El Niño–Global Atmospheric Oscillation as the Main Mode of Interannual Climate Variability
Abstract
:1. Introduction
1.1. Influence of ENSO on the Tropical Belt of the Earth and the North Pacific
1.2. Influence of ENSO on the North Atlantic and Europe
- -
- Direct heat circulation (Walker and Hadley cells) connecting the Atlantic and Pacific basins;
- -
- Propagation of Rossby waves from the tropics of the Pacific Ocean to the North Atlantic region.
1.3. Influence of ENSO on Eurasia and the Arctic
1.4. Influence of ENSO on South America and Antarctica
1.5. Global Influence of ENSO
1.6. Influence of Regions Outside the Tropical Pacific on ENSO
1.7. Global Atmospheric Oscillation
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- McPhaden, M.J.; Zebiak, S.E.; Glantz, M.H. ENSO as an integrating concept in earth science. Science 2006, 314, 1740–1745. [Google Scholar] [CrossRef] [Green Version]
- McPhaden, M.J. El Niño and La Niña: Causes and Global Consequences. In Encyclopedia of Global Environmental Change; Munn, T., Ed.; John Wiley and Sons, LTD: Chichester, UK, 2002; Volume 1, pp. 353–370. [Google Scholar]
- Diaz, H.F.; Hoerling, M.P.; Eischeid, J.K. ENSO variability, teleconnections and climate change. Int. J. Climatol. 2001, 21, 1845–1862. [Google Scholar]
- Sugihara, G.; May, R.; Ye, H.; Hsieh, C.; Deyle, E.; Fogarty, M.; Munch, S. Detecting causality in complex ecosystems. Science 2012, 338, 496–500. [Google Scholar] [CrossRef]
- Alexander, M.A.; Bladé, I.; Newman, M.; Lanzante, J.R.; Lau, N.; Scott, J.D. The Atmospheric Bridge: The Influence of ENSO Teleconnections on Air-Sea Interaction over the Global Oceans. J. Clim. 2002, 15, 2205–2231. [Google Scholar] [CrossRef]
- Abid, M.A.; Ashfaq, M.; Kucharski, F.; Evans, K.J.; Almazroui, M. Tropical Indian Ocean mediates ENSO influence over Central Southwest Asia during the wet season. Geophys. Res. Lett. 2020, 47, e2020GL089308. [Google Scholar] [CrossRef]
- Lloyd-Hughes, B.; Saunders, M.A. Seasonal prediction of European spring precipitation from El Niño–Southern Oscillation and Local sea-surface temperatures. Int. J. Climatol. 2002, 22, 1–14. [Google Scholar] [CrossRef]
- Moron, V.; Gouirand, I. Seasonal modulation of the El Nino–Southern Oscillation relationship with sea level pressure anomalies over the North Atlantic in October–March 1873–1996. Int. J. Climatol. 2003, 23, 143–155. [Google Scholar] [CrossRef]
- Broennimann, S. Impact of El Niño-Southern Oscillation on European climate. Rev. Geophys. 2007, 45, RG3003. [Google Scholar] [CrossRef] [Green Version]
- Ineson, S.; Scaife, A.A. The role of the stratosphere in the European climate response to El Niño. Nat. Geosci. 2009, 2, 32–36. [Google Scholar] [CrossRef]
- Graf, H.F.; Zanchettin, D. Central Pacific El Niño, the “subtropical bridge,” and Eurasian climate. J. Geophys. Res. 2012, 117, D01102. [Google Scholar] [CrossRef] [Green Version]
- Bulić, H.I.; Kucharski, F. Delayed ENSO impact on spring precipitation over North Atlantic European region. Clim. Dyn. 2012, 38, 2593–2612. [Google Scholar] [CrossRef]
- Rodríguez-Fonseca, B.; Suárez-Moreno, R.; Ayarzagüena, B.; López-Parages, J.; Gómara, I.; Villamayor, J.; Mohino, E.; Losada, T.; Castaño-Tierno, A. A review of ENSO influence on the North Atlantic. A non-stationary signal. Atmosphere 2016, 7, 87. [Google Scholar] [CrossRef] [Green Version]
- López-Parages, J.; Rodríguez-Fonseca, B.; Dommenget, D.; Frauen, C. ENSO influence on the North Atlantic European climate: A non-linear and non-stationary approach. Clim. Dyn. 2016, 47, 2071–2084. [Google Scholar] [CrossRef]
