Characteristics and Potential Inhalation Exposure Risks of Environmentally Persistent Free Radicals in Atmospheric Particulate Matter and Solid Fuel Combustion Particles in High Lung Cancer Incidence Area, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection
2.2. Detection of EPFRs
2.3. Data Processing and Calculation of the Absolute Number of Spins
2.4. EPFRs Exposure Evaluation
3. Results and Discussion
3.1. EPFRs and PM Concentrations in Atmospheric Particulate Matter and Solid Fuel Combustion Particles
3.1.1. EPFRs and PM Concentrations in Biomass Combustion Particles
3.1.2. EPFRs and PM Concentrations in Coal Combustion Particles
3.1.3. EPFRs and PM Concentrations in Atmospheric Particulate Matters
3.2. EPFRs Species Characteristics
4. Potential Health Risk of EPFRs
5. Conclusions and Limitations of the Study
5.1. Conclusions
- (1)
- The contribution of EPFRs for biomass combustion, coal combustion and APMs were mainly distributed in the size range of <1.1 μm, which accounted for 76.15 ± 4.14%, 74.85 ± 10.76%, and 75.23 ± 8.18% of PM3.3, respectively;
- (2)
- The mean g factors were ranged from 2.0016 to 2.0043, 2.0039 to 2.0043 and 2.0039 to 2.0046 for biomass combustion, coal combustion and APMs, respectively, indicating that the samples were mainly oxygen-centered radicals (phenoxyl and semiquinone radicals) in Xuanwei;
- (3)
- The potential health risks of EPFRs for adults and children in PM1.1 were equivalent to 130.31 ± 35.06, 49.52 ± 13.32 cigarettes in coal combustion particles, 53.11 ± 6.65, 20.18 ± 2.53 cigarettes in biomass combustion particles, and 80.02 ± 37.37, 30.41 ± 14.20 cigarettes in APMs, respectively.The results suggest that the health risk of EPFRs is significantly increased when the particle size distribution of EPFRs is taken into account, and coal combustion particulate matter is more hazardous to humans than biomass combustion particulate matter, followed by APMs.
5.2. Limitations of the Study
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
APMs | Atmospheric particulate matters |
BL | Bole |
Ctar | The amount of tar per cigarette |
EPFRs | Environmentally Persistent Free Radicals |
ESR | Electron spin resonance |
H | Field strength |
GM | Guangming coal |
LJW | Lijiawu coal |
LM | Luomu |
ƛ | Microwave frequency |
Ncig | The number of cigarettes |
Integralsample | The signal integration areas of the sample |
Integralstandard | The signal integration areas of the sample |
PCPM | The concentration of PM |
ROS | Reactive oxygen species |
RCcig | The concentration of free radicals in cigarette tar |
SF | Shunfa coal |
Spinssample | The spin concentration of the unknown sample |
ZF | Zongfan coal |
References
- Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLGLO BOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2018, 68, 394–424. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kulhánová, I.; Forman, D.; Vignat, J.; Espina, C.; Brenner, H.; Storm, H.H.; Soerjomataram, I. Tobacco-related cancers in Europe: The scale of the epidemic in 2018. Eur. J. Cancer 2020, 139, 27–36. [Google Scholar] [CrossRef] [PubMed]
- Cao, M.; Chen, W. Epidemiology of lung cancer in China. Thorac. Cancer 2019, 10, 3–7. [Google Scholar] [CrossRef]
