Method for Preparation of a Candidate Reference Material of PM10 and PM2.5 Airborne Particulate Filters Loaded with Incineration Ash-Inter Comparison Results for Metal Concentrations
Abstract
:1. Introduction
2. Experiments
2.1. Experimental Set-up for Loading Filters
- The standard: mass value obtained with the balance.
- The mass: mass value obtained with the balance.
- The mass: mass value obtained with the balance.
- The standard: mass value obtained with the balance.
2.2. Experimental Protocol for ICP–MS Analysis
2.2.1. PM2.5 and PM10—Filter Preparation and Digestion Methods
- Method 1: Total digestion of the filter and the ash particles deposited with hydrofluoric acid (HF) (~40%), nitric acid (HNO3) (~70%) and hydrogen peroxide (H2O2) (~30%). This protocol leads to a complete dissolution of the filter.
- Method 2: Total digestion of the ash particles deposited with HNO3 (~70%) + H2O2 (~30%). The filter is not dissolved with this protocol.
2.2.2. ICP-MS Instrumentation
2.2.3. Uncertainty Budget
3. Results
3.1. PM10 and PM2.5 ICP-MS Intercomparison Results
3.2. Comparison of the Chemical Compositions for PM10 and PM2.5
4. Discussion
- Method 1: Total digestion of the filter and the ash particles deposited with HF (~40%), HNO3 (~70%) and H2O2 (~30%).
- Method 2: Total digestion of the ash particles deposited with HNO3 (~70%) and H2O2 (~30%). The filter is not dissolved in the process.
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
LNE | NPL | NTUA | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
PM10 | PM2.5 | PM10 | PM2.5 | PM10 | PM2.5 | |||||||
N° | PM on Filters (mg) | N° | PM on Filters (mg) | N° | PM on Filters (mg) | N° | PM on Filters (mg) | N° | PM on Filters (mg) | N° | PM on Filters (mg) | |
F20 | 3.03 | F16 | 2.59 | F14 | 2.82 | F11 | 2.51 | F8 | 2.39 | F6 | 2.46 | |
F21 | 3.17 | F17 | 2.52 | F15 | 2.32 | F12 | 2.6 | F9 | 2.61 | F7 | 2.48 | |
F22 | 2.74 | F18 | 2.49 | F16 | 2.85 | F13 | 2.41 | F10 | 2.23 | F8 | 2.55 | |
F23 | 2.26 | F19 | 2.60 | F17 | 2.70 | F14 | 2.46 | F11 | 2.26 | F9 | 2.48 | |
F24 | 2.68 | F20 | 2.57 | F18 | 2.50 | F15 | 2.44 | F12 | 2.34 | F10 | 2.58 | |
F25 | 2.95 | F21 | 2.53 | F19 | 2.70 | F13 | 2.31 | |||||
F26 | 2.78 | F22 | 2.58 | |||||||||
F27 | 2.74 | F23 | 2.56 | |||||||||
F28 | 2.77 | F24 | 2.54 | |||||||||
F29 | 2.77 | F25 | 2.58 | |||||||||
F30 | 2.65 | |||||||||||
F31 | 2.60 | |||||||||||
F32 | 2.80 | |||||||||||
Average mass (mg) | 2.77 | 2.55 | 2.65 | 2.49 | 2.36 | 2.51 | ||||||