- Ayarzagüena, B.; López-Parages, J.; Iza, M.; Calvo, N.; Rodríguez-Fonseca, B. Stratospheric role in interdecadal changes of El Niño impacts over Europe. Clim. Dyn. 2019, 52, 1173–1186. [Google Scholar] [CrossRef] [Green Version]
- Mokhov, I.I.; Timazhev, A.V. Assessment of the predictability of climate anomalies in connection with El Niño phenomena. Dokl. Earth Sc. 2015, 464, 1089–1093. [Google Scholar] [CrossRef]
- Geng, X.; Zhang, W.; Stuecker, M.F.; Fei, J.J. Strong sub-seasonal wintertime cooling over East Asia and Northern Europe associated with super El Niño events. Sci. Rep. 2017, 7, 3770. [Google Scholar] [CrossRef]
- Kostianaia, E.A.; Kostianoy, A.G.; Scheglov, M.A.; Karelov, A.I.; Vasileisky, A.S. Impact of regional climate change on the infrastructure and operability of railway transport. Transp. Telecommun. 2021, 22, 183–195. [Google Scholar]
- Serykh, I.V.; Kostianoy, A.G. Seasonal and interannual variability of the Barents Sea temperature. Ecol. Montenegr. 2019, 25, 1–13. [Google Scholar] [CrossRef]
- Serykh, I.V.; Tolstikov, A.V. On the climatic changes of the surface air temperature in the White Sea region. IOP Conf. Ser. Earth Environ. Sci. 2020, 606, 012054. [Google Scholar] [CrossRef]
- Li, J.; Fan, K.; Zhou, L. Satellite Observations of El Niño Impacts on Eurasian Spring Vegetation Greenness during the Period 1982–2015. Remote Sens. 2017, 9, 628. [Google Scholar] [CrossRef] [Green Version]
- Cai, W.; McPhaden, M.J.; Grimm, A.M.; Rodrigues, R.R.; Taschetto, A.S.; Garreaud, R.D.; Dewitte, B.; Poveda, G.; Ham, Y.-G.; Santoso, A.; et al. Climate impacts of the El Niño–Southern Oscillation on South America. Nat. Rev. Earth Environ. 2020, 1, 215–231. [Google Scholar] [CrossRef]
- Yiu, Y.Y.S.; Maycock, A.C. The linearity of the El Niño teleconnection to the Amundsen Sea region. Q. J. R. Meteorol. Soc. 2020, 146, 1169–1183. [Google Scholar] [CrossRef] [PubMed]
- Zheleznova, I.V.; Gushchina, D.Y. The response of global atmospheric circulation to two types of El Niño. Russ. Meteorol. Hydrol. 2015, 40, 170–179. [Google Scholar] [CrossRef]
- Alizadeh-Choobari, O. Contrasting global teleconnection features of the eastern Pacific and central Pacific El Niño events. Dynam. Atmosph. Ocean. 2017, 80, 139–154. [Google Scholar] [CrossRef]
- Dogar, M.M.; Kucharski, F.; Sato, T.; Mehmood, S.; Ali, S.; Gong, Z.; Das, D.; Arraut, J. Towards understanding the global and regional climatic impacts of Modoki magnitude. Glob. Planet. Chang. 2019, 172, 223–241. [Google Scholar] [CrossRef]
- Lin, J.; Qian, T. A New Picture of the Global Impacts of El Nino-Southern Oscillation. Sci. Rep. 2019, 9, 17543. [Google Scholar] [CrossRef]
- Haszpra, T.; Herein, M.; Bódai, T. Investigating ENSO and its teleconnections under climate change in an ensemble view—A new perspective. Earth Syst. Dynam. 2020, 11, 267–280. [Google Scholar] [CrossRef] [Green Version]
- Yeh, S.W.; Cai, W.; Min, S.K.; McPhaden, M.J.; Dommenget, D.; Dewitte, B.; Collins, M.; Ashok, K.; An, S.I.; Yim, B.Y.; et al. ENSO Atmospheric Teleconnections and Their Response to Greenhouse Gas Forcing. Rev. Geophys. 2018, 56, 185–206. [Google Scholar] [CrossRef]
- Kozlenko, S.S.; Mokhov, I.I.; Smirnov, D.A. Analysis of the cause and effect relationships between El Niño in the Pacific and its analog in the equatorial Atlantic. Izv. Atmos. Ocean. Phys. 2009, 45, 704. [Google Scholar] [CrossRef]