- Li, J.; Guo, W.; Ran, J.; Tang, R.; Lin, H.; Chen, X.; Huang, Y. Five-year lung cancer mortality risk analysis and topography in Xuan Wei: A spatiotemporal correlation analysis. BMC Public Health 2019, 19, 173. [Google Scholar] [CrossRef] [PubMed]
- Hosgood, H.D., III; Sapkota, A.R.; Rothman, N.; Rohan, T.; Hu, W.; Xu, J.; Lan, Q. The potential role of lung microbiota in lung cancer attributed to household coal burning exposures. Environ. Mol. Mutagen. 2014, 55, 643–651. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sheng, L.; Tu, J.W.; Tian, J.H.; Chen, H.J.; Pan, C.L.; Zhou, R.Z. A meta-analysis of the relationship between environmental tobacco smoke and lung cancer risk of nonsmoker in China. Medicine 2018, 97, e11389. [Google Scholar] [CrossRef] [PubMed]
- Lu, S.; Yi, F.; Hao, X.; Yu, S.; Ren, J.; Wu, M.; Wang, Q. Physicochemical properties and ability to generate free radicals of ambient coarse, fine, and ultrafine particles in the atmosphere of Xuanwei, China, an area of high lung cancer incidence. Atmos. Environ. 2014, 97, 519–528. [Google Scholar] [CrossRef]
- Feng, X.; Shao, L.; Xi, C.; Jones, T.; Zhang, D.; BéruBé, K. Particle-induced oxidative damage by indoor size-segregated particulate matter from coal-burning homes in the Xuanwei lung cancer epidemic area, Yunnan Province, China. Chemosphere 2020, 256, 127058. [Google Scholar] [CrossRef] [PubMed]
- Xiao, K.; Qin, A.; Wang, W.; Lu, S.; Wang, Q. Study on the Characteristics of Size-Segregated Particulate Water-Soluble Inorganic Ions and Potentially Toxic Metals during Wintertime in a High Population Residential Area in Beijing, China. Processes 2021, 9, 552. [Google Scholar] [CrossRef]
- Wang, R.; Huang, Q.; Cai, J.; Wang, J. Seasonal variations of atmospheric polycyclic aromatic hydrocarbons (PAHs) surrounding Chaohu Lake, China: Source, partitioning behavior, and lung cancer risk. Atmos. Pollut. Res. 2021, 12, 101056. [Google Scholar] [CrossRef]
- Tian, L.; Lucas, D.; Fischer, S.L.; Lee, S.C.; Hammond, S.K.; Koshland, C.P. Particle and gas emissions from a simulated coal-burning household fire pit. Environ. Sci. Technol. 2008, 42, 2503–2508. [Google Scholar] [CrossRef]
- Lu, S.; Hao, X.; Liu, D.; Wang, Q.; Zhang, W.; Liu, P.; Wang, Q. Mineralogical characterization of ambient fine/ultrafine particles emitted from Xuanwei C1 coal combustion. Atmos. Res. 2016, 169, 17–23. [Google Scholar] [CrossRef]
- Gawda, A.; Majka, G.; Nowak, B.; Marcinkiewicz, J. Air pollution, oxidative stress, and exacerbation of autoimmune diseases. Cent. Eur. J. Immunol. 2017, 42, 305. [Google Scholar] [CrossRef] [PubMed]
- Valavanidis, A.; Fiotakis, K.; Vlachogianni, T. Airborne particulate matter and human health: Toxicological assessment and importance of size and composition of particles for oxidative damage and carcinogenic mechanisms. J. Environ. Sci. Health—Part C Environ. Carcinog. Ecotoxicol. Rev. 2008, 26, 339–362. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Zhang, W.; Chen, H.; Liao, N.; Wang, Z.; Zhang, X.; Hai, C. High selenium impairs hepatic insulin sensitivity through opposite regulation of ROS. Toxicol. Lett. 2014, 224, 16–23. [Google Scholar] [CrossRef] [PubMed]
