Can Pre-Storm Errors in the Low-Level Inflow Help Predict Spatial Displacement Errors in MCS Initiation?
Abstract
1. Introduction
2. Data and Methodology
2.1. MCS Events Examined
2.2. Model Output
2.3. MCS Initiation and Inflow Region Identification
2.4. Statistical Analysis Approach
3. Results
3.1. Type C with YSU Scheme
3.2. Type C with MYJ Scheme
3.3. Type A with YSU Scheme
3.4. Type A with MYJ Scheme
3.5. Application to Forecasting
4. Discussion and Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Fritsch, J.M.; Kane, R.J.; Chelius, C.R. The contribution of mesoscale convective weather systems to warm season precipitation in the united states. J. Appl. Meteor. 1986, 25, 1333–1345. [Google Scholar] [CrossRef]
- Ashley, W.S.; Mote, T.L.; Dixon, P.G.; Trotter, S.L.; Powell, E.J.; Durkee, J.D.; Grundstein, A.J. Distribution of mesoscale convective complex rainfall in the US. Mon. Weather Rev. 2003, 131, 3003–3017. [Google Scholar] [CrossRef]
- Carbone, R.E.; Tuttle, J.D. Rainfall occurrence in the U.S. warm season: The diurnal cycle. J. Clim. 2008, 21, 4132–4146. [Google Scholar] [CrossRef]
- Haberlie, A.M.; Ashley, W.A. A radar-based climatology of mesoscale convective systems in the US. J. Clim. 2019, 32, 1591–1606. [Google Scholar] [CrossRef]
- Feng, Z.; Houze, R.A., Jr.; Leung, L.R.; Song, F.; Hardin, J.C.; Wang, J.; Gustafson, W.I., Jr.; Homeyer, C.R. Spatiotemporal characteristics and large-scale environments of mesoscale convective systems east of the Rocky Mountains. J. Clim. 2019, 32, 7303–7328. [Google Scholar] [CrossRef]
- Trier, S.B.; Parsons, D.B. Evolution of environmental conditions preceding the development of a nocturnal mesoscale convective complex. Mon. Weather Rev. 1993, 121, 1078–1098. [Google Scholar] [CrossRef]
- Moore, J.T.; Glass, F.H.; Graves, C.E.; Rochette, S.M.; Singer, M.J. The environment of warm-season elevated thunderstorms associated with heavy rainfall over the central USA. Weather Forecast. 2003, 18, 861–878. [Google Scholar] [CrossRef]
- Horgan, K.L.; Schultz, D.M.; Hales, J.E.; Corfidi, S.F.; Johns, R.H. A five-year climatology of elevated severe convective storms in the US East of the Rocky Mountains. Weather Forecast. 2007, 22, 1031–1044. [Google Scholar] [CrossRef]
- Corfidi, S.F.; Corfidi, S.J.; Schultz, D.M. Elevated convection and castellanus: Ambiguities, significance, and questions. Weather Forecast. 2008, 23, 1280–1303. [Google Scholar] [CrossRef]
- Ahijevych, D.; Pinto, J.O.; Williams, J.K.; Steiner, M. Probabilistic forecasts of mesoscale convective system initiation using the random forest data mining technique. Weather Forecast. 2016, 31, 581–599. [Google Scholar] [CrossRef]
- Gallus, W.A., Jr.; Snook, N.A.; Johnson, E.V. Spring and summer severe weather reports over the Midwest as a function of convective mode: A preliminary study. Weather Forecast. 2008, 23, 101–113. [Google Scholar] [CrossRef]
- Hocker, J.E.; Basara, J.B. A 10-year spatial climatology of squall line storms across Oklahoma. Int. J. Climatol. 2008, 28, 765–775. [Google Scholar] [CrossRef]
- Jirak, I.L.; Cotton, W.R. Observational analysis and predictability of mesoscale convective systems. Weather Forecast. 2007, 22, 813–838. [Google Scholar] [CrossRef]
- Jirak, I.L.; Cotton, W.R.; McAnelly, R.L. Satellite and radar survey of mesoscale convective system development. Mon. Weather Rev. 2003, 131, 2428–2449. [Google Scholar] [CrossRef]
- Stensrud, D.J.; Wicker, L.J.; Xue, M.; Dawson, D.T., II; Yussouf, N.; Wheatley, D.M.; Thompson, T.E.; Snook, N.A.; Smith, T.M.; Schenkman, A.D.; et al. Progress and challenges with warn-on-forecast. Atmos. Res. 2013, 123, 2–16. [Google Scholar] [CrossRef]
- Pinto, J.O.; Grim, J.A.; Steiner, M. Assessment of the high-resolution rapid refresh model’s ability to predict mesoscale convective systems using object-based evaluation. Weather Forecast. 2015, 30, 892–913. [Google Scholar] [CrossRef]
