCO Chair on Health Education and Sustainable Development & the Italian Society of Environmen-tal Medicine (SIMA). Health Promot. Perspect. 2020, 10, 169. [Google Scholar] [CrossRef]
- Sowa, J. Jakość Powietrza Wnętrz, a Komfort Życia i Efekty Ekonomiczne, Cyrkulacje; Kielce University of Technology: Kielce, Poland, 2016; Volume 35, p. 30. [Google Scholar]
- Zabiegała, B. Związki organiczne, ich źródła emisji i wpływ na jakość powietrza wewnętrznego. In Problemy Jakości Powietrza Wewnętrznego w Polsce; Wydział Instalacji Budowlanych, Hydrotechniki i Inżynierii Środowiska Politechniki Warszawskiej: Warszawa, Poland, 2007; pp. 233–254. [Google Scholar]
- Edwards, R. Handbook of Domestic Ventilation; Elsevier Ltd.: London, UK, 2005. [Google Scholar]
- Górny, R.L. Submikronowe cząstki grzybów i bakterii—Nowe zagrożenie środowiska wnętrz. In Problemy Jakości Powietrza Wewnętrznego w Polsce; Hydrotechniki i Inżynierii Środowiska Politechniki Warszawskiej: Warszawa, Poland, 2005; pp. 25–40. [Google Scholar]
- Mijakowski, M. Wilgotność powietrza w relacjach człowiek, środowisko wewnętrzne, architektura. In Problemy Jakości Powietrza Wewnętrznego w Polsce; Hydrotechniki i Inżynierii Środowiska Politechniki Warszawskiej: Warszawa, Poland, 2005; pp. 105–121. [Google Scholar]
- Chiesa, G.; Cesari, S.; Garcia, M.; Issa, M.; Li, S. Multisensor IoT Platform for Optimising IAQ Levels in Buildings through a Smart Ventilation System. Sustainability 2019, 11, 5777. [Google Scholar] [CrossRef] [Green Version]
- Kisilewicz, T. O związkach między szczelnością budynków, a mikroklimatem, komfortem wewnętrznym i zużyciem energii w budynkach niskoenergetycznych. Napędy i Sterow. 2014, 12, 94–97. [Google Scholar]
- EN ISO 13788:2012-05 Hygrothermal Performance of Building Components and Building Elements—Internal Surface Temper-Ature to Avoid Critical Surface Humidity and Interstitial Condensation—Calculation Methods. Available online: https://www.iso.org/standard/22203.html (accessed on 2 February 2021).
- Pogorzelski, J.A. Zagadnienia cieplno–wilgotnościowe przegród budowlanych. In Fizyka Budowli Budownictwo Ogólne; Klemm, P., Ed.; Arkady, 2005; Volume 2. [Google Scholar]
- Zender-Świercz, E.; Telejko, M. Impact of Insulation Building on the Work of Ventilation. Procedia Eng. 2016, 161, 1731–1737. [Google Scholar] [CrossRef] [Green Version]
- Taus, N.; Badea, M.; Taus, R.; Prediger, E. Indoor air pollution and acute intoxication with carbon monoxide. J. Environ. Prot. Ecol. 2008, 9, 773–781. [Google Scholar]
- Francisco, P.W.; Pigg, S.; Cautley, D.; Rose, W.B.; Jacobs, D.E.; Cali, S. Carbon monoxide measurements in homes. Sci. Technol. Built Environ. 2018, 24, 118–123. [Google Scholar] [CrossRef]
- Silva, S.; Monteiro, A.O.; Russo, M.A.; Valente, J.; Alves, C.; Nunes, T.; Pio, C.; Miranda, A.I. Modelling indoor air quality: Validation and sensitivity. Air Qual. Atmos. Health 2017, 10, 643–652. [Google Scholar] [CrossRef]
- Ayodele, J.T.; Adekiya, A.; Yakubu, I. Carbon Monoxide as Indoor Pollutant in Kano Metropolis. J. Appl. Sci. Environ. Manag. 2010, 11, 27–30. [Google Scholar] [CrossRef]
- Szczurek, A.; Maciejewska, M.; Połoczański, R.; Teuerle, M.; Wołomańska, A. Dynamics of carbon dioxide concentration in indoor air. Stoch. Environ. Res. Risk Assess. 2015, 29, 2193–2199. [Google Scholar] [CrossRef] [Green Version]
- Hui, P.S.; Wong, L.T.; Mui, K.W. Using Carbon Dioxide Concentration to Assess Indoor Air Quality in Offices. Indoor Built Environ. 2008, 17, 213–219. [Google Scholar] [CrossRef]