- Cai, W.; Wu, L.; Lengaigne, M.; Li, T.; McGregor, T.; Kug, J.-S.; Yu, J.-Y.; Stueker, M.F.; Santoso, A.; Li, X.; et al. Pantropical climate interactions. Science 2019, 363, eaav4236. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dayan, H.; Vialard, J.; Izumo, T.; Lengaigne, T. Does sea surface temperature outside the tropical Pacific contribute to enhanced ENSO predictability? Clim. Dyn. 2014, 43, 1311–1325. [Google Scholar] [CrossRef]
- Dima, M.; Lohmann, G.; Rimbu, N. Possible North Atlantic origin for changes in ENSO properties during the 1970s. Clim. Dyn. 2015, 44, 925–935. [Google Scholar] [CrossRef]
- Terray, P.; Masson, S.; Prodhomme, C.; Roxy, M.K.; Sooraj, K.P. Impacts of Indian and Atlantic oceans on ENSO in a comprehensive modeling framework. Clim. Dyn. 2016, 46, 2507–2533. [Google Scholar] [CrossRef] [Green Version]
- Yun, K.S.; Ha, K.J.; Yeh, S.W.; Wang, B.; Xiang, B. Critical role of boreal summer North Pacific subtropical highs in ENSO transition. Clim. Dyn. 2015, 44, 1979–1992. [Google Scholar] [CrossRef]
- Ding, R.; Li, J.; Tseng, Y.-H.; Cheng, S.; Fei, Z. Linking a sea level pressure anomaly dipole over North America to the central Pacific El Niño. Clim. Dyn. 2017, 49, 1321–1339. [Google Scholar] [CrossRef]
- Anderson, B.T.; Hassanzadeh, P.; Caballero, R. Persistent anomalies of the extratropical Northern Hemisphere wintertime circulation as an initiator of El Niño/Southern Oscillation events. Sci. Rep. 2017, 7, 10145. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zheng, F.; Li, J.; Ding, R. Influence of the preceding austral summer Southern Hemisphere annular mode on the amplitude of ENSO decay. Adv. Atmos. Sci. 2017, 34, 1358–1379. [Google Scholar] [CrossRef]
- Hsu, Y.C.; Lee, C.P.; Wang, Y.L.; Wu, C.R.; Lui, H.K. Leading El-Niño SST Oscillations around the Southern South American Continent. Sustainability 2018, 10, 1783. [Google Scholar] [CrossRef] [Green Version]
- Chen, S.; Chen, W.; Yu, B. Modulation of the relationship between spring AO and the subsequent winter ENSO by the preceding November AO. Sci. Rep. 2018, 8, 6943. [Google Scholar] [CrossRef] [Green Version]
- Stuecker, M.F. Revisiting the Pacific Meridional Mode. Sci. Rep. 2018, 8, 3216. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.; Yeh, S.W.; An, S.I.; Park, J.H.; Kim, B.M.; Baek, E.H. Arctic sea ice loss as a potential trigger for central Pacific El Niño events. Geophys. Res. Lett. 2020, 47, e2020GL087028. [Google Scholar] [CrossRef]
- Trenberth, K.E.; Caron, J.M. The Southern Oscillation Revisited: Sea Level Pressures, Surface Temperatures, and Precipitation. J. Clim. 2000, 13, 4358–4365. [Google Scholar] [CrossRef]
- White, W.B.; Cayan, D.R. A global El Niño-Southern Oscillation wave in surface temperature and pressure and its interdecadal modulation from 1900 to 1997. J. Geophys. Res. 2000, 105, 11223–11242. [Google Scholar] [CrossRef]
- Sidorenkov, N.S. The Interaction between Earth’s Rotation and Geophysical Processes; Wiley-VCH & Co. KCaA: Weinheim, Germany, 2009; 305p. [Google Scholar]
- Peng, J.B.; Chen, L.T.; Zhang, Q.Y. The relationship between the El Niño/La Niña cycle and the transition chains of four atmospheric oscillations. Part I: The four oscillations. Adv. Atmos. Sci. 2014, 31, 468–479. [Google Scholar] [CrossRef]
- Peng, J.B.; Chen, L.T.; Zhang, Q.Y. The relationship between the El Niño/La Niña cycle and the transition chains of four atmospheric oscillations. Part II: The relationship and a new approach to the prediction of El Niño. Adv. Atmos. Sci. 2014, 31, 637–646. [Google Scholar] [CrossRef]