- Stensrud, D.J.; Fritsch, J.M. Mesoscale convective systems in weakly forced large-scale environments. Part III: Numerical simulations and implications for operational forecasting. Mon. Weather Rev. 1994, 122, 2084–2104. [Google Scholar] [CrossRef]
- Gallus, W.A., Jr. Impact of verification grid-box size on warm-season QPF skill measures. Weather Forecast. 2002, 17, 1296–1302. [Google Scholar] [CrossRef][Green Version]
- Davis, C.A.; Manning, K.W.; Carbone, R.E.; Trier, S.B.; Tuttle, J.D. Coherence of warm-season continental rainfall in numerical weather prediction models. Mon. Weather Rev. 2003, 131, 2667–2679. [Google Scholar] [CrossRef]
- Gallus, W.A., Jr. Rainfall Forecasting. The challenge of warm-season convective precipitation forecasting. In Hydrological Science and Engineering; Wong, T.S.W., Ed.; Nova Science Publishers: Hauppauge, NY, USA, 2012; pp. 129–160. ISBN 978-61942-134-9. [Google Scholar]
- Jankov, I.; Gallus, W.A., Jr. MCS rainfall forecast accuracy as a function of large-scale forcing. Weather Forecast. 2004, 19, 428–439. [Google Scholar] [CrossRef]
- Squitieri, B.J.; Gallus, W.A., Jr. WRF forecasts of Great plains nocturnal low-level jet-driven MCSs. Part I: Correlation between low-level jet forecast accuracy and MCS precipitation forecast skill. Weather Forecast. 2016, 31, 1301–1323. [Google Scholar] [CrossRef]
- Duda, J.D.; Gallus, W.A., Jr. The impact of large-scale forcing on skill of simulated convective initiation and upscale evolution with convection-allowing grid spacings in the WRF. Weather Forecast. 2013, 28, 994–1018. [Google Scholar] [CrossRef]
- Squitieri, B.J.; Gallus, W.A., Jr. WRF forecasts of Great plains nocturnal low-level jet-driven MCSS. Part II: Differences between strongly and weakly forced low-level jet environments. Weather Forecast. 2016, 31, 1491–1510. [Google Scholar] [CrossRef]
- Stelten, S.; Gallus, W.A., Jr. Pristine nocturnal convective initiation: A climatology and preliminary examination of predictability. Weather Forecast. 2017, 32, 1613–1635. [Google Scholar] [CrossRef]
- Cotton, W.R.; Lin, M.S.; McAnelly, R.L.; Tremback, C.J. A composite model of mesoscale convective complexes. Mon. Weather Rev. 1989, 117, 765–783. [Google Scholar] [CrossRef]
- Augustine, J.A.; Caracena, F. Lower-tropospheric precursors to nocturnal MCS development over the central United States. Weather Forecast. 1994, 9, 116–135. [Google Scholar] [CrossRef][Green Version]
- Mitchell, M.J.; Arritt, R.W.; Labas, K. A climatology of the warm season Great Plains low-level jet using wind profiler observations. Weather Forecast. 1995, 10, 576–591. [Google Scholar] [CrossRef]
- Higgins, R.W.; Yao, Y.; Yarosh, E.S.; Janowiak, J.E.; Mo, K.C. Influence of the Great Plains low-level jet on summertime precipitation and moisture transport over the central US. J. Clim. 1997, 10, 481–507. [Google Scholar] [CrossRef]
- Trier, S.B.; Davis, C.A.; Ahijevych, D.A.; Weisman, M.L.; Bryan, G.H. Mechanisms supporting long-lived episodes of propagating nocturnal convection within a 7-day WRF model simulation. J. Atmos. Sci. 2006, 63, 2437–2461. [Google Scholar] [CrossRef]
- French, A.J.; Parker, M.D. The response of simulated nocturnal convective systems to a developing low-level jet. J. Atmos. Sci. 2010, 67, 3384–3408. [Google Scholar] [CrossRef]
- Stull, R.H. An Introduction to Boundary Layer Meteorology; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1988; 666p. [Google Scholar]
- Blackadar, A.K. Boundary layer wind maxima and their significance for the growth of nocturnal inversions. Bull. Amer. Meteor. Soc. 1957, 38, 283–290. [Google Scholar] [CrossRef]
- Bonner, W.D.; Paegle, J. Diurnal variations in boundary layer winds over the south-central US in summer. Mon. Weather Rev. 1970, 98, 735–744. [Google Scholar] [CrossRef]
- Stensrud, D.J. Importance of low-level jets to climate: A Review. J. Clim. 1996, 9, 1698–1711. [Google Scholar] [CrossRef]
