A Multi-Site Evaluation of Winter Hardiness in Indigenous Alfalfa Cultivars in Northern China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Research Sites
2.2. Experimental Design
2.3. Data Analysis
3. Results
3.1. Validation of the Standard Cultivars
3.2. Evaluation of the Indigenous Cultivars
3.2.1. Quartile Range and K-Means Clustering Analyses
3.2.2. Bayesian Discriminant Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sun, Q.; Liu, Q.; Li, F.; Tao, Y.; Xu, L. A brief review of the origin and dissemination of Alfalfa. Pratacul. Sci. 2019, 28, 204–212. [Google Scholar] [CrossRef]
- National Animal Husbandry Station. China Grass Industry Statistics 2016; China Agriculture Press: Beijing, China, 2017; p. 232. [Google Scholar]
- Sun, T.; Li, Z. Alfalfa-corn rotation and row placement affects yield, water use, and economic returns in Northeast China. Field Crops Res. 2019, 241, 107558. [Google Scholar] [CrossRef]
- Ye, L.-M.; Malingreau, J.-P.; Tang, H.-J.; Van Ranst, E. The breakfast imperative: The changing context of global food security. J. Integr. Agric. 2016, 15, 1179–1185. [Google Scholar] [CrossRef]
- Xu, L.; Xu, D.; Pang, H.; Xin, X.; Jin, D.; Tang, X.; Guo, M. Chinese alfalfa habitat suitability regionalization. Pratacul. Sci. 2017, 34, 2347–2358. [Google Scholar] [CrossRef]
- Ye, L.; Tang, H.; Wu, W.; Yang, P.; Nelson, G.C.; Mason-D’Croz, D.; Palazzo, A. Chinese food security and climate change: Agriculture futures. Economics 2014, 8, 1. [Google Scholar] [CrossRef] [Green Version]
- Song, X.; Fang, C.; Yuan, Z.-Q.; Li, F.-M. Long-term growth of alfalfa increased soil organic matter accumulation and nutrient mineralization in a semi-arid environment. Front. Environ. Sci. 2021, 9, 649346. [Google Scholar] [CrossRef]
- Bonin, C.L.; Tracy, B.F. Diversity influences forage yield and stability in perennial prairie plant mixtures. Agric. Ecosyst. Environ. 2012, 162, 1–7. [Google Scholar] [CrossRef]
- Castonguay, Y.; Dubé, M.-P.; Cloutier, J.; Bertrand, A.; Michaud, R.; Laberge, S. Molecular physiology and breeding at the crossroads of cold hardiness improvement. Physiol. Plant 2013, 147, 64–74. [Google Scholar] [CrossRef]
- Nanni, V.; Paolini, M.; Innocenti, A.; Mulè, P.; Vargiu, M. Evaluation of dormancy and winter hardiness of Alfalfa (Medicago sativa L.) experimental lines, obtained by crossing parental lines characterized within the framework of the PERMED Project. In Quantitative Traits Breeding for Multifunctional Grasslands and Turf; Sokolović, D., Huyghe, C., Radović, J., Eds.; Springer: Dordrecht, The Netherlands, 2014; pp. 167–171. [Google Scholar] [CrossRef]
- Lambers, H.; Oliveira, R.S. Plant Physiological Ecology, 3rd ed.; Springer: Cham, Switzerland, 2019. [Google Scholar]