STD (mg) | 0.22 | 0.04 | 0.20 | 0.07 | 0.14 | 0.05 | ||||||
RSD (%) | 7.88% | 1.38% | 7.67% | 2.93% | 5.81% | 2.09% |
Appendix B
N° | V | Cr | Mn | Fe | Ni | Cu | Zn | Co | As | Cd | Pb | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
NTUA digestion HNO3 + H2O2 | F8 | 57.0 | 200.9 | 994.4 | 11,872.0 | 231.7 | 881.0 | 6875.5 | 64.0 | 74.0 | ||
F9 | 68.0 | 200.0 | 965.5 | 12,324.7 | 236.5 | 1032.0 | 6280.8 | 74.0 | 72.6 | 2042.6 | ||
F10 | 54.0 | 190.0 | 930.4 | 11,523.7 | 260.8 | 826.0 | 5990.0 | 67.0 | 77.1 | 2141.6 | ||
F11 | 51.0 | 182.0 | 854.0 | 8676.0 | 269.8 | 930.0 | 7597.8 | 82.2 | 2003.8 | |||
F12 | 59.0 | 207.0 | 952.9 | 11,652.7 | 281.5 | 970.0 | 7687.2 | 60.0 | 76.5 | 2191.1 | ||
F13 | 78.8 | 195.0 | 911.8 | 11,215.8 | 223.7 | 620.0 | 8133.3 | 63.0 | 70.9 | 2010.1 | ||
NPL digestion HNO3 + H2O2 | F14 | 79.0 | 203.1 | 950.6 | 11,507.0 | 248.7 | 1272.2 | 6912.5 | 86.4 | 75.4 | 67.9 | 1680.1 |
F15 | 76.4 | 267.4 | 970.0 | 11,994.9 | 278.0 | 1246.7 | 7023.3 | 83.7 | 76.6 | 68.0 | 1751.5 | |
F16 | 73.0 | 199.2 | 889.2 | 10,918.4 | 235.0 | 1104.4 | 6238.7 | 81.7 | 72.1 | 62.8 | 1539.0 | |
F17 | 68.7 | 227.3 | 887.1 | 11,132.5 | 233.8 | 1116.3 | 6441.0 | 80.1 | 70.8 | 63.6 | 1576.6 | |
F18 | 70.8 | 193.5 | 941.8 | 11,374.2 | 238.7 | 1205.7 | 6880.0 | 82.5 | 74.9 | 67.6 | 1704.9 | |
F19 | 74.2 | 214.3 | 932.2 | 11,513.2 | 238.5 | 1177.4 | 6714.7 | 85.4 | 73.9 | 66.5 | 1673.8 | |
LNE digestion HNO3 + HF + H2O2 | F20 | 222.0 | 1030.8 | 12,459.4 | 266.8 | 1080.0 | 7150.8 | 86.4 | 75.9 | 61.4 | 2121.0 | |
F21 | 219.2 | 982.8 | 12,854.8 | 255.5 | 1044.4 | 6984.3 | 83.6 | 74.0 | 69.8 | 2060.0 | ||
F22 | 207.5 | 1026.0 | 11,788.6 | 254.1 | 1133.5 | 7098.9 | 82.0 | 73.1 | 57.0 | 2171.3 | ||
F23 | 213.5 | 1031.3 | 11,870.3 | 259.3 | 1129.0 | 7230.7 | 86.7 | 74.5 | 67.1 | 2217.2 | ||
F24 | 224.6 | 1032.1 | 11,935.8 | 266.5 | 1144.9 | 7244.3 | 86.2 | 74.9 | 69.5 | 2217.1 | ||
F25 | 225.5 | 1064.4 | 12,478.6 | 266.6 | 1194.6 | 7424.0 | 87.7 | 77.0 | 69.6 | 2244.4 | ||
F26 | 254.6 | 1100.8 | 12,752.1 | 281.9 | 1223.7 | 7652.7 | 89.3 | 77.9 | 71.6 | 2322.2 | ||
LNE digestion HNO3 + H2O2 | F27 | 227.4 | 1017.7 | 11,201.1 | 277.6 | 1206.2 | 7088.9 | 94.4 | 82.7 | 69.2 | 2139.6 | |
F28 | 236.7 | 1010.0 | 11,221.8 | 288.1 | 1201.4 | 6926.4 | 96.9 | 85.5 | 69.9 | 2136.0 | ||
F29 | 235.0 | 992.1 | 10,995.4 | 287.5 | 1195.5 | 8730.5 | 96.9 | 86.8 | 76.5 | 2141.8 | ||
