Characteristics of Locally Occurring High PM2.5 Concentration Episodes in a Small City in South Korea
Abstract
:1. Introduction
2. Methods
2.1. Sample Collection
2.2. Analyses
2.3. Meteorological and Other Data
3. Results and Discussion
3.1. PM2.5 and Its Chemical Species
3.2. Comparison with PM2.5 in Seoul
3.2.1. Differences between HC and LC Samples
3.2.2. Possible Sources for HC Samples
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jacob, D.J.; Winner, D.A. Effect of climate change on air quality. Atmos. Environ. 2009, 43, 51–63. [Google Scholar] [CrossRef] [Green Version]
- IPCC. Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K.B., Tignor, M., Miller, H.L., Eds.; Cambridge University Press: Cambridge, UK, 2007. [Google Scholar]
- Lohmann, U.; Feichter, J. Global indirect aerosol effects: A review. Atmos. Chem. Phys. Discuss. 2005, 5, 715–737. [Google Scholar] [CrossRef] [Green Version]
- Kaufman, Y.J.; Tanré, D.; Boucher, O. A satellite view of aerosols in the climate system. Nature 2002, 419, 215–223. [Google Scholar] [CrossRef] [PubMed]
- Hallquist, M.; Wenger, J.C.; Baltensperger, U.; Rudich, Y.; Simpson, D.; Claeys, M.; Dommen, J.; Donahue, N.M.; George, C.; Goldstein, A.H.; et al. The formation, properties and impact of secondary organic aerosol: Current and emerging issues. Atmos. Chem. Phys. 2009, 9, 5155–5236. [Google Scholar] [CrossRef] [Green Version]
- Choi, A.; Lee, J.; Shin, H.J.; Lee, M.; Lim, J. Characteristics of organic compounds in PM2.5 at urban and remote areas in Korea. AGUFM 2016, 2016, A51D-0077. [Google Scholar]
- Han, Y.J.; Kim, H.W.; Cho, S.H.; Kim, P.R.; Kim, W.J. Metallic elements in PM2.5 in different functional areas of Korea: Concentrations and source identifica-tion. Atmos. Res. 2015, 153, 416–428. [Google Scholar] [CrossRef]
- Byun, J.-Y.; Cho, S.-H.; Kim, H.-W.; Han, Y.-J. Long-term Characteristics of PM2.5 and Its Metallic Components in Chuncheon, Korea. J. Korean Soc. Atmos. Environ. 2018, 34, 406–417. [Google Scholar] [CrossRef]
- Byun, J.-Y.; Kim, H.; Han, Y.-J.; Lee, S.-D.; Park, S.-W. High PM2.5 Concentrations in a Small Residential City with Low Anthropogenic Emissions in South Korea. Atmosphere 2020, 11, 1159. [Google Scholar] [CrossRef]
- Xiao, R.; Takegawa, N.; Zheng, M.; Kondo, Y.; Miyazaki, Y.; Miyakawa, T.; Hu, M.; Shao, M.; Zeng, L.; Gong, Y.; et al. Characterization and source apportionment of submicron aerosol with aerosol mass spectrometer during the PRIDE-PRD 2006 campaign. Atmos. Chem. Phys. Discuss. 2011, 11, 1891–1937. [Google Scholar] [CrossRef]
- Guofeng, S.; Siye, W.; Wen, W.; Yanyan, Z.; Yujia, M.; Bin, W.; Rong, W.; Wei, L.; Huizhong, S.; Ye, H.; et al. Emission Factors, Size Distributions, and Emission Inventories of Carbonaceous Particulate Matter from Residential Wood Combustion in Rural China. Environ. Sci. Technol. 2012, 46, 4207–4214. [Google Scholar] [CrossRef] [Green Version]