- Brummer, E.C.; Shah, M.M.; Luth, D. Reexamining the relationship between fall dormancy and winter hardiness in alfalfa. Crop Sci. 2000, 40, 971–977. [Google Scholar] [CrossRef]
- Dhont, C.; Castonguay, Y.; Nadeau, P.; Bélanger, G.; Chalifour, F.-P. Alfalfa root nitrogen reserves and regrowth potential in response to fall harvests. Crop Sci. 2003, 43, 181–194. [Google Scholar] [CrossRef]
- Fairey, D.T.; Fairey, N.A.; Lefkovitch, L.P.; Lieverse, J.A.C. Effects of fall dormancy of alfalfa on seed production at a northern latitude. Plant Genet. Resour. 2003, 1, 67–74. [Google Scholar] [CrossRef]
- Asbjornsen, H.; Hernandez-Santana, V.; Liebman, M.; Bayala, J.; Chen, J.; Helmers, M.; Ong, C.K.; Schulte, L.A. Targeting perennial vegetation in agricultural landscapes for enhancing ecosystem services. Renew. Agr. Food Syst. 2014, 29, 101–125. [Google Scholar] [CrossRef] [Green Version]
- Castonguay, Y.; Cloutier, J.; Laberge, S.; Bertrand, A.; Michaud, R. A bulk segregant approach to identify genetic polymorphisms associated with cold tolerance in lucerne. In Cold Hardiness in Plants: Molecular Genetics, Cell Biology and Physiology; Chen, T.H.H., Uemura, M., Fujikawa, S., Eds.; CABI: Oxfordshire, UK, 2006; pp. 88–102. [Google Scholar] [CrossRef]
- Castonguay, Y.; Laberge, S.; Brummer, E.C.; Volenec, J.J. Alfalfa winter hardiness: A research retrospective and integrated perspective. Adv. Agron. 2006, 90, 203–265. [Google Scholar] [CrossRef]
- Cunningham, S.M.; Gana, J.A.; Volenec, J.J.; Teuber, L.R. Winter hardiness, root physiology, and gene expression in successive fall dormancy selections from ‘Mesilla’ and ‘CUF 101’ alfalfa. Crop Sci. 2001, 41, 1091–1098. [Google Scholar] [CrossRef] [Green Version]
- Liu, Z.-Y.; Baoyin, T.; Li, X.-L.; Wang, Z.-L. How fall dormancy benefits alfalfa winter-survival? Physiologic and transcriptomic analyses of dormancy process. BMC Plant Biol. 2019, 19, 205. [Google Scholar] [CrossRef] [Green Version]
- Bertrand, A.; Castonguay, Y.; Nadeau, P.; Laberge, S.; Michaud, R.; Bélanger, G.; Rochette, P. Oxygen deficiency affects carbohydrate reserves in overwintering forage crops. J. Exp. Bot. 2003, 54, 1721–1730. [Google Scholar] [CrossRef]
- Erice, G.; Irigoyen, J.J.; Sánchez-Díaz, M.; Avice, J.-C.; Ourry, A. Effect of drought, elevated CO2 and temperature on accumulation of N and vegetative storage proteins (VSP) in taproot of nodulated alfalfa before and after cutting. Plant Sci. 2007, 172, 903–912. [Google Scholar] [CrossRef]
- McCaslin, M.; Woodward, T.; Undersander, D. Winter survial. In Standard Tests to Characterize Alfalfa Cultivars: Procedure for Proposing New and Revised Standard Tests to Characterize Alfalfa Culitvars; Johnson, D., Ed.; North American Alfalfa Improvement Conference: Beltsville, MD, USA, 2003; p. A7. [Google Scholar]