F30 | 241.8 | 1040.5 | 11,257.7 | 288.0 | 1202.9 | 6788.9 | 98.1 | 87.0 | 77.0 | 2169.4 | ||
F31 | 235.0 | 1013.5 | 11,195.4 | 290.7 | 1227.4 | 7063.3 | 98.2 | 83.1 | 80.7 | 2210.1 | ||
F32 | 311.0 | 1007.3 | 11,619.7 | 350.5 | 1206.0 | 6847.9 | 99.3 | 87.1 | 79.2 | 2212.1 | ||
Average (µg g−1) | 67.5 | 221.3 | 981.2 | 11,573.4 | 264.4 | 1102.8 | 7080.3 | 88.7 | 75.5 | 70.7 | 2028.2 | |
Standard Deviation (µg g−1) | 9.8 | 27.8 | 59.7 | 810.8 | 27.3 | 154.5 | 589.2 | 6.4 | 7.4 | 6.2 | 235.0 | |
RSD (%) | 14.6 | 12.6 | 6.1 | 7.0 | 10.3 | 14.0 | 8.3 | 7.3 | 9.8 | 8.8 | 11.6 |
N° | V | Cr | Mn | Fe | Ni | Cu | Zn | Co | As | Cd | Pb | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
NTUAdigestion HNO3 + H2O2 | F6 | 91.8 | 130.8 | 1469.6 | 9381.3 | 3400.6 | 1404.6 | 96.1 | 59.8 | 2639.6 | ||
F7 | 83.1 | 223.8 | 1112.9 | 8338.1 | 337.3 | 1270.4 | 81.2 | 57.4 | 3348.2 | |||
F8 | 87.8 | 243.5 | 1280.5 | 8891.1 | 247.0 | 1450.7 | 96.4 | 63.1 | 2638.6 | |||
F9 | 88.7 | 119.8 | 1256.3 | 8842.4 | 239.6 | 1541.2 | 97.1 | 61.8 | ||||
F10 | 95.9 | 193.1 | 1362.2 | 10,169.5 | 305.5 | 1649.8 | 94.1 | 60.3 | 2561.8 | |||
NPLdigestion HNO3 + H2O2 | F11 | 73.1 | 183.6 | 980.0 | 11,289.8 | 298.7 | 1276.1 | 7605.5 | 81.1 | 70.4 | 68.6 | 1875.2 |
F12 | 79.5 | 227.7 | 1036.8 | 12,296.2 | 263.5 | 1337.4 | 7751.1 | 85.2 | 75.9 | 71.9 | 1959.8 | |
F13 | 74.7 | 197.4 | 974.7 | 11,062.0 | 234.3 | 1261.3 | 7348.7 | 79.4 | 70.7 | 66.5 | 1836.1 | |
F14 | 73.5 | 180.3 | 967.6 | 11,183.0 | 224.8 | 1235.8 | 7093.9 | 77.9 | 69.5 | 66.2 | 1829.3 | |
F15 | 71.3 | 181.4 | 954.4 | 10,867.9 | 223.3 | 1254.7 | 7127.1 | 77.4 | 68.6 | 64.2 | 1771.2 | |
LNEdigestion HNO3 + HF + H2O2 | F16 | 79.7 | 221.1 | 993.2 | 12,463.1 | 220.5 | 1226.9 | 8476.5 | 92.1 | 69.7 | 70.0 | 2311.7 |
F17 | 80.0 | 183.8 | 1000.6 | 12,806.2 | 208.3 | 1223.0 | 9355.8 | 91.3 | 70.0 | 70.9 | 2379.4 | |
F18 | 81.7 | 211.0 | 982.3 | 12,507.0 | 222.2 | 1220.3 | 8236.4 | 91.4 | 71.0 | 71.8 | 2416.7 | |
F19 | 81.6 | 212.2 | 1006.7 | 12,396.4 | 215.1 | 1267.8 | 8949.4 | 95.2 | 71.7 | 77.1 | 2442.1 | |
F20 | 84.8 | 229.4 | 995.1 | 21,498.9 | 219.3 | 1303.7 | 7808.9 | 95.5 | 72.5 | 77.1 | 2407.7 | |
LNEdigestion HNO3 + H2O2 | F21 | 86.0 | 250.3 | 1123.3 | 13,276.6 | 235.7 | 1476.4 | 8316.5 | 93.2 | 70.2 | 71.9 | 2350.2 |
F22 | 75.6 | 167.8 | 1081.8 | 11,462.5 | 204.8 | 1406.1 | 7745.2 | 85.3 | 63.4 | 64.3 | 2252.6 | |
F23 | 78.6 | 197.4 | 1151.4 | 12,558.7 | 237.8 | 1401.0 | 8292.8 | 93.0 | 65.3 | 68.0 | 2352.3 | |