- Ramalho, O.; Wyart, G.; Mandin, C.; Blondeau, P.; Cabanes, P.-A.; Leclerc, N.; Mullot, J.-U.; Boulanger, G.; Redaelli, M. Association of carbon dioxide with indoor air pollutants and exceedance of health guideline values. Build. Environ. 2015, 93, 115–124. [Google Scholar] [CrossRef]
- Marchetti, N.; Cavazzini, A.; Pasti, L.; Catani, M.; Malagù, C.; Guidi, V. A campus sustainability initiative: Indoor air quality monitoring in classroom. In Proceedings of the 2015 IEEE XVIII AISEM Annual Conference, Trento, Italy, 3–5 February 2015; pp. 1–4. [Google Scholar]
- Bonino, S. Carbon dioxide detection and indoor air quality control. Occup. Health Saf. 2016, 85, 46–48. [Google Scholar]
- Khazaei, B.; Shiehbeigi, A.; Haji, A.R.; Kani, M.A. Modeling indoor air carbon dioxide concentration using artificial neural network. Int. J. Environ. Sci. Technol. 2019, 16, 729–736. [Google Scholar] [CrossRef]
- Pitarma, R.; Marques, G.; Caetano, F. Monitoring Indoor Air Quality to Improve Occupational Health. In New Advances in Information Systems and Technologies. Advances in Intelligent Systems and Computing; Rocha, Á., Correia, A., Adeli, H., Reis, L., Mendonça Teixeira, M., Eds.; Springer: Cham, Switzerland, 2016; Volume 445, pp. 13–21. [Google Scholar]
- Sireesha, N.L. Correlation amongst Indoor Air Quality, Ventilation and Carbon Dioxide. J. Sci. Res. 2017, 9, 179–192. [Google Scholar] [CrossRef] [Green Version]
- Kodama, Y.; Arashidani, K.; Tokui, N.; Kawamoto, T.; Matsuno, K.; Kunugita, N.; Minakawa, N. Environmental NO2 concentration and exposure in daily life along main roads in Tokyo. Environ. Res. 2002, 89, 236–244. [Google Scholar] [CrossRef]
- Nakai, S.; Nitta, H.; Maeda, K. Respiratory health associated with exposure to automobile exhaust. Personal NO2 exposure levels according to distance from roadside. J. Exp. Anal. Environ. Epid. 1995, 5, 125–136. [Google Scholar]
- Garrett, M.H.; Hooper, M.A.; Hooper, B.M. Nitrogen dioxide in Australian homes: Levels and sources. J. Air Waste Manag. 1999, 49, 76–81. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zota, A.; Adamkiewicz, G.; Levy, J.I.; Spengler, J.D. Ventilation in public housing: Implications for indoor nitrogen dioxide concentration. Indoor Air 2005, 15, 393–401. [Google Scholar] [CrossRef]
- Leung, R.; Lam, C.W.K.; Chan, A.; Lee, M.; Chan, I.H.S.; Pang, S.W.; Lai, C.K.W. Indoor environment of residential homes in Hong Kong—relevance to asthma and allergic disease. Clin. Exp. Allergy 1998, 28, 585–590. [Google Scholar] [CrossRef]
- Vilčeková, S. Indoor Nitrogen Oxides. In Advanced Air Pollution; Nejadkoorki, F., Ed.; IntechOpen: Rijeka, Croatia, 2011. [Google Scholar]
- World Health Organization (WHO). Guidelines for Indoor Air Quality: Selected Pollutants; World Health Organization: Geneva, Switzerland, 2010. [Google Scholar]
- Rösch, C.; Kohajda, T.; Röder, S.; Bergen, M.; Schlink, U. Relationship between sources and patterns of VOCs in indoor air. Atmos. Pollut. Res. 2014, 5, 129–137. [Google Scholar] [CrossRef] [Green Version]
- Ventura, S.G.; Martins, A.O.; Oliveira, F.E.; Guedes, J.; Vasconcelos, M.T.S.D. VOCs in indoor air in several schools of porto. Heal. Build. Creating Heal. Indoor Environ. People 2006, 391–392. [Google Scholar] [CrossRef]
- World Health Organization. Indoor air quality: Organic pollutants. Environ. Technol. Lett. 1989, 10, 855–858. [Google Scholar] [CrossRef]
- Zabiegała, B. Organic compounds in indoor environment. Polish J. Environ. Stud. 2006, 15, 383–393. [Google Scholar]