- Verma, V.; Rico-Martinez, R.; Kotra, N.; King, L.; Liu, J.; Snell, T.W.; Weber, R.J. Contribution of Water-Soluble and Insoluble Components and Their Hydrophobic/Hydrophilic Subfractions to the Reactive Oxygen Species-Generating Potential of Fine Ambient Aerosols. Environ. Sci. Technol. 2012, 46, 11384–11392. [Google Scholar] [CrossRef] [PubMed]
- Timonen, H.; Carbone, S.; Aurela, M.; Saarnio, K.; Saarikoski, S.; Ng, N.L.; Canagaratna, M.R.; Kulmala, M.; Kerminen, V.-M.; Worsnop, D.R.; et al. Characteristics, sources and water-solubility of ambient submicron organic aerosol in springtime in Helsinki, Finland. J. Aerosol Sci. 2013, 56, 61–77. [Google Scholar] [CrossRef]
- Ji, D.; Yan, Y.; Wang, Z.; He, J.; Liu, B.; Sun, Y.; Gao, M.; Li, Y.; Cao, W.; Cui, Y.; et al. Two-year continuous measurements of carbonaceous aerosols in urban Beijing, China: Temporal variations, characteristics and source analyses. Chemosphere 2018, 200, 191–200. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Tian, H.; Zhang, K.; Liu, S.; Cheng, K.; Yin, S.; Liu, Y.; Liu, X.; Wu, Y.; Liu, W.; et al. Seasonal variation, formation mechanisms and potential sources of PM2.5 in two typical cit-ies in the Central Plains Urban Agglomeration, China. Sci. Total Environ. 2019, 657, 657–670. [Google Scholar] [CrossRef]
- Liu, S.; Zhu, C.; Tian, H.; Wang, Y.; Zhang, K.; Wu, B.; Liu, X.; Hao, Y.; Liu, W.; Bai, X.; et al. Spatiotemporal Variations of Ambient Concentrations of Trace Elements in a Highly Polluted Region of China. J. Geophys. Res. Atmos. 2019, 124, 4186–4202. [Google Scholar] [CrossRef]
- Castro, L.; Pio, C.; Harrison, R.M.; Smith, D. Carbonaceous aerosol in urban and rural European atmospheres: Estimation of secondary organic carbon concentrations. Atmos. Environ. 1999, 33, 2771–2781. [Google Scholar] [CrossRef]
- Seinfeld, J.H.; Pandis, S.N.; Noone, K. Atmospheric Chemistry and Physics: From Air Pollution to Climate Change. Phys. Today 1998, 51, 88. [Google Scholar] [CrossRef]
- Weber, R.J.; Sullivan, A.P.; Peltier, R.E.; Russell, A.G.; Yan, B.; Zheng, M.; De Gouw, J.; Warneke, C.; Brock, C.; Holloway, J.S.; et al. A study of secondary organic aerosol formation in the anthropogenic-influenced southeastern United States. J. Geophys. Res. Space Phys. 2007, 112. [Google Scholar] [CrossRef]
- Park, S.; Schauer, J.J.; Cho, S.Y. Sources and their contribution to two water-soluble organic carbon fractions at a roadway site. Atmos. Environ. 2013, 77, 348–357. [Google Scholar] [CrossRef]
- Yu, G.-H.; Cho, S.-Y.; Bae, M.-S.; Park, S. Difference in production routes of water-soluble organic carbon in PM2.5 observed during non-biomass and biomass burning periods in Gwangju, Korea. Environ. Sci. Process. Impacts 2014, 16, 1726–1736. [Google Scholar] [CrossRef]
- Kuang, B.Y.; Lin, P.; Huang, X.H.H.; Yu, J.Z. Sources of humic-like substances in the Pearl River Delta, China: Positive matrix factorization analysis of PM2.5 major components and source markers. Atmos. Chem. Phys. Discuss. 2015, 15, 1995–2008. [Google Scholar] [CrossRef] [Green Version]