- Berg, L.K.; Riihimaki, L.D.; Qian, Y.; Yan, H.; Huang, M. The low-level jet over the southern Great Plains determined from observations and reanalyses and its impact on moisture transport. J. Clim. 2015, 28, 6682–6706. [Google Scholar] [CrossRef]
- Shapiro, A.; Fedorovich, E.; Rahimi, S. A unified theory for the Great Plains nocturnal low-level jet. J. Atmos. Sci. 2016, 73, 3037–3057. [Google Scholar] [CrossRef]
- Bonner, W.D. Climatology of the low level jet. Mon. Weather Rev. 1968, 96, 833–850. [Google Scholar] [CrossRef]
- Parish, T.R.; Oolman, L.D. On the role of sloping terrain in the forcing of the Great Plains low-level jet. J. Atmos. Sci. 2010, 67, 2690–2699. [Google Scholar] [CrossRef]
- Peters, J.M.; Nielsen, E.R.; Parker, M.D.; Hitchcock, S.M.; Schumacher, R.S. The impact of low-level moisture errors on model forecasts of an MCS observed during PECAN. Mon. Weather Rev. 2017, 145, 3599–3624. [Google Scholar] [CrossRef]
- Thompson, R.L.; Mead, C.M.; Edwards, R. Effective storm-relative helicity and bulk shear in supercell thunderstorm environments. Weather Forecast. 2007, 22, 102–115. [Google Scholar] [CrossRef]
- Schumacher, R.S. Sensitivity of precipitation accumulation in elevated convective systems to small changes in low-level moisture. J. Atmos. Sci. 2015, 72, 2507–2524. [Google Scholar] [CrossRef]
- Schumacher, R.S.; Peters, J.M. Near-surface thermodynamic sensitivities in simulated extreme-rain-producing mesoscale convective systems. Mon. Weather Rev. 2017, 145, 2177–2200. [Google Scholar] [CrossRef]
- Geerts, B.; Parsons, D.; Ziegler, C.L.; Weckwerth, T.M.; Biggerstaff, M.I.; Clark, R.D.; Coniglio, M.C.; Demoz, B.B.; Ferrare, R.A.; Gallus, W.A., Jr.; et al. The 2015 plains elevated convection at night field project. Bull. Amer. Meteor. Soc. 2017, 98, 767–786. [Google Scholar] [CrossRef]
- Maddox, R.A. Large-scale meteorological conditions associated with midlatitude, mesoscale convective complexes. Mon. Weather Rev. 1983, 111, 1475–1493. [Google Scholar] [CrossRef]
- Hong, S.Y.; Noh, Y.; Dudhia, J. A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Weather Rev. 2006, 134, 2318–2341. [Google Scholar] [CrossRef]
- Janjić, Z.I. The step-mountain eta coordinate model: Further developments of the convection, viscous sublayer, and turbulence closure schemes. Mon. Weather Rev. 1994, 122, 927–945. [Google Scholar] [CrossRef]
- Skamarock, W.C.; Klemp, J.B.; Dudhia, J.; Gill, D.O.; Barker, D.; Duda, M.G.; Powers, J.G. A Description of the Advanced Research WRF v3; Citeseer: Boulder, CO, USA, 2008. [Google Scholar]
- Dudhia, J. Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model. J. Atmos. Sci. 1989, 46, 3077–3107. [Google Scholar] [CrossRef]
- Mlawer, E.J.; Taubman, S.J.; Brown, P.D.; Iacono, M.J.; Clough, S.A. Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res. 1997, 102, 16663–16682. [Google Scholar] [CrossRef]
- Thompson, G.; Field, P.R.; Rasmussen, R.M.; Hall, W.D. Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part II: Implementation of a new snow parameterization. Mon. Weather Rev. 2008, 136, 5095–5115. [Google Scholar] [CrossRef]
- Smith, E.N.; Gibbs, J.A.; Fedorovich, E.; Klein, P.M. WRF Model study of the Great Plains low-level jet: Effects of grid spacing and boundary layer parameterization. J. Appl. Meteor. Climatol. 2018, 57, 2375–2397. [Google Scholar] [CrossRef]
- Schumacher, R.S.; Clark, A.J.; Xue, M.; Kong, F. Factors influencing the development and maintenance of nocturnal heavy-rain-producing convective systems in a storm scale ensemble. Mon. Weather Rev. 2013, 141, 2778–2801. [Google Scholar] [CrossRef]
- NOAA/National Climatic Data Center. NCEP Numerical Weather Prediction Models North American. Available online: http://nomads.ncdc.noaa.gov/cgi-bin/ncdcui/definecollection.pl?model_sys=nam&model_name=nam&grid_name=Meso-ScaleGrid218 (accessed on 23 February 2015).