- Bhandari, M.; Gupta, A. Radon in indoor air: An Indian context. Indian J. Environ. Prot. 2009, 29, 323–329. [Google Scholar]
- Madureira, J.; Paciência, I.; Rufo, J.; Moreira, A.; Fernandes, E.; Pereira, A. Radon in indoor air of primary schools: Determinant factors, their variability and effective dose. Environ. Geochem. Health 2016, 38, 523–533. [Google Scholar] [CrossRef] [PubMed]
- Hazar, N.; Karbakhsh, M.; Yunesian, M.; Nedjat, S.; Naddafi, K. Perceived risk of exposure to indoor residential radon and its relationship to willingness to test among health care providers in Tehran. J. Environ. Health Sci. Eng. 2014, 12, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Z.; Xie, D.; Tang, R.; Sheng, X. Investigation on Indoor Air Quality at Rural Houses in Winter in Severe Cold Region. In Proceedings of the 8th International Symposium on Heating, Ventilation and Air Conditioning, Xi’an, China, 19–21 October 2013; Springer: Berlin/Heidelberg, Germany, 2013; Volume 261, pp. 69–75. [Google Scholar]
- Alves, C.; Nunes, T.; Silva, J.; Duarte, M. Comfort Parameters and Particulate Matter (PM10 and PM2.5) in School Classrooms and Outdoor Air. Aerosol Air Qual. Res. 2013, 13, 1521–1535. [Google Scholar] [CrossRef] [Green Version]
- Madureira, J.; Paciência, I.; Rufo, J.C.; Moreira, A.; Fernandes, E. Thermal and indoor air conditions in Portuguese residential buildings: Risk factors for childhood health. In Proceedings of the 28th Annual Conference International Society for Environmental, Rome, Italy, 1–4 September 2016. [Google Scholar]
- Rogula-Kozłowska, W.; Klejnowski, K.; Rogula-Kopiec, P.; Ośródka, L.; Krajny, E.; Błaszczak, B.; Mathews, B. Spatial and seasonal variability of the mass concentration and chemical composition of PM2.5 in Poland. Air Qual. Atmos. Health 2014, 7, 41–58. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ścibor, M.; Balcerzak, B.; Galbarczyk, A.; Targosz, N.; Jasieńska, G. Are we safe inside? Indoor air quality in relation to outdoor concentration of PM10 and PM2.5 and to characteristics of homes. Sustain. Cities Soc. 2019, 48, 101537. [Google Scholar] [CrossRef]
- Kong, L.; Xin, J.; Zhang, W.; Wang, Y. The empirical correlations between PM2.5, PM10 and AOD in the Beijing metropolitan region and the PM2.5, PM10 distributions retrieved by MODIS. Environ. Pollut. 2016, 216, 350–360. [Google Scholar] [CrossRef] [PubMed]
- Gharehchahi, E.; Mahvi, A.H.; Amini, H.; Nabizadeh, R.; Akhlaghi, A.A.; Shamsipour, M.; Yunesian, M. Health impact assessment of air pollution in Shiraz, Iran: A two-part study. J. Environ. Health Sci. Eng. 2013, 11, 11. [Google Scholar] [CrossRef] [Green Version]
- Milinevsky, G.; Danylevsky, V.; Miatselskaya, N.; Han, W.; Shulga, V.; Simon, A.; Yuke, W. Evaluation of air quality by particu-late matter PM2.5/PM10 in the Ukraine and China cities. In Astronomy and Space physics in the Kyiv University; Kyiv University: Kyiv, Ukraine, 2018. [Google Scholar]
- Lazovic, I.; Stevanović, Z.M.; Jovašević-Stojanović, M.; Živković, M.M.; Banjac, M. Impact of CO2 concentration on indoor air quality and correlation with relative humidity and indoor air temperature in school buildings in Serbia. Therm. Sci. 2016, 20, 297–307. [Google Scholar] [CrossRef]
- Telejko, M.; Zender-Świercz, E. An attempt to improve air quality in primary schools. In Proceedings of the 10th International Conference: Environmental Engineering, Vilnius, Lithuania, 27–28 April 2017. [Google Scholar]
- Wolverton, B.C. How to Grow Fresh Air: 50 House Plants that Purify Your Home Or Office; Pen-guin Books: New York, NY, USA, 1997. [Google Scholar]