- Du, Z.; He, K.; Cheng, Y.; Duan, F.; Ma, Y.; Liu, J.; Zhang, X.; Zheng, M.; Weber, R. A yearlong study of water-soluble organic carbon in Beijing I: Sources and its primary vs. secondary nature. Atmos. Environ. 2014, 92, 514–521. [Google Scholar] [CrossRef]
- Wonaschutz, A.; Hersey, S.P.; Sorooshian, A.; Craven, J.S.; Metcalf, A.R.; Flagan, R.C.; Seinfeld, J.H. Impact of a large wildfire on water-soluble organic aerosol in a major urban area: The 2009 Station Fire in Los Angeles County. Atmos. Chem. Phys. Discuss. 2011, 11, 8257–8270. [Google Scholar] [CrossRef] [Green Version]
- Huang, X.F.; Yu, J.Z.; He, L.Y.; Yuan, Z. Water-soluble organic carbon and oxalate in aerosols at a coastal urban site in China: Size distribu-tion characteristics, sources, and formation mechanisms. J. Geophys. Res. Atmos. 2006, 111, D22. [Google Scholar] [CrossRef]
- Ruellan, S.; Cachier, H. Characterisation of fresh particulate vehicular exhausts near a Paris high flow road. Atmos. Environ. 2001, 35, 453–468. [Google Scholar] [CrossRef]
- Heo, J.-B.; Hopke, P.K.; Yi, S.-M. Source apportionment of PM2.5 in Seoul, Korea. Atmos. Chem. Phys. Discuss. 2009, 9, 4957–4971. [Google Scholar] [CrossRef] [Green Version]
- Cho, S.-H.; Kim, P.-R.; Han, Y.-J.; Kim, H.-W.; Yi, S.-M. Characteristics of Ionic and Carbonaceous Compounds in PM2.5 and High Concentration Events in Chuncheon, Korea. J. Korean Soc. Atmos. Environ. 2016, 32, 435–447. [Google Scholar] [CrossRef] [Green Version]
- IQAir AirVisual. 2018 World Air Quality Report; Region & City PM2.5 Ranking; IQAir AirVisual: 2018. Available online: https://www.iqair.com/world-most-polluted-cities/world-air-quality-report-2018-en.pdf (accessed on 6 January 2021).
- Jung, J.-H.; Han, Y.-J. Study on Characteristics of PM2.5 and Its Ionic Constituents in Chuncheon, Korea. J. Korean Soc. Atmos. Environ. 2008, 24, 682–692. [Google Scholar] [CrossRef] [Green Version]
- Han, Y.-J.; Kim, T.-S.; Kim, H. Ionic constituents and source analysis of PM2.5 in three Korean cities. Atmos. Environ. 2008, 42, 4735–4746. [Google Scholar] [CrossRef]
- Vellingiri, K.; Kim, K.-H.; Ma, C.-J.; Kang, C.-H.; Lee, J.-H.; Kim, I.-S.; Brown, R.J. Ambient particulate matter in a central urban area of Seoul, Korea. Chemosphere 2015, 119, 812–819. [Google Scholar] [CrossRef]
- Bari, A.; Kindzierski, W.B. Concentrations, sources and human health risk of inhalation exposure to air toxics in Edmonton, Canada. Chemosphere 2017, 173, 160–171. [Google Scholar] [CrossRef]
- Tian, Y.; Chen, J.-B.; Zhang, L.-L.; Du, X.; Wei, J.-J.; Fan, H.; Xu, J.; Wang, H.-T.; Guan, L.; Shi, G.-L.; et al. Source profiles and contributions of biofuel combustion for PM2.5, PM10 and their compositions, in a city influenced by biofuel stoves. Chemosphere 2017, 189, 255–264. [Google Scholar] [CrossRef]
- Kang, C.-M.; Kang, B.-W.; Lee, H.S. Source identification and trends in concentrations of gaseous and fine particulate principal species in Seoul, South Korea. J. Air Waste Manag. Assoc. 2006, 56, 911–921. [Google Scholar] [CrossRef] [Green Version]