- NOAA/National Climatic Data Center. NCEP Rapid Update Cycle (13 km RUC). Available online: nomads.ncdc.noaa.gov/data/ruc13/ (accessed on 23 February 2015).
- Thompson, R.L.; Edwards, R.; Hart, J.A.; Elmore, K.L.; Markowski, P.M. Close proximity sounding within supercell environments obtained from the Rapid Update Cycle. Weather Forecast. 2003, 18, 1243–1261. [Google Scholar] [CrossRef]
- Schumacher, R.S.; Johnson, R.H. Organization and environmental properties of extreme-rain-producing mesoscale convective systems. Mon. Weather Rev. 2005, 133, 961–976. [Google Scholar] [CrossRef]
- Hane, C.E.; Haynes, J.A.; Andra, D.L.; Carr, F.H. The evolution of morning convective systems over the U. S. Great Plains during the warm season. Part II: A climatology and the influence of environmental factors. Mon. Weather Rev. 2008, 136, 929–944. [Google Scholar] [CrossRef]
- Coniglio, M.C.; Hwang, J.Y.; Stensrud, D.J. Environmental factors in the upscale growth and longevity of MCSs derived from the rapid update cycle analyses. Mon. Weather Rev. 2010, 138, 3514–3539. [Google Scholar] [CrossRef]
- Snively, D.V.; Gallus, W.A., Jr. Prediction of convective morphology in near-cloud-permitting WRF model simulations. Weather Forecast. 2014, 29, 130–149. [Google Scholar] [CrossRef][Green Version]
- Jahn, D.E.; Gallus, W.A., Jr. Impacts of modifications to a local planetary boundary layer scheme on forecasts of the Great Plains low-level jet environment. Weather Forecast. 2018, 33, 1109–1120. [Google Scholar] [CrossRef]
- Smith, T.M.; Lakshmanan, V.; Stumpf, G.J.; Ortega, K.L.; Hondl, K.; Cooper, K.; Calhoun, K.M.; Kingfield, D.M.; Manross, K.L.; Toomey, R.; et al. Multi-radar multi-sensor (MRMS) severe weather and aviation products: Initial operating capabilities. Bull. Am. Meteor. Soc. 2016, 97, 1617–1630. [Google Scholar] [CrossRef]
- Parker, M.D.; Johnson, R.H. Organizational modes of midlatitude mesoscale convective systems. Mon. Wea. Rev. 2000, 128, 3413–3436. [Google Scholar] [CrossRef]
- Parish, T.R. On the forcing of the summertime Great Plains Low-Level Jet. J. Atmos. Sci. 2017, 74, 3937–3953. [Google Scholar] [CrossRef]
- Conover, W.J. Practical Nonparametric Statistics, 2nd ed.; John Wiley and Sons: Hoboken, NJ, USA, 1971; 493p. [Google Scholar]
- Myers, J.L.; Well, A.D. Research Design and Statistical Analysis, 2nd ed.; Chapman and Hall: London, UK, 2003; 508p. [Google Scholar]
- Hu, X.; Nielsen-Gammon, J.W.; Zhang, F. Evaluation of three planetary boundary layer schemes in the WRF model. J. Appl. Meteor. Climatol. 2010, 49, 1831–1844. [Google Scholar] [CrossRef]
- Coniglio, M.C.; Correia, J.; Marsh, P.T.; Kong, F. Verification of convection-allowing WRF model forecasts of the planetary boundary layer using sounding observations. Weather Forecast. 2013, 28, 842–862. [Google Scholar] [CrossRef]