- Claudio, L. Planting Healthier Indoor Air. Environ. Health Perspect. 2011, 119, a426–a427. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, D.S.; Pennisi, S.V.; Son, K.-C.; Kays, S.J. Screening Indoor Plants for Volatile Organic Pollutant Removal Efficiency. HortScience 2009, 44, 1377–1381. [Google Scholar] [CrossRef]
- Xu, Z.; Wang, L.; Hou, H. Formaldehyde removal by potted plant–soil systems. J. Hazard. Mater. 2011, 192, 314–318. [Google Scholar] [CrossRef] [PubMed]
- Sowa, J. Ocena wpływu wybranych procesów heterogenicznych na bilans dwutlenku węgla w pomieszczeniu. In Proceedings of the Problemy Jakości Powietrza Wewnętrznego w Polsce, Warszawa, Poland, 27–28 November 2005; pp. 197–208. [Google Scholar]
- Bomberg, M.; Kisilewicz, T.; Nowak, K. Is there an optimum range of airtightness for a building? J. Build. Phys. 2016, 39, 395–421. [Google Scholar] [CrossRef]
- Vadamalraj, N.; Zingre, K.; Seshadhri, S.; Arjunan, P.; Srinivasan, S. Hybrid Ventilation System and Soft-Sensors for Maintaining Indoor Air Quality and Thermal Comfort in Buildings. Atmosphere 2019, 11, 110. [Google Scholar] [CrossRef] [Green Version]
- Ben-David, T.; Waring, M.S. Impact of natural versus mechanical ventilation on simulated indoor air quality and energy consumption in offices in fourteen U.S. cities. Build. Environ. 2016, 104, 320–336. [Google Scholar] [CrossRef] [Green Version]
- Błaszczyk, E.; Rogula-Kozłowska, W.; Klejnowski, K.; Kubiesa, P.; Fulara, I.; Mielżyńska-Švach, D. Indoor air quality in Urban and rural kindergartens: Short-term studies in Silesia, Poland. Air Qual. Atmos. Health 2017, 10, 1207–1220. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pope, C.A.; Dockery, D.W.; Schwartz, J. Review of Epidemiological Evidence of Health Effects of Particulate Air Pollution. Inhal. Toxicol. 1995, 7, 1–18. [Google Scholar] [CrossRef]
- Badyda, A.J.; Dąbrowiecki, P.; Czechowski, P.O.; Majewski, G. Risk of bronchi obstruction among non-smokers—Review of environmental factors affecting bronchoconstriction. Respir. Physiol. Neurobiol. 2015, 209, 39–46. [Google Scholar] [CrossRef] [PubMed]
- Badyda, A.J.; Dąbrowiecki, P.; Czechowski, P.O.; Majewski, G.; Doboszyńska, A. Traffic-Related Air Pollution and Respiratory Tract Efficiency. In Environment Exposure to Pollutants. Advances in Experimental Medicine and Biology; Pokorski, M., Ed.; Springer: Berlin/Heidelberg, Germany, 2015; Volume 834, pp. 31–38. [Google Scholar]
- Dutton, S.M.; Banks, D.; Brunswick, S.L.; Fisk, W.J. Health and economic implications of natural ventilation in California offices. Build. Environ. 2013, 67, 34–45. [Google Scholar] [CrossRef]
- Nomura, M.; Hiyama, K. A review: Natural ventilation performance of office buildings in Japan. Renew. Sustain. Energy Rev. 2017, 74, 746–754. [Google Scholar] [CrossRef]
- Sherman, M. Infiltration in ASHRAE’s Residential Ventilation Standards. In ASHRAE Transactions; Part 2, No LO-09-085; Lawrence Berkeley National Laboratory: Berkeley, CA, USA, 2009; Volume 115, pp. 887–896. [Google Scholar]
- Sherman, M.; Walker, I.S. Measured Air Distribution Effectiveness for Residential Mechanical Ventilation. HVAC&R Res. 2009, 15, 211–229. [Google Scholar] [CrossRef]
- Mazumdar, S.; Yin, Y.; Guity, A.; Marmion, P.; Gulick, B.; Chen, Q. Impact of Moving Objects onContaminant Concentration Distributions in an Inpatient Ward with Displacement Ventilation. HVAC&R Res. 2010, 16, 545–563. [Google Scholar] [CrossRef]