- Khare, P.; Baruah, B.P. Elemental characterization and source identification of PM2. 5 using multivariate anal-ysis at the suburban site of North-East India. Atmos. Res. 2010, 98, 148–162. [Google Scholar] [CrossRef]
- Song, Y.; Zhang, Y.; Xie, S.; Zeng, L.; Zheng, M.; Salmon, L.G.; Shao, M.; Slanina, S. Source apportionment of PM2.5 in Beijing by positive matrix factorization. Atmos. Environ. 2006, 40, 1526–1537. [Google Scholar] [CrossRef]
- Paatero, P.; Tapper, U. Positive matrix factorization: A non-negative factor model with optimal utilization of error estimates of data values. Environmetrics 1994, 5, 111–126. [Google Scholar] [CrossRef]
- Birch, M.E.; Cary, R.A. Elemental Carbon-Based Method for Monitoring Occupational Exposures to Particulate Diesel Exhaust. Aerosol Sci. Technol. 1996, 25, 221–241. [Google Scholar] [CrossRef]
- Park, S.; Bae, M.S.; Schauer, J.J.; Ryu, S.Y.; Kim, Y.J.; Cho, S.Y.; Kim, S.J. Evaluation of the TMO and TOT methods for OC and EC measurements and their characteristics in PM2.5 at an urban site of Korea during ACE-Asia. Atmos. Environ. 2005, 39, 5101–5112. [Google Scholar] [CrossRef]
- Sahu, L.K.; Kondo, Y.; Miyazaki, Y.; Kuwata, M.; Koike, M.; Takegawa, N.; Tanimoto, H.; Matsueda, H.; Yoon, S.C.; Kim, Y.J. Anthropogenic aerosols observed in Asian continental outflow at Jeju Island, Korea, in spring 2005. J. Geophys. Res. Space Phys. 2009, 114, D3. [Google Scholar] [CrossRef]
- Pani, S.K.; Ou-Yang, C.-F.; Wang, S.-H.; Ogren, J.A.; Sheridan, P.J.; Sheu, G.-R.; Lin, N.-H. Relationship between long-range transported atmospheric black carbon and carbon monoxide at a high-altitude background station in East Asia. Atmos. Environ. 2019, 210, 86–99. [Google Scholar] [CrossRef]
- Kanaya, Y.; Pan, X.; Miyakawa, T.; Komazaki, Y.; Taketani, F.; Uno, I.; Kondo, Y. Long-term observations of black carbon mass concentrations at Fukue Island, western Japan, during 2009–2015: Constraining wet removal rates and emission strengths from East Asia. Atmos. Chem. Phys. Discuss. 2016, 16, 10689–10705. [Google Scholar] [CrossRef] [Green Version]
- Sullivan, A.P.; Weber, R.J. Chemical characterization of the ambient organic aerosol soluble in water: 1. Isolation of hydrophobic and hydrophilic fractions with a XAD-8 resin. J. Geophys. Res. Space Phys. 2006, 111, 111. [Google Scholar] [CrossRef] [Green Version]
- Jung, J.; Kim, Y.J. Tracking sources of severe haze episodes and their physicochemical and hygroscopic properties under Asian continental outflow: Long-range transport pollution, postharvest biomass burning, and Asian dust. J. Geophys. Res. Space Phys. 2011, 116, 116. [Google Scholar] [CrossRef]
- Lee, H.-W.; Lee, T.-J.; Kim, D.-S. Identifying Ambient PM2.5 Sources and Estimating their Contributions by Using PMF: Separation of Gasoline and Diesel Automobile Sources by Analyzing ECs and OCs. J. Korean Soc. Atmos. Environ. 2009, 25, 75–89. [Google Scholar] [CrossRef] [Green Version]