- Michel, S.; Löschenberger, F.; Hellinger, J.; Strasser, V.; Ametz, C.; Pachler, B.; Sparry, E.; Bürstmayr, H. Improving and maintaining winter hardiness and frost tolerance in bread wheat by genomic selection. Front. Plant Sci. 2019, 10, 1195. [Google Scholar] [CrossRef]
- Alemayehu, S.; Ayana, E.K.; Dile, Y.T.; Demissie, T.; Yimam, Y.; Girvetz, E.; Aynekulu, E.; Solomon, D.; Worqlul, A.W. Evaluating land suitability and potential climate change impacts on alfalfa (Medicago sativa) production in Ethiopia. Atmosphere 2020, 11, 1124. [Google Scholar] [CrossRef]
- Wang, C.; Ma, B.L.; Yan, X.; Han, J.; Guo, Y.; Wang, Y.; Li, P. Yields of alfalfa varieties with different fall-dormancy levels in a temperate environment. Agron. J. 2009, 101, 1146–1152. [Google Scholar] [CrossRef]
- Djaman, K.; O’Neill, M.; Lauriault, L.; Marsalis, M.; Koudahe, K.; Darapuneni, M.K. The dynamics of forage yield of different fall dormancy rating alfalfa cultivars in a semiarid climate. Agric. Res. 2021, 10, 378–389. [Google Scholar] [CrossRef]
- Cao, H.; Zhang, H.; Gai, Q.; Chen, H.; Zhao, M. Test and comprehensive assessment on the performance of 22 alfalfa varieties. Acta Pratacul. Sin. 2011, 20, 219–229. [Google Scholar]
- Bertrand, A.; Bipfubusa, M.; Claessens, A.; Rocher, S.; Castonguay, Y. Effect of photoperiod prior to cold acclimation on freezing tolerance and carbohydrate metabolism in alfalfa (Medicago sativa L.). Plant Sci. 2017, 264, 122–128. [Google Scholar] [CrossRef]
- Guy, C.L. Cold acclimation and freezing stress tolerance: Role of protein metabolism. Annu. Rev. Plant Physiol. Plant Mol. Biol. 1990, 41, 187–223. [Google Scholar] [CrossRef]
- Ensminger, I.; Busch, F.; Huner, N.P.A. Photostasis and cold acclimation: Sensing low temperature through photosynthesis. Physiol. Plant 2006, 126, 28–44. [Google Scholar] [CrossRef]
- Djaman, K.; Owen, C.; Koudahe, K.; O’Neill, M. Evaluation of different fall dormancy-rating alfalfa cultivars for forage yield in a semiarid environment. Agronomy 2020, 10, 146. [Google Scholar] [CrossRef] [Green Version]
- Tang, H.; Ye, L. Comparative Study on Methodology of Land Production Potential; China Agricultural Science and Technology Press: Beijing, China, 1997; p. 301. [Google Scholar]
- Chen, K.H. Research of mining wasteland reclamation and regeneration modes in Shendong Mining Region. IOP Conf. Ser. Earth Environ. Sci. 2018, 185, 012027. [Google Scholar] [CrossRef] [Green Version]
- Chu, X.; Shan, G.; Bi, Y.; Xue, S.; Kuang, C. Production performance and persistence of ten introduced alfalfa varieties. Pratacul. Sci. 2012, 29, 610–614. [Google Scholar]
- Huang, X.; Zhen, H.; Jiang, Y. Selection of alfalfa cultivars suitable in Zhejiang province. China Feed 2007, 14, 39–41. [Google Scholar] [CrossRef]