| Layer | Specific Humidity | Equivalent Potential Temperature | Displacement | ||||||
|---|---|---|---|---|---|---|---|---|---|
| Obs-Inflow | WRF700mb-Inflow | Obs-Inflow | WRF700mb-Inflow | ||||||
| t-0 | t-3 | t-0 | t-3 | t-0 | t-3 | t-0 | t-3 | ||
| Full Layer | 0.617 | 0.567 | 0.7 | 0.783 | 0.683 | 0.783 | 0.583 | 0.55 | Total Displacement |
| Lower Layer | 0.267 | 0.583 | 0.667 | 0.75 | 0.533 | 0.75 | 0.767 | 0.617 | |
| Upper Layer | 0.25 | 0.567 | 0.617 | 0.783 | 0.3 | 0.783 | 0.233 | 0.517 | |
| Full Layer | 0.433 | 0.383 | 0.217 | 0.25 | 0.5 | 0.6 | 0.35 | −0.1 | X-Component |
| Lower Layer | 0.467 | 0.267 | 0.5 | 0.3 | 0.55 | 0.45 | 0.267 | 0 | |
| Upper Layer | 0.05 | 0.467 | 0.167 | 0.167 | 0.0067 | 0.6 | −0.05 | −0.167 | |
| Full Layer | 0.333 | 0.367 | 0.7 | 0.767 | 0.583 | 0.5 | 0.533 | 0.667 | Y-Component |
| Lower Layer | −0.117 | 0.433 | 0.667 | 0.683 | 0.367 | 0.55 | 0.767 | 0.707 | |
| Upper Layer | 0.217 | 0.3 | 0.65 | 0.8 | 0.317 | 0.5 | 0.267 | 0.617 | |
| Layer | Specific Humidity | Equivalent Potential Temperature | Displacement | ||||||
|---|---|---|---|---|---|---|---|---|---|
| Obs-Inflow | WRF700mb-Inflow | Obs-Inflow | WRF700mb-Inflow | ||||||
| t-0 | t-3 | t-0 | t-3 | t-0 | t-3 | t-0 | t-3 | ||
| Full Layer | 0.15 | 0.433 | 0.55 | 0.733 | 0.233 | 0.633 | 0.333 | 0.517 | Total Displacement |
| Lower Layer | 0.417 | 0.767 | 0.583 | 0.8 | 0.2 | 0.9 | 0.5 | 0.56 | |
| Upper Layer | −0.117 | 0.167 | 0.467 | 0.65 | −0.217 | 0.45 | 0.15 | 0.45 | |
| Full Layer | 0.367 | 0.633 | 0.167 | 0.217 | 0.417 | 0.667 | 0.15 | −0.033 | X-Component |
| Lower Layer | 0.533 | 0.567 | 0.5 | 0.4 | 0.433 | 0.667 | 0.3 | 0.1 | |
| Upper Layer | −0.05 | 0.5 | −0.017 | 0.15 | −0.15 | 0.683 | −0.333 | −0.167 | |
| Full Layer | 0.117 | −0.017 | 0.617 | 0.633 | 0.133 | 0.417 | 0.35 | 0.433 | Y-Component |
| Lower Layer | 0.0833 | 0.35 | 0.75 | 0.617 | 0.05 | 0.683 | 0.467 | 0.4 | |
| Upper Layer | 0.1 | −0.05 | 0.5 | 0.617 | 0.15 | 0.15 | 0.167 | 0.433 | |
| Layer | Specific Humidity | Equivalent Potential Temperature | Displacement | ||||||
|---|---|---|---|---|---|---|---|---|---|
| Obs-Inflow | WRF700mb-Inflow | Obs-Inflow | WRF700mb-Inflow | ||||||
| t-0 | t-3 | t-0 | t-3 | t-0 | t-3 | t-0 | t-3 | ||
| Full Layer | 0.5 | 0.433 | 0.05 | −0.383 | 0.417 | 0.483 | 0.017 | −0.167 | Total Displacement |
| Lower Layer | 0.517 | 0.5 | 0.183 | −0.133 | 0.583 | 0.55 | 0.033 | 0.067 | |
| Upper Layer | 0.25 | 0.117 | −0.067 | −0.583 | 0.233 | 0.167 | −0.1 | −0.517 | |
| Full Layer | −0.33 | −0.517 | −0.783 | −0.517 | −0.333 | −0.417 | −0.65 | −0.55 | X-Component |
| Lower Layer | −0.217 | −0.133 | −0.8 | −0.65 | −0.283 | −0.183 | −0.683 | −0.733 | |