- Ho, K.; Lee, S.; Chan, C.K.; Yu, J.C.; Chow, J.C.; Yao, X. Characterization of chemical species in PM2.5 and PM10 aerosols in Hong Kong. Atmos. Environ. 2003, 37, 31–39. [Google Scholar] [CrossRef]
- Streets, D.G.; Bond, T.C.; Carmichael, G.R.; Fernandes, S.D.; Fu, Q.; He, D.; Klimont, Z.; Nelson, S.M.; Tsai, N.Y.; Wang, M.Q.; et al. An inventory of gaseous and primary aerosol emissions in Asia in the year 2000. J. Geophys. Res. Space Phys. 2003, 108, GTE-30. [Google Scholar] [CrossRef]
- Park, S.; Hur, J.-Y.; Cho, S.-Y.; Kim, S.-J.; Kim, Y.-J. Characteristics of Organic Carbon Species in Atmospheric Aerosol Particles at a Gwangju Area During Summer and Winter. J. Korean Soc. Atmos. Environ. 2007, 23, 675–688. [Google Scholar] [CrossRef] [Green Version]
- Park, S.; Cho, S.Y. Tracking sources and behaviors of water-soluble organic carbon in fine particulate matter measured at an urban site in Korea. Atmos. Environ. 2011, 45, 60–72. [Google Scholar] [CrossRef]
- Kawamura, K.; Seméré, R.; Imai, Y.; Fujii, Y.; Hayashi, M. Water soluble dicarboxylic acids and related compounds in Antarctic aerosols. J. Geophys. Res. Space Phys. 1996, 101, 18721–18728. [Google Scholar] [CrossRef]
- Schauer, J.J.; Kleeman, M.J.; Cass, G.R.; Simoneit, B.R. Measurement of emissions from air pollution sources. 5. C1− C32 organic compounds from gaso-line-powered motor vehicles. Environ. Sci. Technol. 2002, 36, 1169–1180. [Google Scholar] [CrossRef]
- Subramanian, R.; Khlystov, A.Y.; Cabada, J.C.; Robinson, A.L. Positive and negative artifacts in particulate organic carbon measurements with denuded and un-denuded sampler configurations special issue of aerosol science and technology on findings from the fine particulate matter supersites program. Aerosol Sci. Technol. 2004, 38, 27–48. [Google Scholar] [CrossRef] [Green Version]
- Kim, D.-Y. The Effect of Gas Phase Organic Carbon for the Determination of Particulate Organic Carbon and Elemental Carbon in the Atmosphere. Master’s Thesis, Hannam University, Chungcheong, Korea, 2016. [Google Scholar]
- Cheng, Y.; Duan, F.K.; He, K.B.; Du, Z.Y.; Zheng, M.; Ma, Y.L. Sampling artifacts of organic and inorganic aerosol: Implications for the speciation measurement of par-ticulate matter. Atmos. Environ. 2012, 55, 229–233. [Google Scholar] [CrossRef]
- Finlayson–Pitts, B.J.; Pitts, J.N.J. Chemistry of the Upper and Lower Atmosphere; Academic Press: San Diego, CA, USA, 2000; pp. 349–360. [Google Scholar]
- Christoforou, C.S.; Salmon, L.G.; Hannigan, M.P.; Solomon, P.A.; Cass, G.R. Trends in fine particle concentration and chemical composition in southern California. J. Air Waste Manag. Assoc. 2000, 50, 43–53. [Google Scholar] [CrossRef] [Green Version]
- Won, S.-R.; Choi, Y.-J.; Kim, A.-R.; Choi, S.-H.; Kim, Y.-S.; Kang, C.-H. Ionic Compositions of Particulate Matter in Yong-in in Spring and November. In: Proceedings of the Ko-rea Air Pollution Research Association Conference. Korean Soc. Atmos. Environ. 2008, 24, 175–176. [Google Scholar]