F24 | 65.7 | 135.2 | 1047.7 | 8773.5 | 201.1 | 1299.0 | 8033.9 | 84.9 | 42.5 | 63.5 | 2173.4 | |
F25 | 66.0 | 159.4 | 1138.8 | 6865.2 | 262.5 | 1387.9 | 7471.8 | 106.2 | 29.7 | 78.5 | 2306.2 | |
Average (µg g−1) | 81.5 | 197.5 | 1056.1 | 11,031.4 | 242.2 | 1344.7 | 7974.2 | 89.0 | 67.3 | 69.9 | 2308.0 | |
Standard deviation (µg g−1) | 6.8 | 35.0 | 98.3 | 1603.4 | 36.7 | 117.8 | 643.9 | 7.0 | 5.2 | 4.2 | 371.5 | |
RSD (%) | 8.3 | 17.7 | 9.3 | 14.5 | 15.2 | 8.8 | 8.1 | 7.9 | 7.7 | 6.0 | 16.1 |
References
- World Health Organization. Health Topics: Air Pollution: Ambient Air Pollution. Available online: https://www.who.int/health-topics/air-pollution#tab=tab_2 (accessed on 21 October 2020).
- World Health Organization. IARC Monograph: Lead and Lead Compounds; IARC: Lyon, France, 2006. [Google Scholar]
- World Health Organization. IARC Monograph: Cadmium and Cadmium Compounds; IARC: Lyon, France, 2012. [Google Scholar]
- European Commission Council. Directive 2008/50/EC of the European Parliament and of the Council of 21 May 2008 on ambient air quality and cleaner air for Europe. Off. J. Eur. Union 2008, L152_1, 1–44. [Google Scholar]
- European Commission Council. Directive 2004/107/EC of the European Parliament and of the Council of 15 December 2004 relating to arsenic, cadmium, mercury, nickel and polycyclic aromatic hydrocarbons in ambient air. Off. J. Eur. Union 2005, L023_3, 3–16. [Google Scholar]
- EMPIR AEROMET Project. Available online: www.aerometproject.com (accessed on 21 October 2020).
- Kothari, R.; Tyagi, V.V.; Pathak, A. Waste-to energy: A way from renewable energy sources to sustainable development. Renew. Sustain. Energy Rev. 2010, 14, 3164–3170. [Google Scholar] [CrossRef]
- Scarlat, N.; Fahl, F.; Dallemand, J.-F. Status and Opportunities for Energy Recovery from Municipal Solid Waste in Europe. Waste Biomass Valorization 2019, 10, 2425–2444. [Google Scholar] [CrossRef] [Green Version]
- Phua, Z.; Giannis, A.; Dong, Z.; Grzegorz, L.; Wun Jern, N. Characteristics of incineration ash for sustainable treatment and reutilization. Environ. Sci. Pollut. Res. 2019, 26, 16974–16997. [Google Scholar] [CrossRef] [PubMed]
- The National Research Council (US) Committee on Health Effects of Waste Incineration. Waste Incineration & Public Health; Executive Summary; National Academies Press: Washington, DC, USA, 2000. Available online: https://www.ncbi.nlm.nih.gov/books/NBK233633/ (accessed on 21 October 2020).