- Yang, Z.; Zhang, X.; Li, X.; Wan, L.; He, F. Applying grey-correlation degree analysis to comprehensively evaluate growth performance of 17 varities of alfalfa of different fall-dormancy grades. Acta Pratacul. Sin. 2009, 18, 67–72. [Google Scholar] [CrossRef]
- Lemaire, G.; Franzluebbers, A.; Carvalho, P.C.d.F.; Dedieu, B. Integrated crop-livestock systems: Strategies to achieve synergy between agricultural production and environmental quality. Agric. Ecosyst. Environ. 2014, 190, 4–8. [Google Scholar] [CrossRef]
- Nasar, J.; Shao, Z.; Arshad, A.; Jones, F.G.; Liu, S.; Li, C.; Khan, M.Z.; Khan, T.; Banda, J.S.K.; Zhou, X.; et al. The effect of maize-alfalfa intercropping on the physiological characteristics, nitrogen uptake and yield of maize. Plant Biol. 2020, 22, 1140–1149. [Google Scholar] [CrossRef]
- Ministry of Ecology and Environment. Annual Report 2020 on China’s Policies and Actions to Address Climate Change; Publication Office of the State Council: Beijing, China, 2021; p. 70. [Google Scholar]
- Kulkarni, K.P.; Tayade, R.; Asekova, S.; Song, J.T.; Shannon, J.G.; Lee, J.-D. Harnessing the potential of forage legumes, alfalfa, soybean, and cowpea for sustainable agriculture and global food security. Front. Plant Sci. 2018, 9, 1314. [Google Scholar] [CrossRef]
- Smith, M.A.; Carter, P.R. Strip intercropping corn and alfalfa. J. Prod. Agric. 1998, 11, 345–353. [Google Scholar] [CrossRef] [Green Version]
- Wang, Q.; Zou, Y. China’s alfalfa market and imports: Development, trends, and potential impacts of the U.S.-China trade dispute and retaliations. J. Integr. Agric. 2020, 19, 1149–1158. [Google Scholar] [CrossRef]
- Humphries, T.; Florentine, S.K.; Dowling, K.; Turville, C.; Sinclair, S. Weed management for landscape scale restoration of global temperate grasslands. Land Degrad. Dev. 2021, 32, 1090–1102. [Google Scholar] [CrossRef]
- Chen, H.; Shao, L.; Zhao, M.; Zhang, X.; Zhang, D. Grassland conservation programs, vegetation rehabilitation and spatial dependency in Inner Mongolia, China. Land Use Policy 2017, 64, 429–439. [Google Scholar] [CrossRef]
- Xu, L.; Nie, Y.; Chen, B.; Xin, X.; Yang, G.; Xu, D.; Ye, L. Effects of fence enclosure on vegetation community characteristics and productivity of a degraded temperate meadow steppe in northern China. Appl. Sci. 2020, 10, 2952. [Google Scholar] [CrossRef]
- Moussadek, R.; Mrabet, R.; Zante, P.; Marie Lamachère, J.; Pépin, Y.; Le Bissonnais, Y.; Ye, L.; Verdoodt, A.; Van Ranst, E. Impact of tillage and residue management on the soil properties and water erosion of a Mediterranean Vertisol. Can. J. Soil Sci. 2011, 91, 627–635. [Google Scholar] [CrossRef] [Green Version]