- Wang, Y.; Lupo, A.R.; Qin, J. A response in the ENSO cycle to an extratropical forcing mechanism during the El Niño to La Niña transition. Tellus Dynam. Meteorol. Oceanogr. 2013, 65, 1. [Google Scholar] [CrossRef]
- Boschat, G.; Terray, P.; Masson, S. Extratropical forcing of ENSO. Geophys. Res. Lett. 2013, 40, 1605–1611. [Google Scholar] [CrossRef] [Green Version]
- Byshev, V.I.; Neiman, V.G.; Romanov, Y.A.; Serykh, I.V. El Niño as a consequence of the global oscillation in the dynamics of the earth’s climatic system. Dokl. Earth Sci. 2012, 446, 1089–1094. [Google Scholar] [CrossRef]
- Byshev, V.I.; Neiman, V.G.; Romanov, Y.A.; Serykh, I.V. On El Niño’s impact upon the climate characteristics of the Indian monsoon. Oceanology 2012, 52, 147–156. [Google Scholar] [CrossRef]
- Byshev, V.I.; Neiman, V.G.; Ponomarev, V.I.; Romanov, Y.A.; Serykh, I.V.; Tsurikova, T.V. The Influence of Global atmospheric oscillation on formation of climate anomalies in the Russian Far East. Dokl. Earth Sci. 2014, 458, 1116–1120. [Google Scholar] [CrossRef]
- Byshev, V.I.; Neiman, V.G.; Romanov, Y.A.; Serykh, I.V.; Sonechkin, D.M. Statistical significance and climatic role of the Global Atmospheric Oscillation. Oceanology 2016, 56, 165–171. [Google Scholar] [CrossRef]
- Serykh, I.V.; Sonechkin, D.M.; Byshev, V.I.; Neiman, V.G.; Romanov, Y.A. Global Atmospheric Oscillation: An Integrity of ENSO and Extratropical Teleconnections. Pure Appl. Geophys. 2019, 176, 3737–3755. [Google Scholar] [CrossRef]
- Serykh, I.V.; Sonechkin, D.M. Interrelations between temperature variations in oceanic depths and the Global atmospheric oscillation. Pure Appl. Geophys. 2020, 177, 5951–5967. [Google Scholar] [CrossRef]
- Compo, G.P.; Whitaker, J.S.; Sardeshmukh, P.D.; Matsui, N.; Allan, X.; Yin, B.M.; Gleason, E.R.; Vose, G.; Rutledge, G.; Bessemoulin, P.S.; et al. The Twentieth Century Reanalysis Project. Quart. J. Roy. Meteorol. Soc. 2011, 137, 1–28. [Google Scholar] [CrossRef]
- Slivinski, L.C.; Compo, G.P.; Whitaker, J.S.; Sardeshmukh, P.D.; Giese, B.S.; McColl, C.; Allan, R.; Yin, X.; Vose, R.; Titchner, H.; et al. Towards a more reliable historical reanalysis: Improvements for version 3 of the Twentieth Century Reanalysis system. Q. J. R. Meteorol. Soc. 2019, 145, 2876–2908. [Google Scholar] [CrossRef] [Green Version]
- Cram, T.A.; Compo, G.P.; Yin, X.; Allan, R.; McColl, C.; Vose, R.S.; Withaker, J.S.; Matsui, N.; Ashcroft, L.; Bessemoulin, P.S.; et al. The International Surface Pressure Databank version 2. Geosci. Data J. 2015, 2, 31–46. [Google Scholar] [CrossRef] [Green Version]
- Giese, B.S.; Seidel, H.F.; Compo, G.P.; Sardeshmukh, P.D. An ensemble of ocean reanalyses for 1815–2013 with sparse observational input. J. Geophys. Res. Ocean. 2016, 121, 6891–6910. [Google Scholar] [CrossRef]
- Titchner, H.A.; Rayner, N.A. The Met Office Hadley Centre sea ice and sea surface temperature data set, version 2: 1. Sea ice concentrations. J. Geophys. Res. Atmosph. 2014, 119, 2864–2889. [Google Scholar] [CrossRef]
- Walsh, J.E.; Chapman, W.L.; Fetterer, F. Gridded Monthly Sea Ice Extent and Concentration, 1850 Onward, Version 1; NSIDC National Snow and Ice Data Center: Boulder, CO, USA, 2015. [Google Scholar]
- Lei, L.; Whitaker, J.S. A four-dimensional incremental analysis update for the ensemble Kalman filter. Mon. Weather Rev. 2016, 144, 2605–2621. [Google Scholar] [CrossRef]