- Fisk, W.J.; Mirer, A.G.; Mendell, M.J. Quantitative relationship of sick building syndrome symptoms with ventilation rates. Indoor Air 2009, 19, 159–165. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Muchič, S.; Butala, V. The influence of indoor environment in office building on their occupants: Expected–unexpected. Build. Environ. 2004, 39, 289–296. [Google Scholar] [CrossRef]
- Runeson, R.; Wahlstedt, K.; Wieslander, G.; Norbäck, D. Personal and psychosocial factors and symptoms compatible with sick building syndrome in the Swedish workforce. Indoor Air 2006, 16, 445–453. [Google Scholar] [CrossRef]
- Klavina, A.; Proskurina, J.; Rodins, V.; Martinsone, I. Carbon dioxide as indoor air quality indicator in renovated schools in Latvia. In Proceedings of the 14th International Conference of Indoor Air Quality and Climate, Ghent, Belgium, 3–8 July 2016. [Google Scholar]
- Lan, L.; Wargocki, P.; Lian, Z. Quantitative measurement of productivity loss due to thermal discomfort. Energy Build. 2011, 43, 1057–1062. [Google Scholar] [CrossRef]
- Roelofsen, P. The impact of office environments on employee performance: The design of the workplace as strategy for productivity enhancement. J. Facil. Manag. 2002, 1, 247–264. [Google Scholar] [CrossRef]
- Johnson, D.L.; Lynch, R.A.; Floyd, E.L.; Wang, J.; Bartels, J.N. Indoor air quality in classrooms: Environmental measures and effective ventilation rate modeling in urban elementary schools. Build. Environ. 2018, 136, 185–197. [Google Scholar] [CrossRef]
- Wargocki, P.; Wyon, D.P. Ten questions concerning thermal and indoor air quality effects on the performance of office work and schoolwork. Build. Environ. 2017, 112, 359–366. [Google Scholar] [CrossRef] [Green Version]
- Nagendra, S.M.; Harika, P. Indoor air quality assessment in a school building in Chennai City, India. In Air Pollution XVIII, WIT Transactions on Ecology and the Environment; WIT Press: Southampton, UK, 2010; Volume 136, pp. 275–286. [Google Scholar] [CrossRef] [Green Version]
- Vimalanathan, K.; Babu, T.R. The effect of indoor office environment on the work performance, health and well-being of office workers. J. Environ. Health Sci. Eng. 2014, 12, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, K.S. Sources, Effects, and Control of Noise in Indoor/Outdoor Living Environments. J. Ergon. Soc. Korea 2015, 34, 265–278. [Google Scholar] [CrossRef] [Green Version]
- Zhisheng, L.; Dongmei, L.; Sheng, M.; Guoqiang, Z.; Jianlong, L. Noise Impact and Improvement on Indoors Acoustic Comfort for the Building Adjacent to Heavy Traffic Road. Chin. J. Popul. Resour. Environ. 2007, 5, 17–25. [Google Scholar] [CrossRef]
- Hodgson, M. Relationship between HVAC airflow rates and noise levels, and noise control in a mechanically-ventilated uni-versity building. In ASHRAE Transactions; No OR-10-058; ASHRAE Transactions: Atlanta, GA, USA, 2010; Volume 116, pp. 550–555. [Google Scholar]
- Nelson, D.I.; Nelson, R.Y.; Concha-Barrientos, M.; Fingerhut, M. The global burden of occupational noise-induced hearing loss. Am. J. Ind. Med. 2005, 48, 446–458. [Google Scholar] [CrossRef] [Green Version]
- Połednik, B. Zanieczyszczenia, a Jakość Powietrza Wewnętrznego w Wybranych Pomieszczeniach; Polska Akademia Nauk: Lublin, Poland, 2013; Volume 116. [Google Scholar]
- Maisch, D.; Podd, J.; Rapley, B. Electromagnetic Fields in the Built Environment—Design for Minimal Radiation Exposure. In BDP Environment Design Guide; Royal Australian Institute of Architects: Melbourne, Austrilia, 2006; Volume 76. [Google Scholar]