- Oster, C.; Labarraque, G.; Fisicaro, P. Certification of a reference material of metal content in atmospheric particles deposited on filters. Anal. Bioanal. Chem. 2015, 407, 3035–3043. [Google Scholar] [CrossRef] [PubMed]
- Technical Note: The 30-Minute Guide to ICP-MS; PerkinElmer, Inc.: Shelton, CT, USA, 2017.
- European Committee for Standardization. BS EN 14902:2005 Ambient Air Quality—Standard Method for the Measurement of Pb, Cd, As and Ni in the PM10 Fraction of Suspended Particulate Matter; European Committee for Standardization (CEN): Brussels, Belgium, 2005. [Google Scholar]
- Bogush, A.; Stegemann, J.A.; Wood, I.; Roy, A. Element composition and mineralogical characterisation of air pollution control residue from UK energy-from-waste facilities. Waste Manag. 2015, 36, 119–129. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ochsenkühn-Petropoulou, M.; Ochsenkühn, K.M. Comparison of inductively coupled plasma-atomic emission spectrometry, anodic stripping voltammetry and instrumental neutron-activation analysis for the determination of heavy metals in airborne particulate matter. Fresenius J. Anal. Chem. 2001, 369, 629–632. [Google Scholar] [CrossRef] [PubMed]
- Ochsenkühn, K.M.; Ochsenkühn-Petropoulou, M. Heavy metals in airborne particulate matter in an industrial area in Attica, Greece and their possible sources. Fresenius Environ. Bull. 2008, 17, 455–462. [Google Scholar]
- Zosima, A.; Tsakanika, L.-A.; Ochsenkühn-Petropoulou, M. Particulate matter emissions, and metals and toxic elements in airborne particulates emitted from biomass combustion: The importance of biomass type and combustion conditions. J. Environ. Sci. Health Part A 2017, 52, 497–506. [Google Scholar] [CrossRef] [PubMed]
- Goddard, S.L.; Williams, K.R.; Robins, C.; Butterfield, D.M.; Brown, R.J.C. Concentration trends of metals in ambient air in the UK: A review. Environ. Monit. Assess. 2019, 191, 683. [Google Scholar] [CrossRef] [PubMed]
- Goddard, S.L.; Brown, R.J.C.; Ghatora, B.K. Determination of beryllium concentrations in UK ambient air. Atmos. Environ. 2016, 147, 320–329. [Google Scholar] [CrossRef]
- Sandroni, V.; Smith, C.M.; Donovan, A. Microwave digestion of sediment, soils and urban particulate matter for trace metal analysis. Talanta 2003, 60, 715–723. [Google Scholar] [CrossRef]
- European Committee for Standardization. BS EN 13657:2002 Characterization of Waste. Digestion for Subsequent Determination of Aqua Regia Soluble Portion of Elements; European Committee for Standardization (CEN): Brussels, Belgium, 2002. [Google Scholar]
- European Committee for Standardization. BS EN 13656:2002 Characterization of Waste—Microwave Assisted Digestion with Hydrofluoric (HF), Nitric (HNO3), and Hydrochloric (HCl) Acid Mixture for Subsequent Determination of Elements; European Committee for Standardization (CEN): Brussels, Belgium, 2002. [Google Scholar]
- Robache, A.; Mathe, F.; Galloo, J.-C. Prelevement et Analyse Desmetaux Dans Les Particules en Suspension Dans L’air Ambiant. LCSQA. 2003. Available online: https://www.lcsqa.org/system/files/Etude2.pdf (accessed on 21 October 2020).
- National Physical Laboratory. Available online: https://www.npl.co.uk/ (accessed on 22 October 2020).
- Defra UK-Air. Available online: https://uk-air.defra.gov.uk/networks/network-info?view=metals (accessed on 22 October 2020).
- Goddard, S.L.; Brown, R.J.C.; Butterfield, D.M.; McGhee, E.A.; Robins, C.; Brown, A.S.; Beccaceci, S.; Lilley, A.; Bradshaw, C.; Brennan, S. Annual Report for 2014 on the UK Heavy Metals Monitoring Network; Queen’s Printer and Controller of HMSO: London, UK, 2015. [Google Scholar]
- National Technical University of Athens. Available online: https://www.ntua.gr (accessed on 22 October 2020).