| Upper Layer | −0.55 | −0.783 | −0.633 | −0.417 | −0.517 | −0.733 | −0.617 | −0.517 | |
| Full Layer | 0.48 | 0.467 | 0.267 | −0.2 | 0.367 | 0.55 | 0.2 | 0 | Y-Component |
| Lower Layer | 0.467 | 0.367 | 0.383 | 0.033 | 0.583 | 0.5 | 0.25 | 0.25 | |
| Upper Layer | 0.217 | 0.317 | 0.117 | −0.367 | 0.183 | 0.417 | 0.067 | −0.267 | |
| Layer | Specific Humidity | Equivalent Potential Temperature | Displacement | ||||||
|---|---|---|---|---|---|---|---|---|---|
| Obs-Inflow | WRF700mb-Inflow | Obs-Inflow | WRF700mb-Inflow | ||||||
| t-0 | t-3 | t-0 | t-3 | t-0 | t-3 | t-0 | t-3 | ||
| Full Layer | 0.283 | 0.183 | 0.1 | −0.583 | 0.25 | 0.0833 | −0.033 | −0.517 | Total Displacement |
| Lower Layer | 0.483 | 0.433 | 0.283 | −0.133 | 0.55 | 0.45 | 0.033 | −0.133 | |
| Upper Layer | −0.033 | 0.05 | −0.1 | −0.75 | 0.133 | 0.0333 | −0.117 | −0.617 | |
| Full Layer | −0.567 | −0.6 | −0.517 | −0.05 | −0.6 | −0.45 | −0.45 | 0.017 | X-Component |
| Lower Layer | −0.183 | −0.183 | −0.583 | −0.317 | −0.267 | −0.017 | −0.4 | −0.25 | |
| Upper Layer | −0.883 | −0.683 | −0.6 | 0.117 | −0.817 | −0.5 | −0.517 | 0.15 | |
| Full Layer | 0.267 | 0.267 | 0.217 | −0.5 | 0.283 | 0.133 | 0.017 | −0.517 | Y-Component |
| Lower Layer | 0.283 | 0.2 | 0.417 | −0.05 | 0.4 | 0.183 | 0.1 | −0.15 | |
| Upper Layer | 0.2 | 0.283 | 0 | −0.683 | 0.367 | 0.2 | −0.083 | −0.65 | |
| Type | Moisture Variable | Displacement | S Value | Layer | Time |
|---|---|---|---|---|---|
| Type C | Specific Humidity | Total Displacement | 0.8 | Full, Lower | t-1, t-3 |
| X-Component | 0.5 | Lower | t-0, t-2 | ||
| Y-Component | 0.8 | Upper | t-3 | ||
| Equivalent Potential Temperature | Total Displacement | 0.767 | Lower | t-0 | |
| X-Component | 0.467 | Lower | t-1 | ||
| Y-Component | 0.767 | Lower | t-0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vertz, N.J.; Gallus, W.A., Jr.; Squitieri, B.J. Can Pre-Storm Errors in the Low-Level Inflow Help Predict Spatial Displacement Errors in MCS Initiation? Atmosphere 2021, 12, 7. https://doi.org/10.3390/atmos12010007
Vertz NJ, Gallus WA Jr., Squitieri BJ. Can Pre-Storm Errors in the Low-Level Inflow Help Predict Spatial Displacement Errors in MCS Initiation? Atmosphere. 2021; 12(1):7. https://doi.org/10.3390/atmos12010007
Chicago/Turabian StyleVertz, Nicholas J., William A. Gallus, Jr., and Brian J. Squitieri. 2021. "Can Pre-Storm Errors in the Low-Level Inflow Help Predict Spatial Displacement Errors in MCS Initiation?" Atmosphere 12, no. 1: 7. https://doi.org/10.3390/atmos12010007
APA StyleVertz, N. J., Gallus, W. A., Jr., & Squitieri, B. J. (2021). Can Pre-Storm Errors in the Low-Level Inflow Help Predict Spatial Displacement Errors in MCS Initiation? Atmosphere, 12(1), 7. https://doi.org/10.3390/atmos12010007