- Vizi, G.N.; VandenBosch, G.A.E. Building materials and electromagnetic radiation: The role of material and shape. J. Build. Eng. 2016, 5, 96–103. [Google Scholar] [CrossRef]
- Youngs, I.J.; Bleay, S.M.; Appleton, S.G. Electromagnetic radiation in buildings. In Proceedings of the IEEE Two Day Conference. Getting the Most Out of the Radio Spectrum, London, UK, 24–25 October 2002; Volume 2002, p. 30. [Google Scholar]
- Tommerup, H.; Svendsen, S. Energy savings in Danish residential building stock. Energy Build. 2006, 38, 618–626. [Google Scholar] [CrossRef]
- Liddament, M.W.; Orme, M. Energy and ventilation. Appl. Therm. Eng. 1998, 18, 1101–1109. [Google Scholar] [CrossRef]
- Meiss, A.; Padilla-Marcos, M.Á.; Poza-Casado, I.; Álvaro-Tordesillas, A. A Graphical Tool to Estimate the Air Change Efficiency in Rooms with Heat Recovery Systems. Sustainability 2020, 12, 1031. [Google Scholar] [CrossRef] [Green Version]
- Dermentzis, G.; Ochs, F.; Siegele, D.; Feist, W. Renovation with an innovative compact heating and ventilation system integrated into the façade—An in-situ monitoring case study. Energy Build. 2018, 165, 451–463. [Google Scholar] [CrossRef]
- Chen, Y.; Yang, H.; Luo, Y. Experimental study of plate type air cooler performances under four operating modes. Build. Environ. 2016, 104, 296–310. [Google Scholar] [CrossRef]
- Cai, W.; Wu, Y.; Zhong, Y.; Ren, H. China building energy consumption: Situation, challenges and corresponding measures. Energy Policy 2009, 37, 2054–2059. [Google Scholar] [CrossRef]
- Zender-Świercz, E. Microclimate in Rooms Equipped with Decentralized Façade Ventilation Device. Atmosphere 2020, 11, 800. [Google Scholar] [CrossRef]
- Merzkirch, A.; Maas, S.; Scholzen, F.; Waldmann, D. Field tests of centralized and decentralized ventilation units in residential buildings—Specific fan power, heat recovery efficiency, shortcuts and volume flow unbalances. Energy Build. 2016, 116, 376–383. [Google Scholar] [CrossRef]
- Kilkis, B. Exergy-Optimum Coupling of Heat Recovery Ventilation Units with Heat Pumps in Sustainable Buildings. J. Sustain. Dev. Energy, Water Environ. Syst. 2020, 8, 815–845. [Google Scholar] [CrossRef]
- Haase, M.; Silva, F.M.D.; Amato, A. Simulation of ventilated facades in hot and humid climates. Energy Build. 2009, 41, 361–373. [Google Scholar] [CrossRef]
- Fehrm, M.; Reiners, W.; Ungemach, M. Exhaust air heat recovery in buildings. Int. J. Refrig. 2002, 25, 439–449. [Google Scholar] [CrossRef]
- El Fouih, Y.; Stabat, P.; Rivière, P.; Hoang, P.; Archambaukt, V. Adequacy of air-to-air heat recovery ventilation system applied in low energy buildings. Energy Build. 2012, 54, 29–39. [Google Scholar] [CrossRef]
- Roulet, C.A.; Heidt, F.D.; Foradini, F.; Pibiri, M.C. Real heat recovery with air handling units. Energy Build. 2001, 33, 495–502. [Google Scholar] [CrossRef]
- Mardiana-Idauy, I.A.; Riffat, S.B. An experimental study on the performance of enthalpy recovery system for building applications. Energy Build. 2011, 43, 2533–2538. [Google Scholar] [CrossRef]
- Krechowicz, M. Risk Management in Complex Construction Projects that Apply Renewable Energy Sources: A Case Study of the Realization Phase of the Energis Educational and Research Intelligent Building. In IOP Conference Series: Materials Science and Engineering; IOP Publishing: Bristol, UK, 2017; Volume 245, p. 62007. [Google Scholar] [CrossRef]
- Krechowicz, M. Effective Risk Management in Innovative Projects: A Case Study of the Construction of Energy-efficient, Sustainable Building of the Laboratory of Intelligent Building in Cracow. In IOP Conference Series: Materials Science and Engineering; IOP Publishing: Bristol, UK, 2017; Volume 245, p. 62006. [Google Scholar] [CrossRef] [Green Version]