- Pöschl, U.; Shiraiwa, M. Multiphase chemistry at the atmosphere–biosphere interface influencing climate and public health in the anthropocene. Chem. Rev. 2015, 115, 4440–4475. [Google Scholar] [CrossRef]
- Arangio, A.M.; Tong, H.; Socorro, J.; Pöschl, U.; Shiraiwa, M. Quantification of environmentally persistent free radicals and reactive oxygen species in atmospheric aerosol particles. Atmos. Chem. Phys. 2016, 16, 13105–13119. [Google Scholar] [CrossRef] [Green Version]
- Li, N.; Xia, T.; Nel, A.E. The role of oxidative stress in ambient particulate matter-induced lung diseases and its implications in the toxicity of engineered nanoparticles. Free Radic. Biol. Med. 2008, 44, 1689–1699. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, Y.; Qin, L.; Liu, G.; Zheng, M.; Li, D.; Yang, L. Assessment of personal exposure to environmentally persistent free radicals in airborne particulate matter. J. Hazard. Mater. 2021, 409, 125014. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.; Sun, H.; Wang, J.; Shan, M.; Yang, X.; Deng, M.; Zhang, L. Long-life type—The dominant fraction of EPFRs in combustion sources and ambient fine particles in Xi’an. Atmos. Environ. 2019, 219, 117059. [Google Scholar] [CrossRef]
- Wang, C.; Huang, Y.; Zhang, Z.; Cai, Z. Levels, spatial distribution, and source identification of airborne environmentally persistent free radicals from tree leaves. Environ. Pollut. 2020, 257, 113353. [Google Scholar] [CrossRef]
- Qian, R.; Zhang, S.; Peng, C.; Zhang, L.; Yang, F.; Tian, M.; Chen, Y. Characteristics and potential exposure risks of environmentally persistent free radicals in PM2.5 in the three gorges reservoir area, Southwestern China. Chemosphere 2020, 252, 126425. [Google Scholar] [CrossRef] [PubMed]
- Dellinger, B.; Lomnicki, S.; Khachatryan, L.; Maskos, Z.; Hall, R.W.; Adounkpe, J.; Truong, H. Formation and stabilization of persistent free radicals. Proc. Combust. Inst. 2007, 31, 521–528. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Balakrishna, S.; Saravia, J.; Thevenot, P.; Ahlert, T.; Lominiki, S.; Dellinger, B.; Cormier, S.A. Environmentally persistent free radicals induce airway hyperresponsiveness in neonatal rat lungs. Part. Fibre Toxicol. 2011, 8, 1–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kelley, M.A.; Hebert, V.Y.; Thibeaux, T.M.; Orchard, M.A.; Hasan, F.; Cormier, S.A.; Dugas, T.R. Model combustion-generated particulate matter containing persistent free radicals redox cycle to produce reactive oxygen species. Chem. Res. Toxicol. 2013, 26, 1862–1871. [Google Scholar] [CrossRef] [Green Version]
- Guo, X.; Zhang, N.; Hu, X.; Huang, Y.; Ding, Z.; Chen, Y.; Lian, H.Z. Characteristics and potential inhalation exposure risks of PM2.5–bound environmental persistent free radicals in Nanjing, a mega–city in China. Atmos. Environ. 2020, 224, 117355. [Google Scholar] [CrossRef]
- Gehling, W.; Khachatryan, L.; Dellinger, B. Hydroxyl radical generation from environmentally persistent free radicals (EPFRs) in PM2.5. Environ. Sci. Technol. 2014, 48, 4266–4272. [Google Scholar] [CrossRef] [Green Version]
- Xiao, K.; Wang, Q.; Lin, Y.; Wang, W.; Lu, S.; Yonemochi, S. Approval Research for Carcinogen Humic-Like Substances (HULIS) Emitted from Residential Coal Combustion in High Lung Cancer Incidence Areas of China. Processes 2021, 9, 1254. [Google Scholar] [CrossRef]