- Yao, Y.; Ye, L.; Tang, H.; Tang, P.; Wang, D.; Si, H.; Hu, W.; Van Ranst, E. Cropland soil organic matter content change in Northeast China, 1985-2005. Open Geosci. 2015, 7, 234–243. [Google Scholar] [CrossRef]
- Ye, L.; Yang, J.; Verdoodt, A.; Moussadek, R.; Van Ranst, E. China’s food security threatened by soil degradation and biofuels production. In Proceedings of the 19th World Congress of Soil Science: Soil Solutions for a Changing World, Brisbane, Australia, 1–6 August 2010; pp. 5–8. [Google Scholar]
- Jiang, H.-M.; Jiang, J.-P.; Jia, Y.; Li, F.-M.; Xu, J.-Z. Soil carbon pool and effects of soil fertility in seeded alfalfa fields on the semi-arid Loess Plateau in China. Soil Biol. Biochem. 2006, 38, 2350–2358. [Google Scholar] [CrossRef]
- Lu, J.; Dijkstra, F.A.; Wang, P.; Cheng, W. Roots of non-woody perennials accelerated long-term soil organic matter decomposition through biological and physical mechanisms. Soil Biol. Biochem. 2019, 134, 42–53. [Google Scholar] [CrossRef]
- Huang, Z.; Sun, L.; Liu, Y.; Liu, Y.-F.; López-Vicente, M.; Wei, X.-H.; Wu, G.-L. Alfalfa planting significantly improved alpine soil water infiltrability in the Qinghai-Tibetan Plateau. Agric. Ecosyst. Environ. 2019, 285, 106606. [Google Scholar] [CrossRef]
- Wu, G.-L.; Yang, Z.; Cui, Z.; Liu, Y.; Fang, N.-F.; Shi, Z.-H. Mixed artificial grasslands with more roots improved mine soil infiltration capacity. J. Hydrol. 2016, 535, 54–60. [Google Scholar] [CrossRef]
- Török, P.; Deák, B.; Vida, E.; Valkó, O.; Lengyel, S.; Tóthmérész, B. Restoring grassland biodiversity: Sowing low-diversity seed mixtures can lead to rapid favourable changes. Biol. Conserv. 2010, 143, 806–812. [Google Scholar] [CrossRef]
- Beillouin, D.; Ben-Ari, T.; Malézieux, E.; Seufert, V.; Makowski, D. Positive but variable effects of crop diversification on biodiversity and ecosystem services. Glob. Change Biol. 2021, 27, 4697–4710. [Google Scholar] [CrossRef] [PubMed]
- O’Mara, F.P. The role of grasslands in food security and climate change. Ann. Botany 2012, 110, 1263–1270. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xia, T.; Wu, W.; Zhou, Q.; Tan, W.; Verburg, P.H.; Yang, P.; Ye, L. Modeling the spatio-temporal changes in land uses and its impacts on ecosystem services in Northeast China over 2000-2050. J. Geogr. Sci. 2018, 28, 1611–1625. [Google Scholar] [CrossRef] [Green Version]
- Ziska, L.H.; Bunce, J.A.; Shimono, H.; Gealy, D.R.; Baker, J.T.; Newton, P.C.D.; Reynolds, M.P.; Jagadish, K.S.V.; Zhu, C.; Howden, M.; et al. Food security and climate change: On the potential to adapt global crop production by active selection to rising atmospheric carbon dioxide. Proc. R. Soc. B 2012, 279, 4097–4105. [Google Scholar] [CrossRef]
Site | Monthly Temperature (°C) | Annual Precipitation (mm) | Frost-Free Period (d) | Winter Temperature (°C) | Soil |