- School of Chemical Engineering. Available online: https://chemeng.ntua.gr (accessed on 22 October 2020).
- Görner, P.; Simon, X.; Boivin, A.; Bau, S. Sampling efficiency and performance of selected thoracic aerosol samplers. In Annals of Work Exposures and Health; Oxford University Press: Oxford, UK, 2017; Volume 61, pp. 784–796. [Google Scholar]
- Patashnick, H.; Rupprect, E. Continuous PM-10 measurements using the Tapered Element Oscillating Microbalance. J. Air Waste Manag. Assoc. 1991, 41, 1079–1083. [Google Scholar] [CrossRef]
- Chisholm, H.W. On the Science of Weighing and Measuring, and the Standards of Weight and Measure. Nature 1873, 9, 47–49. [Google Scholar] [CrossRef] [Green Version]
- European Committee for Standardization. BS EN 12341:2014 Ambient Air—Standard Gravimetric Measurement Method for the Determination of the PM10 or PM2.5 Mass Concentration of Suspended Particulate Matter; European Committee for Standardization (CEN): Brussels, Belgium, 2014. [Google Scholar]
- JCGM 100:2008, Evaluation of Measurement Data—Guide to the Expression of Uncertainty in Measurement. 2008. Available online: https://ncc.nesdis.noaa.gov/documents/documentation/JCGM_100_2008_E.pdf (accessed on 21 October 2020).
- Abdul-Wahab, S.A. Source Characterization of Atmospheric Heavy Metals in Industrial/Residential Areas: A Case Study in Oman. J. Air Waste Manag. Assoc. 2004, 54, 425–431. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abiye, O.E.; Obioh, I.B.; Ezeh, G.C.; Alfa, A.; Ojo, E.O.; Ganiyu, A.K. Receptor modeling of atmospheric aerosols in Federal Capital Territory (FCT), Nigeria. Ife J. Sci. 2014, 16, 107–119. [Google Scholar]
- Khodeir, M.; Shamy, M.; Alghamdi, M.; Zhong, M.; Sun, H.; Costa, M.; Chen, L.C.; Maciejczyk, P. Source apportionment and elemental composition of PM2.5 and PM10 in Jeddah City, Saudi Arabia. Atmos. Pollut. Res. 2012, 3, 331–340. [Google Scholar] [CrossRef] [Green Version]
- Method 3052 Microwave Assisted Acid Digestion of Siliceous and Organically Based Matrices; EPA: 1996. Available online: https://www.epa.gov/sites/production/files/2015-12/documents/3052.pdf (accessed on 21 October 2020).
- Mohamedzein, E.-A.; Al-Aghbari, Y. The Use of Municipal Solid Waste Incinerator Ash to Stabilize Dune Sands. Geotech. Geol. Eng. 2012, 30, 1335–1344. [Google Scholar] [CrossRef]
- Gaines, P. Trace Analysis Guide: Part 16; Inorganic Ventures Inc.: Christiansburg, VA, USA. Available online: https://www.inorganicventures.com/trace-analysis-guide/icp-ms-measurement (accessed on 16 October 2020).