- Lu, S.; Tan, Z.; Liu, P.; Zhao, H.; Liu, D.; Yu, S.; Wang, Q. Single particle aerosol mass spectrometry of coal combustion particles associated with high lung cancer rates in Xuanwei and Fuyuan, China. Chemosphere 2017, 186, 278–286. [Google Scholar] [CrossRef]
- Lubick, N. Persistent free radicals: Discovery and mechanisms for health impacts. Environ. Sci. Technol. 2008, 42, 8178. [Google Scholar] [CrossRef] [Green Version]
- Gehling, W.; Dellinger, B. Environmentally persistent free radicals and their lifetimes in PM2.5. Environ. Sci. Technol. 2013, 47, 8172–8178. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Li, S.; Wang, M.; Sun, H.; Mu, Z.; Zhang, L.; Chen, Q. Source apportionment of environmentally persistent free radicals (EPFRs) in PM2.5 over Xi’an, China. Sci. Total Environ. 2019, 689, 193–202. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Shi, L.; Duan, W.; Li, H.; Yi, P.; Tao, W.; Xing, B. Emission factors of environmentally persistent free radicals in PM2.5 from rural residential solid fuels combusted in a traditional stove. Sci. Total Environ. 2021, 773, 145151. [Google Scholar] [CrossRef]
- Tan, Z.; Lu, S.; Zhao, H.; Kai, X.; Jiaxian, P.; Win, M.S.; Wang, Q. Magnetic, geochemical characterization and health risk assessment of road dust in Xuanwei and Fuyuan, China. Environ. Geochem. Health 2018, 40, 1541–1555. [Google Scholar] [CrossRef] [PubMed]
- Tian, X.; Xiao, L.; Shen, Y.; Luo, L.; Zhang, G.; Zhang, Q.; Tian, Y. A combination of super-resolution fluorescence and magnetic resonance imaging using a Mn (ii) compound. Inorg. Chem. Front. 2019, 6, 2914–2920. [Google Scholar] [CrossRef]
- Qiu, P.; Huang, C.; Dong, G.; Chen, F.; Zhao, F.; Yu, Y.; Wang, Y. Plasmonic Gold Nanocrystals Stimulated Efficiently Photocatalytic Nitrogen Fixation over Mo Doped W18O49 nanowires. J. Mater. Chem. 2021, 9, 25. [Google Scholar] [CrossRef]
- Runberg, H.L.; Mitchell, D.G.; Eaton, S.S.; Eaton, G.R.; Majestic, B.J. Stability of environmentally persistent free radicals (EPFR) in atmospheric particulate matter and combustion particles. Atmos. Environ. 2020, 240, 117809. [Google Scholar] [CrossRef]
- Chen, Q.; Sun, H.; Mu, Z.; Wang, Y.; Li, Y.; Zhang, L.; Zhang, Z. Characteristics of environmentally persistent free radicals in PM2.5: Concentrations, species and sources in Xi’an, Northwestern China. Environ. Pollut. 2019, 247, 18–26. [Google Scholar] [CrossRef]
- Chen, Q.; Sun, H.; Song, W.; Cao, F.; Tian, C.; Zhang, Y.L. Size-resolved exposure risk of persistent free radicals (PFRs) in atmospheric aerosols and their potential sources. Atmos. Chem. Phys. 2020, 20, 14407–14417. [Google Scholar] [CrossRef]
- Xu, Y.; Yang, L.; Wang, X.; Zheng, M.; Li, C.; Zhang, A.; Liu, G. Risk evaluation of environmentally persistent free radicals in airborne particulate matter and influence of atmospheric factors. Ecotoxicol. Environ. Saf. 2020, 196, 110571. [Google Scholar] [CrossRef]
- Grevatt, P.C. Toxicological Review of Trivalent Chromium. 1998. Available online: http://www.epa.gov/IRIS/toxreviews/0028-tr.Pdf (accessed on 8 October 2021).