- Serykh, I.V.; Sonechkin, D.M. Nonchaotic and globally synchronized short-term climatic variations and their origin. Theor. Appl. Climatol. 2019, 137, 2639–2656. [Google Scholar] [CrossRef]
- Mukhin, D.; Gavrilov, A.; Feigin, A.; Loskutov, E.; Kurths, J. Principal nonlinear dynamical modes of climate variability. Nat. Sci. Rep. 2015, 5, 15510. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Torrence, D.C.; Compo, G.P. A practical guide to wavelet analysis. Bull. Am. Meteorol. Soc. 1998, 79, 61–78. [Google Scholar] [CrossRef] [Green Version]
- Vakulenko, N.V.; Serykh, I.V.; Sonechkin, D.M. Chaos and order in atmosheric dynamics Part 3. Predictability of El Niño. Izvest. Vysshikh Uchebnykh Zaveden. Prikl. Nelineynaya Dinam. 2018, 26, 75–94. [Google Scholar]
- Serykh, I.V.; Sonechkin, D.M. El Niño forecasting based on the global atmospheric oscillation. Int. J. Climatol. 2021, 41, 3781–3792. [Google Scholar] [CrossRef]
- Torrence, D.C.; Webster, P.J. Interdecadal changes in the ENSO-monsoon system. J. Clim. 1999, 12, 2679–2690. [Google Scholar] [CrossRef] [Green Version]
- Neelin, J.D.; Chou, C.; Su, H. Tropical drought regions in global warming and El Nino teleconnections. Geophys. Res. Lett. 2003, 30, 2275. [Google Scholar] [CrossRef] [Green Version]
- Wahr, J.M. Deformation induced by polar motion. J. Geophys. Res. 1985, 90, 9363–9368. [Google Scholar] [CrossRef]
- Desai, S.D. Observing the pole tide with satellite altimetry. J. Geophys. Res. 2002, 107, 1–13. [Google Scholar] [CrossRef]
- Serykh, I.V.; Sonechkin, D.M. Confirmation of the oceanic pole tide influence on El Niño. Sovrem. Probl. Distantsionnogo Zondirovaniya Zemli Kosm. 2016, 13, 44–52. [Google Scholar] [CrossRef]
- Serykh, I.V.; Sonechkin, D.M. Manifestations of motions of the Earth’s pole in the El Niño—Southern Oscillation rhythms. Dokl. Earth Sci. 2017, 472, 256–259. [Google Scholar] [CrossRef]
- Serykh, I.V.; Sonechkin, D.M. Chaos and order in athmospheric dynamics: Part 2. Interannual rhythms of the El Niño—Southern oscillation. Izvest. Vysshikh Uchebnykh Zaveden. Prikl. Nelineynaya Dinam. 2017, 25, 5–25. [Google Scholar] [CrossRef]
- Suarez, M.J.; Schopf, P.S. A delayed oscillator for ENSO. J. Atmos. Sci. 1988, 45, 3283–3287. [Google Scholar] [CrossRef]
- Pinault, J.L. Long wave resonance in tropical oceans and implications on climate: The Pacific Ocean. Pure Appl. Geophys. 2016, 173, 2119–2145. [Google Scholar] [CrossRef]
- Pinault, J.L. Anticipation of ENSO: What teach us the resonantly forced baroclinic waves. Geophys. Astrophys. Fluid Dynam. 2016, 110, 518–528. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Serykh, I.V.; Sonechkin, D.M. El Niño–Global Atmospheric Oscillation as the Main Mode of Interannual Climate Variability. Atmosphere 2021, 12, 1443. https://doi.org/10.3390/atmos12111443
Serykh IV, Sonechkin DM. El Niño–Global Atmospheric Oscillation as the Main Mode of Interannual Climate Variability. Atmosphere. 2021; 12(11):1443. https://doi.org/10.3390/atmos12111443
Chicago/Turabian StyleSerykh, Ilya V., and Dmitry M. Sonechkin. 2021. "El Niño–Global Atmospheric Oscillation as the Main Mode of Interannual Climate Variability" Atmosphere 12, no. 11: 1443. https://doi.org/10.3390/atmos12111443
APA StyleSerykh, I. V., & Sonechkin, D. M. (2021). El Niño–Global Atmospheric Oscillation as the Main Mode of Interannual Climate Variability. Atmosphere, 12(11), 1443. https://doi.org/10.3390/atmos12111443