- Pekney, N.J.; Davidson, C.I.; Zhou, L.; Hopke, P.K. Application of PSCF and CPF to PMF-Modeled Sources of PM2.5 in Pittsburgh. Aerosol Sci. Technol. 2006, 40, 952–961. [Google Scholar] [CrossRef] [Green Version]
- Kim, Y.-P. Air pollution in Seoul caused by aerosols. J. Korean Soc. Atmos. Environ. 2006, 22, 535–553. [Google Scholar]
- Eatough, D.J.; Caka, F.M.; Farber, R.J. The conversion of SO2 to suflate in the atmosphere. Israel J. Chem. 1994, 34, 301–314. [Google Scholar]
- Turpin, B.J.; Huntzicker, J.J. Identification of secondary organic aerosol episodes and quantitation of primary and secondary organic aerosol concentrations during SCAQS. Atmos. Environ. 1995, 29, 3527–3544. [Google Scholar] [CrossRef]
- Galindo, N.; Yubero, E.; Clemente, A.; Nicolás, J.; Navarro-Selma, B.; Crespo, J. Insights into the origin and evolution of carbonaceous aerosols in a mediterranean urban environment. Chemosphere 2019, 235, 636–642. [Google Scholar] [CrossRef]
- Yubero, E.; Galindo, N.; Nicolas, J.-F.; Crespo, J.; Calzolai, G.; Lucarelli, F. Temporal variations of PM1 major components in an urban street canyon. Environ. Sci. Pollut. Res. 2015, 22, 13328–13335. [Google Scholar] [CrossRef]
- Lee, Y.-J.; Park, M.-K.; Jung, S.-A.; Kim, S.-J.; Jo, M.-R.; Song, I.-H.; Lyu, Y.-S.; Lim, Y.-J.; Kim, J.-H.; Jung, H.-J.; et al. Characteristics of Particulate Carbon in the Ambient Air in the Korean Peninsula. J. Korean Soc. Atmos. Environ. 2015, 31, 330–344. [Google Scholar] [CrossRef]
- Ervens, B.; Turpin, B.J.; Weber, R.J. Secondary organic aerosol formation in cloud droplets and aqueous particles (aqSOA): A review of laboratory, field and model studies. Atmos. Chem. Phys. Discuss. 2011, 11, 22301–22383. [Google Scholar] [CrossRef]
- Liu, J.-M.; Du, Z.-Y.; Gordon, M.; Liang, L.; Ma, Y.; Zheng, M.; Cheng, Y.; He, K.-B. The characteristics of carbonaceous aerosol in Beijing during a season of transition. Chemosphere 2018, 212, 1010–1019. [Google Scholar] [CrossRef] [PubMed]
- Kroll, J.H.; Seinfeld, J.H. Chemistry of secondary organic aerosol: Formation and evolution of low-volatility organics in the atmosphere. Atmos. Environ. 2008, 42, 3593–3624. [Google Scholar] [CrossRef]
- Kumagai, K.; Iijima, A.; Tago, H.; Tomioka, A.; Kozawa, K.; Sakamoto, K. Seasonal characteristics of water-soluble organic carbon in atmospheric particles in the inland Kanto plain, Japan. Atmos. Environ. 2009, 43, 3345–3351. [Google Scholar] [CrossRef]
- Zhang, Y.-L.; Li, J.; Zhang, G.; Zotter, P.; Huang, R.-J.; Tang, J.-H.; Wacker, L.; Prévôt, A.S.H.; Szidat, S. Radiocarbon-Based Source Apportionment of Carbonaceous Aerosols at a Regional Background Site on Hainan Island, South China. Environ. Sci. Technol. 2014, 48, 2651–2659. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.; Jung, J.; Lee, J.; Lee, S. Seasonal characteristics of organic carbon and elemental carbon in PM2.5 in Daejeon. J. Korean Soc. Atmos. Environ. 2015, 31, 28–40. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Pósfai, M.; Hobbs, P.V.; Buseck, P.R. Individual aerosol particles from biomass burning in southern Africa: 2, Compositions and aging of inorganic particles. J. Geophys. Res. Space Phys. 2003, 108, 8484. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.D.; Van Espen, P.; Adams, F.; Cafmeyer, J.; Maenhaut, W. Biomass burning in southern Africa: Individual particle characterization of atmospheric aerosols and savanna fir samples. J. Atmos. Chem. 2000, 36, 135–155. [Google Scholar] [CrossRef]
- Wen, J.; Shi, G.; Tian, Y.; Chen, G.; Liu, J.; Huang-Fu, Y.; Ivey, C.E.; Feng, Y. Source contributions to water-soluble organic carbon and water-insoluble organic carbon in PM2.5 during Spring Festival, heating and non-heating seasons. Ecotoxicol. Environ. Saf. 2018, 164, 172–180. [Google Scholar] [CrossRef]
- Park, J.; Ryoo, J.; Lee, J.; Song, M. Origins and distributions of atmospheric ammonia in Jeonju during 2019–2020. J. Korean Soc. Atmos. Environ. 2020, 36, 262–274. [Google Scholar] [CrossRef]
NO3− | SO42− | Na+ | NH4+ | K+ | Mg2+ | Ca2+ | OC | EC | WSOC | |
---|---|---|---|---|---|---|---|---|---|---|
F.B. (μg m−3) | 0.11 | 0.15 | 0.05 | 1.08 | 0.02 | 0.002 | 0.05 | 0.36 | 0.001 | 1.83 |
MDL (μg m−3) | 0.20 | 0.23 | 0.07 | 0.81 | 0.05 | 0.003 | 0.04 | 0.42 | 0.093 | 1.42 |
<MDL * (%) | 21.1 | 6.2 | 21.4 | 14.8 | 16.8 | 12.2 | 13.8 | 0.5 | 0.5 | 7.3 |
RPD (%) | 2.37 | 1.67 | 0.47 | 0.38 | 0.30 | 0.18 | 0.19 | 5.11 | 6.46 | 1.28 |
Spring | Summer | Fall | Winter | Annual | |
---|---|---|---|---|---|
OC | 6.3 ± 4.3 | 5.1 ± 4.0 | 6.0 ± 3.4 | 8.9 ± 4.5 | 6.7 ± 4.3 |
EC | 0.8 ± 0.5 | 0.5 ± 0.3 | 0.8 ± 0.5 | 1.2 ± 0.6 | 0.9 ± 0.5 |
WSOC | 5.1 ± 2.5 | 3.2 ± 2.0 | 4.5 ± 1.9 | 4.3 ± 2.2 | |
SO42− | 2.2 ± 1.6 | 2.8 ± 1.8 | 0.9 ± 0.8 | 2.2 ± 1.7 | 2.1 ± 1.7 |
NO3− | 2.1 ± 2.3 | 0.4 ± 0.6 | 1.7 ± 2.2 | 4.5 ± 3.4 | 2.4 ± 3.0 |
NH4+ | 2.8 ± 1.5 | 2.2 ± 1.5 | 1.2 ± 1.0 | 2.6 ± 1.5 | 2.3 ± 1.5 |
Na+ | 0.23 ± 0.33 | 0.17 ± 0.13 | 0.14 ± 0.18 | 0.29 ± 0.43 | 0.22 ± 0.31 |
K+ | 0.16 ± 0.14 | 0.07 ± 0.01 | 0.14 ± 0.10 | 0.26 ± 0.15 | 0.16 ± 0.14 |
Mg2+ | 0.06 ± 0.06 | 0.01 ± 0.01 | 0.02 ± 0.01 | 0.05 ± 0.05 | 0.01 ± 0.05 |
Ca2+ | 0.18 ± 0.23 | 0.04 ± 0.02 | 0.28 ± 0.68 | 0.15 ± 0.13 | 0.16 ± 0.36 |
Type | PM2.5 | PM10 | NO3− | SO42− | Na+ | NH4+ | K+ | Mg2+ | Ca2+ | OC | EC | WSOC |
---|---|---|---|---|---|---|---|---|---|---|---|---|
HC | 32.1 ± 15.9 | 43.2 ± 21.4 | 2.5 ± 3.2 | 2.3 ± 1.6 | 0.24 ± 0.35 | 2.5 ± 1.4 | 0.17 ± 0.12 | 0.03 ± 0.05 | 0.13 ± 0.12 | 9.3 ± 4.3 | 1.1 ± 0.6 | 4.0 ± 2.1 |
LC | 18.4 ± 11.7 | 44.5 ± 22.4 | 1.9 ± 2.3 | 2.0 ± 1.5 | 0.19 ± 0.20 | 2.2 ± 1.6 | 0.15 ± 0.15 | 0.03 ± 0.05 | 0.15 ± 0.31 | 5.2 ± 3.6 | 0.7 ± 0.5 | 4.8 ± 2.2 |
NO3 | SO4 | Na | NH4 | K | Mg | Ca | OC | EC | WSOC | |
---|---|---|---|---|---|---|---|---|---|---|
PM2.5 | 0.71 ** | 0.32 | 0.44 ** | 0.64 ** | 0.64 ** | 0.53 ** | 0.16 | 0.83 ** | 0.79 ** | 0.86 ** |
NO3 | 1 | |||||||||
SO4 | 0.28 | 1 | ||||||||
Na | 0.37 | 0.20 | 1 | |||||||
NH4 | 0.53 * | 0.70 ** | 0.42 ** | 1 | ||||||