- Ghida, B.D. Heat Recovery Ventilation for Energy-Efficient Buildings: Design, Operation and Maintenance. Int. J. Innov. Technol. Explor. Eng. 2019, 9, 3713–3715. [Google Scholar] [CrossRef]
- O’Connor, D.; Kaiser, J.; Calautit, S.; Hughes, B.R. A review of heat recovery technology for passive ventilation applications. Renew. Sustain. Energy Rev. 2016, 54, 1481–1493. [Google Scholar] [CrossRef]
- Kwag, B.C.; Park, J.; Kim, S.; Kim, G.T. Evaluation of Effects of the Humidity Level-Based Auto-Controlled Centralized Exhaust Ventilation Systems on Thermal Comfort of Multi-Family Residential Buildings in South Korea. Sustainability 2019, 11, 4791. [Google Scholar] [CrossRef] [Green Version]
- Franco, A.; Schito, E. Definition of Optimal Ventilation Rates for Balancing Comfort and Energy Use in Indoor Spaces Using CO2 Concentration Data. Buildings 2020, 10, 135. [Google Scholar] [CrossRef]
- Yaïci, W.; Ghorab, M.; Entchev, E. Numerical analysis of heat and energy recovery ventilators performance based on CFD for detailed design. Appl. Therm. Eng. 2013, 51, 770–780. [Google Scholar] [CrossRef]
- Besant, R.W.; Simonson, C.J. Air-to-air energy recovery. ASHRAE J. 2000, 42, 31–42. [Google Scholar]
- Besant, R.W.; Simonson, C. Air-to-air exchangers. ASHRAE J. 2003, 45, 42–52. [Google Scholar]
- Dieckmann, J.; Roth, K.W.; Brodrick, J. Emerging technologies: Air-to-air energy recovery heat exchangers. ASHRAE J. 2003, 45, 57–58. [Google Scholar]
- Li, B.; Wild, P.; Rowe, A. Performance of a heat recovery ventilator coupled with an air-to-air heat pump for residential suites in Canadian cities. J. Build. Eng. 2019, 21, 343–354. [Google Scholar] [CrossRef]
- European Commission. Energy Performance of Buildings Directive 2010/31/EU(EPBD); European Parliament: Brussels, Belgium, 2010. [Google Scholar]
- European Parliament and of the Council. Commission Regulation (EU) No 1253/2014 of 7 July 2014 Implementing Directive 2009/125/EC of the European Parliament and of the Council with Regard to Eco-Design Requirements for Ventilation Units; European Parliament and of the Council: Brussels, Belgium, 2014. [Google Scholar]
- Carlsson, M.; Touchie, M.; Richman, R. Investigating the potential impact of a compartmentalization and ventilation system retrofit strategy on energy use in high-rise residential buildings. Energy Build. 2019, 199, 20–28. [Google Scholar] [CrossRef]
- Dodoo, A. Primary energy and economic implications of ventilation heat recovery for a multi-family building in a Nordic climate. J. Build. Eng. 2020, 31, 101391. [Google Scholar] [CrossRef]
- Koç, A.; Yağli, H.; Bilgic, H.H.; Koç, Y.; Özdemir, A. Performance analysis of a novel organic fluid filled regenerative heat exchanger used heat recovery ventilation (OHeX-HRV) system. Sustain. Energy Technol. Assess. 2020, 41, 100787. [Google Scholar] [CrossRef]
- Manz, H.; Huber, H.; Schälin, H.; Weber, A.; Ferrazzini, M.; Studer, M. Performance of single room ventilation units with recuperative or regenerative heat recovery. Energy Build. 2000, 31, 37–47. [Google Scholar] [CrossRef]
- Zender-Świercz, E. Improvement of indoor air quality by way of using decentralised ventilation. J. Build. Eng. 2020, 32, 101663. [Google Scholar] [CrossRef]
- Han, H.; Kwon, Y.-I. Inhaling/Exhaling Heat Recovery Ventilator Using the Concept of Alternating-Current Ventilation. HVAC R Res. 2006, 12, 843–859. [Google Scholar] [CrossRef]