- Chen, Q.; Wang, M.; Sun, H.; Wang, X.; Wang, Y.; Li, Y.; Mu, Z. Enhanced health risks from exposure to environmentally persistent free radicals and the oxidative stress of PM2.5 from Asian dust storms in Erenhot, Zhangbei and Jinan, China. Environ. Int. 2018, 121, 260–268. [Google Scholar] [CrossRef]
- Tian, L.; Koshland, C.P.; Yano, J.; Yachandra, V.K.; Yu, I.T.; Lee, S.C.; Lucas, D. Carbon-centered free radicals in particulate matter emissions from wood and coal combustion. Energy Fuels 2009, 23, 2523–2526. [Google Scholar] [CrossRef] [PubMed]
- Shaltout, A.A.; Boman, J.; Shehadeh, Z.F.; Dhaif-Allah, R.; Hemeda, O.M.; Morsy, M.M. Spectroscopic investigation of PM2.5 collected at industrial, residential and traffic sites in Taif, Saudi Arabia. J. Aerosol Sci. 2015, 79, 97–108. [Google Scholar] [CrossRef]
- Wang, P.; Pan, B.; Li, H.; Huang, Y.; Dong, X.; Ai, F.; Xing, B. The overlooked occurrence of environmentally persistent free radicals in an area with low-rank coal burning, Xuanwei, China. Environ. Sci. Technol. 2018, 52, 1054–1061. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Liu, G.; Zheng, M.; Jin, R.; Zhu, Q.; Zhao, Y.; Xu, Y. Highly elevated levels and particle-size distributions of environmentally persistent free radicals in haze-associated atmosphere. Environ. Sci. Technol. 2017, 51, 7936–7944. [Google Scholar] [CrossRef] [PubMed]
- Valavanidis, A.; Fiotakis, K.; Vlahogianni, T.; Papadimitriou, V.; Pantikaki, V. Determination of selective quinones and quinoid radicals in airborne particulate matter and vehicular exhaust particles. Environ. Chem. 2006, 3, 118–123. [Google Scholar] [CrossRef]
- Dellinger, B.; Pryor, W.A.; Cueto, R.; Squadrito, G.L.; Hegde, V.; Deutsch, W.A. Role of free radicals in the toxicity of airborne fine particulate matter. Chem. Res. Toxicol. 2001, 14, 1371–1377. [Google Scholar] [CrossRef]
- Ruan, X.; Sun, Y.; Du, W.; Tang, Y.; Liu, Q.; Zhang, Z.; Tsang, D.C. Formation, characteristics, and applications of environmentally persistent free radicals in biochars: A review. Bioresour. Technol. 2019, 281, 457–468. [Google Scholar] [CrossRef]
- Huang, Y.; Guo, X.; Ding, Z.; Chen, Y.; Hu, X. Environmentally persistent free radicals in biochar derived from Laminaria japonica grown in different habitats. J. Anal. Appl. Pyrolysis 2020, 151, 104941. [Google Scholar] [CrossRef]
- Feld-Cook, E.E.; Bovenkamp-Langlois, L.; Lomnicki, S.M. Effect of particulate matter mineral composition on environmentally persistent free radical (EPFR) formation. Environ. Sci. Technol. 2017, 51, 10396–10402. [Google Scholar] [CrossRef] [Green Version]
- Chen, Q.; Sun, H.; Wang, M.; Mu, Z.; Wang, Y.; Li, Y.; Zhang, Z. Dominant fraction of EPFRs from nonsolvent-extractable organic matter in fine particulates over Xi’an, China. Environ. Sci. Technol. 2018, 52, 9646–9655. [Google Scholar] [CrossRef]
- Liu, J.; Jiang, X.; Shen, J.; Zhang, H. Influences of particle size, ultraviolet irradiation and pyrolysis temperature on stable free radicals in coal. Powder Technol. 2015, 272, 64–74. [Google Scholar] [CrossRef]