---|---|---|---|---|---|
Wuyuan | −14.3~22.2 | 155~242 | 130 | −12.2 | Solonchak |
Wuchuan | −14.9~19.7 | 244~348 | 150 | −12.9 | Kastanozem |
Tuzuo | −12.1~22.4 | 302~461 | 135 | −10.0 | Kastanozem |
Cultivar | Serial Number | Fall Dormancy Rating | Winter Survival Rating | Average Score Index |
---|---|---|---|---|
ZG9830 | 28 | 1.9 | 1 | 1.6 |
5262 | 19 | 3.6 | 2 | 2.2 |
WL325HQ | 24 | 4.3 | 3 | 2.9 |
G-2852 | 25 | 5.6 | 4 | 3.6 |
Archer | 21 | 5.1 | 5 | 4.0 |
Cuf101 | 30 | 8.8 | 6 | 4.8 |
Score | Degree of Injury | Criteria |
---|---|---|
1 | No injury | The plant has uniform, symmetrical appearance, with numerous branches and stems, all shoots are about equal in length. |
2 | Some injury | The plant is symmetrical, but regrowth is slightly uneven, and bush saturation decreases. |
3 | Significant injury | The plant is asymmetrical, regrowth varies in length, and it only possess a few branches. |
4 | Severe injury | The plant has sparse shoots, and regrowth is highly irregular. |
5 | Dead | The plant is dead. |
Cultivar | Measured ASI | Reference ASI | |||
---|---|---|---|---|---|
Wuyuan | Tuzuo | Wuchuan | Average | ||
ZG9830 | 3.14 | 3.39 | 3.62 | 3.38 | 1.6 |
5262 | 3.67 | 4.22 | 3.48 | 3.79 | 2.2 |
WL325HQ | 3.83 | 3.63 | 3.96 | 3.81 | 2.9 |
G-2852 | 4.82 | 4.69 | 4.68 | 4.73 | 3.6 |
Archer | 4.28 | 4.79 | 4.39 | 4.49 | 4.0 |
Cuf101 | 5.00 | 4.99 | 5.00 | 5.00 | 4.8 |
Correlation coefficient | 0.930 **,1 | 0.873 * | 0.936 ** | 0.952 ** |
Metric | Site | IQR 1 | Cultivars | N | Mean | SD 1 | SE 1 | CV 1 |
---|---|---|---|---|---|---|---|---|
ASI | Tuzuo | ≤3.15 | 1, 4, 5, 7, 8, 14, 15, 16, 20, 42, 44, 46, 47, 48 | 14 | 2.33 | 0.47 | 0.13 | 20.09 |
3.15–4.72 | 2, 3, 6, 9, 10, 11, 12, 13, 17, 18, 19, 23, 24, 25, 28, 34, 37, 38, 39, 43, 45, 49, 50, 51, 52, 53, 55, 56 | 28 | 3.84 | 0.45 | 0.09 | 11.82 | ||
>4.72 | 21, 22, 26, 27, 29, 30, 31, 32, 33, 35, 36, 40, 41, 54 | 14 | 4.96 | 0.06 | 0.02 | 1.14 | ||
Wuchuan | ≤3.46 | 1, 4, 5, 6, 7, 8, 12, 13, 14, 17, 20, 42, 44, 46, 48 | 15 | 2.87 | 0.48 | 0.12 | 16.75 | |
3.46–4.67 | 2, 3, 9, 10, 11, 15, 16, 18, 19, 21, 23, 24, 28, 34, 37, 38, 39, 43, 45, 47, 49, 50, 51, 52, 54, 55, 56 | 27 | 3.97 | 0.32 | 0.06 | 8.02 | ||
>4.67 | 22, 25, 26, 27, 29, 30, 31, 32, 33, 35, 36, 40, 41, 53 | 14 | 4.91 | 0.12 | 0.03 | 2.39 | ||
Wuyuan | ≤2.97 | 1, 2, 4, 5, 6, 7, 8, 9, 10, 13, 14, 16, 20, 44, 46 | 14 | 2.57 | 0.33 | 0.09 | 12.94 | |
2.97–4.51 | 3, 11, 12, 15, 17, 18, 19, 21, 23, 24, 28, 34, 37, 38, 39, 42, 43, 45, 47, 48, 49, 50, 51, 52, 53, 55, 56 | 28 | 3.62 | 0.40 | 0.08 | 11.03 | ||
>4.51 | 22, 25, 26, 27, 29, 30, 31, 32, 33, 35, 36, 40, 41, 54 | 14 | 4.96 | 0.07 | 0.02 | 1.45 | ||
WSR | Tuzuo | >34.17 | 1, 3, 4, 5, 6, 7, 8, 14, 15, 20, 42, 44, 46, 55 | 14 | 55.90 | 13.60 | 3.63 | 24.32 |