- Merckx, M.; Bruyneel, G.; Pollet, I.; Laverge, J. Temperature, draft and ventilation efficiency of room based decentralised heat recovery ventilation systems. In Proceeding of The 39th AIVC Conference “Smart Ventilation for Buildings”, Antibes Juan-Les-Pins, France, 18–19 September 2018; pp. 838–847. [Google Scholar]
- Ratajczak, K.; Amanowicz, Ł.; Szczechowiak, E. Assessment of the air streams mixing in wall-type heat recovery units for ventilation of existing and refurbishing buildings toward low energy buildings. Energy Build. 2020, 227, 110427. [Google Scholar] [CrossRef]
- Smith, K.M.; Svendsen, S. The effect of a rotary heat exchanger in room-based ventilation on indoor humidity in existing apartments in temperate climates. Energy Build. 2016, 116, 349–361. [Google Scholar] [CrossRef] [Green Version]
- Alkan, M.A.; Keçebaş, A.; Yamankaradeniz, N. Exergo-economic analysis of a district heating system for geothermal energy. Rising specific energy cost method. Energy 2013, 60, 426–434. [Google Scholar] [CrossRef]
- Choi, Y.; Park, B.; Park, S.; Song, D. How can we simulate the Bi-directional flow and time-variant heat exchange ventilation system? Appl. Therm. Eng. 2020, 181, 115948. [Google Scholar] [CrossRef]
- Mikola, A.; Rehand, J.; Kurnitski, J. Air change efficiency of room ventilation units. In Proceeding of the E3S Web of Conferences; 111(01017), CLIMA 2019; EDP Sciences: Les Ulis, France, 2019. [Google Scholar] [CrossRef]
- Rozporządzenie Ministra Infrastruktury i Budownictwa z dnia 16.09.2020r. zmieniające rozporządzenie w sprawie warunków technicznych, jakim powinny odpowiadać budynki i ich usytuowanie, Dz.U. 2020 poz. 1608. [Regulation of the Minister of Infrastructure and Construction of November 16, 2020 Amending the Regulation on the Technical Conditions to be Met by Buildings and Their Location, Dz.U. 2020 Poz.1608]. Available online: https://isap.sejm.gov.pl/isap.nsf/download.xsp/WDU20200001608/O/D20201608.pdf (accessed on 4 February 2021).
- Amanowicz, Ł.; Ratajczak, K.; Szczechowiak, E. Badania jednorurowych systemów wentylacyjnych pod kątem oceny mieszania się strumieni powietrza w czerpni i wyrzutni. Ciepłownictwo Ogrzew. Went. 2019, 1, 29–36. [Google Scholar] [CrossRef]
- Amanowicz, Ł.; Ratajczak, K.; Szczechowiak, E. Analiza możliwości stosowania systemu wentylacji zdecentralizowanej w budynkach edukacyjnych. Instal 2019, 10, 20–26. [Google Scholar] [CrossRef]
A Group of Compounds | Boiling Point (°C) |
---|---|
VOC—Volatile Organic Compounds | 50–100 ÷ 240–260 |
SVOC—Semi Volatile Organic Compounds | 240–260 ÷ 380–400 |
POM—Particulate Organic Matter | >380 |
The Concentration of TVOC μg·m−3 | The Degree of Harmfulness |
---|---|
<100 | Potentially harmless |
200–300 | Potentially harmful |
300–5000 | Harmful to health |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zender-Świercz, E. Review of IAQ in Premises Equipped with Façade–Ventilation Systems. Atmosphere 2021, 12, 220. https://doi.org/10.3390/atmos12020220
Zender-Świercz E. Review of IAQ in Premises Equipped with Façade–Ventilation Systems. Atmosphere. 2021; 12(2):220. https://doi.org/10.3390/atmos12020220
Chicago/Turabian StyleZender-Świercz, Ewa. 2021. "Review of IAQ in Premises Equipped with Façade–Ventilation Systems" Atmosphere 12, no. 2: 220. https://doi.org/10.3390/atmos12020220
APA StyleZender-Świercz, E. (2021). Review of IAQ in Premises Equipped with Façade–Ventilation Systems. Atmosphere, 12(2), 220. https://doi.org/10.3390/atmos12020220