- Miller-Ihli, N.J. Chapter 13 Chromium. In Hazardous Metals in the Environment, 1st ed.; Stoeppler, M., Ed.; Elsevier Science: Amsterdam, The Netherlands, 1992; Volume 12, pp. 373–404. [Google Scholar]
- Andrén, H.; Rodushkin, I.; Stenberg, A.; Malinovsky, D.; Baxter, D.C. Sources of mass bias and isotope ratio variation in multi-collector ICP-MS: Optimization of instrumental parameters based on experimental observations. JAAS 2004, 19, 1217–1224. [Google Scholar] [CrossRef]
Nr | t (min) | E (W) | T (°C) |
---|---|---|---|
1 | 20 | 1200 | 180 |
2 | 10 | 1200 | 230 |
3 | 15 | 1200 | 230 |
Ramp Time (min) | Power (W) | Hold Time (min) |
---|---|---|
20 | 1200 | 25 |
Analytes | PM10 Average (µg g−1) | Standard Deviation (µg g−1) | RSD (%) | PM10 (ng/Filter) | PM2.5 Average (µg g−1) | Standard Deviation (µg g−1) | RSD (%) | PM2.5 (ng/Filter) |
---|---|---|---|---|---|---|---|---|
V | 67.5 | 9.8 | 14.6% | 163.3 | 81.5 | 6.8 | 8.3% | 202.9 |
Cr | 221.3 | 27.8 | 12.6% | 568.7 | 197.5 | 35.0 | 17.7% | 557.4 |
Mn | 981.2 | 59.7 | 6.1% | 2593.9 | 1056.1 | 98.3 | 9.3% | 2792.9 |
Fe | 11,573.4 | 810.8 | 7.0% | 30,590.4 | 11,031.4 | 1603.4 | 14.5% | 28,848.4 |
Ni | 264.4 | 27.3 | 10.3% | 698.8 | 242.2 | 36.7 | 15.2% | 1088.5 |
Cu | 1102.8 | 154.5 | 14.0% | 2895.9 | 1344.7 | 117.8 | 8.8% | 3486.3 |
Zn | 7080.3 | 589.2 | 8.3% | 18,652.7 | 7974.2 | 643.9 | 8.1% | 18,835.9 |
Co | 88.7 | 6.4 | 7.3% | 242.1 | 89.0 | 7.0 | 7.9% | 234.7 |
As | 75.5 | 7.4 | 9.8% | 190.1 | 67.3 | 5.2 | 7.7% | 164.5 |
Cd | 70.7 | 6.2 | 8.8% | 186.1 | 69.9 | 4.2 | 6.0% | 177.4 |
Pb | 2028.2 | 235.0 | 11.6% | 5516.0 | 2308.0 | 371.5 | 16.1% | 6249.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bescond, A.; Oster, C.; Fisicaro, P.; Goddard, S.; Quincey, P.; Tsakanika, L.-A.; Lymperopoulou, T.; Ochsenkuehn-Petropoulou, M. Method for Preparation of a Candidate Reference Material of PM10 and PM2.5 Airborne Particulate Filters Loaded with Incineration Ash-Inter Comparison Results for Metal Concentrations. Atmosphere 2021, 12, 67. https://doi.org/10.3390/atmos12010067
Bescond A, Oster C, Fisicaro P, Goddard S, Quincey P, Tsakanika L-A, Lymperopoulou T, Ochsenkuehn-Petropoulou M. Method for Preparation of a Candidate Reference Material of PM10 and PM2.5 Airborne Particulate Filters Loaded with Incineration Ash-Inter Comparison Results for Metal Concentrations. Atmosphere. 2021; 12(1):67. https://doi.org/10.3390/atmos12010067
Chicago/Turabian StyleBescond, Alexandre, Caroline Oster, Paola Fisicaro, Sharon Goddard, Paul Quincey, Lamprini-Areti Tsakanika, Theopisti Lymperopoulou, and Maria Ochsenkuehn-Petropoulou. 2021. "Method for Preparation of a Candidate Reference Material of PM10 and PM2.5 Airborne Particulate Filters Loaded with Incineration Ash-Inter Comparison Results for Metal Concentrations" Atmosphere 12, no. 1: 67. https://doi.org/10.3390/atmos12010067
APA StyleBescond, A., Oster, C., Fisicaro, P., Goddard, S., Quincey, P., Tsakanika, L. -A., Lymperopoulou, T., & Ochsenkuehn-Petropoulou, M. (2021). Method for Preparation of a Candidate Reference Material of PM10 and PM2.5 Airborne Particulate Filters Loaded with Incineration Ash-Inter Comparison Results for Metal Concentrations. Atmosphere, 12(1), 67. https://doi.org/10.3390/atmos12010067