1.67–34.17 | 2, 9, 10, 11, 12, 13, 16, 17, 18, 19, 21, 23, 24, 28, 34, 37, 38, 39, 43, 45, 47, 48, 49, 50, 51, 52, 54, 56 | 28 | 18.10 | 8.76 | 1.66 | 48.43 | ||
≤1.67 | 22, 25, 26, 27, 29, 30, 31, 32, 33, 35, 36, 40, 41, 53 | 14 | 0.19 | 0.31 | 0.08 | 164.08 | ||
Wuchuan | >70.50 | 1, 4, 5, 6, 7, 8, 12, 14, 15, 17, 20, 42, 44, 46 | 14 | 86.42 | 9.41 | 2.51 | 10.89 | |
23.33–70.50 | 2, 3, 9, 10, 11, 13, 16, 18, 19, 21, 23, 24, 28, 34, 37, 38, 39, 43, 45, 47, 48, 49, 50, 51, 52, 55, 56 | 27 | 55.73 | 10.69 | 2.06 | 19.18 | ||
≤23.33 | 22, 25, 26, 27, 29, 30, 31, 32, 33, 35, 36, 40, 41, 53, 54 | 15 | 7.50 | 8.71 | 2.25 | 116.08 | ||
Wuyuan | >78.47 | 1, 3, 5, 7, 9, 14, 17, 20, 28, 43, 44, 46, 49, 52 | 14 | 82.30 | 2.82 | 0.75 | 3.42 | |
41.39–78.47 | 2, 4, 6, 8, 10, 11, 12, 13, 15, 16, 18, 19, 21, 23, 24, 25, 34, 37, 38, 39, 42, 45, 47, 48, 50, 51, 55, 56 | 28 | 70.20 | 8.98 | 1.70 | 12.80 | ||
≤41.39 | 22, 26, 27, 29, 30, 31, 32, 33, 35, 36, 40, 41, 53, 54 | 14 | 10.32 | 11.48 | 3.07 | 111.28 |
Metric | Class | Cultivar | N | Mean | Standard Deviation | ||||
---|---|---|---|---|---|---|---|---|---|
Tuzuo | Wuchuan | Wuyuan | Tuzuo | Wuchuan | Wuyuan | ||||
ASI | Well | 1, 4, 5, 7, 8, 14, 15, 20, 42, 44, 46, 48 | 12 | 2.20 | 2.78 | 2.73 | 0.36 | 0.50 | 0.54 |
Moderate | 2, 3, 6, 9, 10, 11, 12, 13, 16, 17, 18, 19, 23, 24, 28, 34, 37, 38, 39, 43, 45, 47, 49, 51, 52, 55, 56 | 27 | 3.70 | 3.83 | 3.39 | 0.41 | 0.34 | 0.46 | |
Poor | 21, 22, 25, 26, 27, 29, 30, 31, 32, 33, 35, 36, 40, 41, 50, 53, 54 | 17 | 4.90 | 4.83 | 4.85 | 0.15 | 0.20 | 0.26 | |
WSR | Well | 1, 4, 5, 6, 7, 8, 14, 15, 17, 20, 42, 44, 46 | 13 | 56.92 | 87.52 | 79.19 | 13.91 | 8.81 | 6.18 |
Moderate | 2, 3, 9, 10, 11, 12, 13, 16, 18, 19, 21, 23, 24, 28, 34, 37, 38, 39, 43, 45, 47, 48, 49, 50, 51, 52, 55, 56 | 28 | 19.55 | 56.32 | 72.96 | 9.13 | 10.94 | 8.62 | |
Poor | 22, 25, 26, 27, 29, 30, 31, 32, 33, 35, 36, 40, 41, 53, 54 | 15 | 0.31 | 7.50 | 12.67 | 0.56 | 8.71 | 14.33 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, L.; Liu, Q.; Nie, Y.; Li, F.; Yang, G.; Tao, Y.; Lv, S.; Wu, X.; Ye, L. A Multi-Site Evaluation of Winter Hardiness in Indigenous Alfalfa Cultivars in Northern China. Atmosphere 2021, 12, 1538. https://doi.org/10.3390/atmos12111538
Xu L, Liu Q, Nie Y, Li F, Yang G, Tao Y, Lv S, Wu X, Ye L. A Multi-Site Evaluation of Winter Hardiness in Indigenous Alfalfa Cultivars in Northern China. Atmosphere. 2021; 12(11):1538. https://doi.org/10.3390/atmos12111538
Chicago/Turabian StyleXu, Lijun, Qian Liu, Yingying Nie, Feng Li, Guixia Yang, Ya Tao, Shijie Lv, Xinjia Wu, and Liming Ye. 2021. "A Multi-Site Evaluation of Winter Hardiness in Indigenous Alfalfa Cultivars in Northern China" Atmosphere 12, no. 11: 1538. https://doi.org/10.3390/atmos12111538