- Lyu, Y.; Guo, H.; Cheng, T.; Li, X. Particle size distributions of oxidative potential of lung-deposited particles: Assessing contributions from quinones and water-soluble metals. Environ. Sci. Technol. 2018, 52, 6592–6600. [Google Scholar] [CrossRef] [PubMed]
- McFerrin, C.A.; Hall, R.W.; Dellinger, B. Ab initio study of the formation and degradation reactions of semiquinone and phenoxyl radicals. J. Mol. Struct. THEOCHEM 2008, 848, 16–23. [Google Scholar] [CrossRef]
- Church, D.F.; Pryor, W.A. Free-radical chemistry of cigarette smoke and its toxicological implications. Environ. Health Perspect. 1985, 64, 111–126. [Google Scholar] [CrossRef] [PubMed]
- Dugas, T.R.; Lomnicki, S.; Cormier, S.A.; Dellinger, B.; Reams, M. Addressing emerging risks: Scientific and regulatory challenges associated with environmentally persistent free radicals. Int. J. Environ. Res. Public Health 2016, 13, 573. [Google Scholar] [CrossRef] [Green Version]
Types | Mine | Sample Groups | Location | Altitude/m | Latitude | Longitude |
---|---|---|---|---|---|---|
Coal | Luomu | LM | Bole Town | 1793 | 26°29′34.09″ | 103°46′9.17″ |
Bole | BL | Bole Town | 2104 | 25°47′15.32″ | 104°07′32.32″ | |
Zongfan | ZF | Laibin Town | 2024 | 26°17′58.25″ | 104°05′42.49″ | |
Guangming | GM | Laibin Town | 1987 | 26°19′46.55″ | 104°09′36.43″ | |
Shunfa | SF | Laochang Town | 1994 | 25°13′31.13″ | 104°31′22.42″ | |
Lijiawu | LJW | Housuo Town | 2078 | 25°79′99.21″ | 104°28′60.06″ | |
Biomass | Corncob | Zhongan Town | 1831 | 25°39′58.85″ | 104°15′8.20″ | |
Pine | Zhongan Town | 1831 | 25°39′58.85″ | 104°15′8.20″ | ||
Poplar | Zhongan Town | 1812 | 25°40′38.06″ | 104°15′9.59″ | ||
APMs | A~D | Housuo Town | 2023 | 25°50′59″ | 104°23′22″ | |
E~F | Housuo Town | 2267 | 25°49′37″ | 104°14′15″ |
Sample Groups | PM1.1/PM3.3 (%) | PM1.1–2.0/PM3.3 (%) | PM2.0–3.3/PM3.3 (%) | ||||||
---|---|---|---|---|---|---|---|---|---|
Spins/m3 | Spins/g | μg/m3 | Spins/m3 | Spins/g | μg/m3 | Spins/m3 | Spins/g | μg/m3 | |
Corncob | 73.11 | 58.26 | 49.66 | 16.86 | 24.35 | 27.48 | 10.03 | 17.38 | 22.86 |
Pine | 82.10 | 61.40 | 58.39 | 8.11 | 15.10 | 23.49 | 9.79 | 23.50 | 18.13 |
Poplar | 73.56 | 54.33 | 54.14 | 16.09 | 24.45 | 26.33 | 10.36 | 21.23 | 19.52 |
Average | 76.25 | 57.99 | 54.06 | 13.69 | 21.30 | 25.77 | 10.06 | 20.70 | 20.17 |
Min | 73.11 | 54.33 | 49.66 | 8.11 | 15.10 | 23.49 | 9.79 | 17.38 | 18.13 |
Max | 82.10 | 61.40 | 58.39 | 16.86 | 24.45 | 27.48 | 10.36 | 23.50 | 22.86 |
STD | 4.14 | 2.89 | 3.56 | 3.95 | 4.38 | 1.68 | 0.23 | 2.52 | 1.99 |
Sample Groups | PM1.1/PM3.3 (%) | PM1.1–2.0/PM3.3 (%) | PM2.0–3.3/PM3.3 (%) | ||||||
---|---|---|---|---|---|---|---|---|---|
Spins/m3 | Spins/g | μg/m3 | Spins/m3 | Spins/g | μg/m3 | Spins/m3 | Spins/g | μg/m3 | |
BL | 58.15 | 51.66 | 40.00 | 14.00 | 18.72 | 26.58 | 27.85 | 29.61 | 33.42 |
LM | 63.74 | 52.12 | 46.46 | 28.09 | 28.37 | 37.62 | 8.17 | 19.51 | 15.92 |
SF | 81.77 | 56.06 | 56.29 | 7.07 | 8.66 | 31.50 | 11.16 | 35.27 | 12.21 |
LJW | 89.86 | 81.85 | 43.81 | 4.03 | 4.14 | 38.77 | 6.12 | 14.01 | 17.43 |