K | 0.94 ** | 0.24 | 0.20 | 0.41 ** | 1 | |||||
Mg | 0.46 | −0.17 | 0.76 ** | 0.36 * | 0.29 | 1 | ||||
Ca | 0.18 | −0.29 | 0.55 ** | 0.04 | 0.25 | 0.59 ** | 1 | |||
OC | 0.72 ** | 0.34 | 0.44 ** | 0.42 * | 0.50 ** | 0.37 * | −0.02 | 1 | ||
EC | 0.72 ** | 0.08 | 0.32 | 0.27 | 0.60 ** | 0.55 ** | 0.10 | 0.71 ** | 1 | |
WSOC | 0.91 * | 0.86 * | 0.45 * | 0.71 ** | 0.76 ** | 0.56 ** | 0.21 | 0.83 ** | 0.83 ** | 1 |
NO3 | SO4 | Na | NH4 | K | Mg | Ca | OC | EC | WSOC | |
---|---|---|---|---|---|---|---|---|---|---|
PM2.5 | 0.70 ** | 0.53 ** | 0.12 | 0.72 ** | 0.67 ** | 0.37 ** | 0.09 | 0.69 ** | 0.67 ** | 0.23 |
NO3 | 1 | |||||||||
SO4 | 0.33 * | 1 | ||||||||
Na | 0.18 | 0.14 | 1 | |||||||
NH4 | 0.54 ** | 0.60 ** | 0.09 | 1 | ||||||
K | 0.76 ** | 0.40 ** | 0.05 | 0.66 ** | 1 | |||||
Mg | 0.24 | 0.10 | 0.33 ** | 0.16 | 0.01 | 1 | ||||
Ca | 0.21 | −0.06 | 0.39 ** | −0.01 | 0.10 | 0.26 * | 1 | |||
OC | 0.52 ** | 0.21 | 0.27 * | 0.39 ** | 0.40 ** | 0.47 ** | 0.10 | 1 | ||
EC | 0.54 ** | 0.19 | 0.26 * | 0.38 ** | 0.44 ** | 0.46 ** | 0.08 | 0.94 ** | 1 | |
WSOC | −0.40 | −0.04 | −0.02 | 0.04 | −0.15 | 0.44 * | 0.19 | 0.43 * | 0.39 * | 1 |
Factor 1 | Factor 2 | Factor 3 | Factor 4 | |
---|---|---|---|---|
PM2.5 | 0.478 | 0.602 | 0.185 | 0.591 |
PM2.5−10 | 0.206 | 0.190 | 0.919 | 0.190 |
O3 | −0.870 | −0.301 | 0.016 | 0.381 |
NO2 | 0.886 | 0.444 | −0.025 | 0.129 |
CO | 0.859 | 0.489 | −0.120 | 0.026 |
SO2 | 0.845 | 0.428 | −0.069 | 0.174 |
T | 0.044 | 0.101 | 0.504 | 0.842 |
RH | 0.641 | 0.516 | 0.088 | 0.557 |
WS | −0.871 | −0.038 | −0.161 | −0.448 |
NO3− | 0.391 | 0.911 | 0.018 | 0.089 |
SO42− | 0.205 | 0.962 | 0.148 | −0.006 |
Na+ | −0.008 | 0.271 | 0.958 | 0.049 |
NH4+ | 0.253 | 0.726 | 0.166 | 0.612 |
K+ | 0.398 | 0.915 | 0.062 | 0.016 |
Mg2+ | 0.378 | −0.110 | 0.841 | 0.353 |
Ca2+ | −0.469 | 0.020 | 0.878 | 0.048 |
OC | 0.637 | 0.666 | 0.256 | 0.270 |
EC | 0.874 | 0.382 | 0.137 | 0.258 |
WSOC | 0.445 | 0.789 | 0.213 | 0.321 |
WIOC | 0.758 | 0.544 | 0.279 | 0.220 |
Variance explained (%) | 63.2 | 83.0 | 92.2 | 98.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Choi, S.-Y.; Park, S.-W.; Byun, J.-Y.; Han, Y.-J. Characteristics of Locally Occurring High PM2.5 Concentration Episodes in a Small City in South Korea. Atmosphere 2021, 12, 86. https://doi.org/10.3390/atmos12010086
Choi S-Y, Park S-W, Byun J-Y, Han Y-J. Characteristics of Locally Occurring High PM2.5 Concentration Episodes in a Small City in South Korea. Atmosphere. 2021; 12(1):86. https://doi.org/10.3390/atmos12010086
Chicago/Turabian StyleChoi, Su-Yeon, Sung-Won Park, Jin-Yeo Byun, and Young-Ji Han. 2021. "Characteristics of Locally Occurring High PM2.5 Concentration Episodes in a Small City in South Korea" Atmosphere 12, no. 1: 86. https://doi.org/10.3390/atmos12010086
APA StyleChoi, S. -Y., Park, S. -W., Byun, J. -Y., & Han, Y. -J. (2021). Characteristics of Locally Occurring High PM2.5 Concentration Episodes in a Small City in South Korea. Atmosphere, 12(1), 86. https://doi.org/10.3390/atmos12010086