GM | 78.85 | 71.34 | 42.23 | 10.76 | 12.24 | 33.60 | 10.39 | 16.42 | 24.17 |
ZF | 76.76 | 58.53 | 50.35 | 14.64 | 15.16 | 37.10 | 8.60 | 26.31 | 12.55 |
Average | 74.85 | 61.93 | 46.52 | 13.10 | 14.55 | 34.19 | 12.05 | 23.52 | 19.28 |
Min | 58.15 | 51.66 | 40.00 | 4.03 | 4.14 | 26.58 | 6.12 | 14.01 | 12.21 |
Max | 89.86 | 81.85 | 56.29 | 28.09 | 28.37 | 38.77 | 27.85 | 35.27 | 33.42 |
STD | 10.76 | 11.05 | 5.45 | 7.66 | 7.71 | 4.22 | 7.25 | 7.53 | 7.46 |
Sample Groups | PM1.1/PM3.3 (%) | PM1.1–2.0/PM3.3 (%) | PM2.0–3.3/PM3.3 (%) | ||||||
---|---|---|---|---|---|---|---|---|---|
Spins/m3 | Spins/g | μg/m3 | Spins/m3 | Spins/g | μg/m3 | Spins/m3 | Spins/g | μg/m3 | |
A | 76.71 | 53.07 | 58.97 | 11.19 | 20.75 | 22.09 | 12.09 | 26.18 | 18.94 |
B | 80.72 | 58.98 | 59.38 | 10.64 | 22.45 | 20.50 | 8.65 | 18.57 | 20.12 |
C | 70.31 | 58.26 | 46.29 | 18.61 | 23.30 | 30.66 | 11.08 | 18.44 | 23.05 |
D | 89.67 | 85.22 | 42.99 | 4.51 | 6.44 | 28.66 | 5.81 | 8.34 | 28.36 |
E | 66.54 | 63.16 | 35.27 | 17.19 | 14.08 | 40.81 | 16.26 | 22.76 | 23.91 |
F | 67.43 | 64.23 | 36.45 | 19.66 | 17.58 | 38.87 | 12.91 | 18.20 | 24.67 |
Average | 75.23 | 63.82 | 46.56 | 13.63 | 17.43 | 30.26 | 11.14 | 18.75 | 23.18 |
Min | 66.54 | 53.07 | 35.27 | 4.51 | 6.44 | 20.50 | 5.81 | 8.34 | 18.94 |
Max | 89.67 | 85.22 | 59.38 | 19.66 | 23.30 | 40.81 | 16.26 | 26.18 | 28.36 |
STD | 8.18 | 10.23 | 9.67 | 5.35 | 5.81 | 7.64 | 3.29 | 5.48 | 3.08 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiao, K.; Lin, Y.; Wang, Q.; Lu, S.; Wang, W.; Chowdhury, T.; Enyoh, C.E.; Rabin, M.H. Characteristics and Potential Inhalation Exposure Risks of Environmentally Persistent Free Radicals in Atmospheric Particulate Matter and Solid Fuel Combustion Particles in High Lung Cancer Incidence Area, China. Atmosphere 2021, 12, 1467. https://doi.org/10.3390/atmos12111467
Xiao K, Lin Y, Wang Q, Lu S, Wang W, Chowdhury T, Enyoh CE, Rabin MH. Characteristics and Potential Inhalation Exposure Risks of Environmentally Persistent Free Radicals in Atmospheric Particulate Matter and Solid Fuel Combustion Particles in High Lung Cancer Incidence Area, China. Atmosphere. 2021; 12(11):1467. https://doi.org/10.3390/atmos12111467
Chicago/Turabian StyleXiao, Kai, Yichun Lin, Qingyue Wang, Senlin Lu, Weiqian Wang, Tanzin Chowdhury, Christian Ebere Enyoh, and Mominul Haque Rabin. 2021. "Characteristics and Potential Inhalation Exposure Risks of Environmentally Persistent Free Radicals in Atmospheric Particulate Matter and Solid Fuel Combustion Particles in High Lung Cancer Incidence Area, China" Atmosphere 12, no. 11: 1467. https://doi.org/10.3390/atmos12111467
APA StyleXiao, K., Lin, Y., Wang, Q., Lu, S., Wang, W., Chowdhury, T., Enyoh, C. E., & Rabin, M. H. (2021). Characteristics and Potential Inhalation Exposure Risks of Environmentally Persistent Free Radicals in Atmospheric Particulate Matter and Solid Fuel Combustion Particles in High Lung Cancer Incidence Area, China. Atmosphere, 12(11), 1467. https://doi.org/10.3390/atmos12111467