# The Impact of Utility-Scale Photovoltaics Plant on Near Surface Turbulence Characteristics in Gobi Areas

^{1}

^{2}

^{3}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Site Overview and Methods

#### 2.1. Site Overview

^{2}and a capacity of 70 MW. The PV panel lies with the inclination angle of 37°, the row spacing of the PV array was 7.5 m, and the top edge of the PV panel was 2.5 m above the ground. The panel material was polysilicon and the maximum power was 250 W.

#### 2.2. Flux Data Processing and Calculation Methods

## 3. Results and Discussion

#### 3.1. Atmospheric Stability Parameter and Aerodynamic Roughness

#### 3.2. Scaling Parameters

#### 3.3. Turbulence Strength and Turbulent Kinetic Energy

#### 3.4. Momentum Flux and Heat Flux

^{2}at the PV plant and the reference site, respectively. Compared to the reference site, the lower heat capacity and increased surface area in the PV plant generated stronger convective conditions, resulting in higher sensible heat flux. The minimum heat fluxes were observed during 7:00~8:00, indicating near neutral conditions during the early morning. The negative value at night indicated downward sensible heat flux from the loft atmosphere to surface caused by surface radiative cooling. With regard to the latent heat flux, the peak values of 52.4 and 98.9 W/m

^{2}at 14:00 were observed in the PV plant and the reference site, respectively. The wind resistance and shielding effect of PV panels in the PV plant brought about less evaporation compared with the reference site. The positive latent heat fluxes in the two sites were close to zero at night, which indicates that extremely weak evaporation still exists.

#### 3.5. The Relationship between Turbulence Variance and Stability

## 4. Conclusions

## Author Contributions

## Funding

## Data Availability Statement

## Conflicts of Interest

## References

- Haegel, N.M.; Margolis, R.; Buonassisi, T.; Feldman, D.; Froitzheim, A.; Garabedian, R.; Green, M.; Glunz, S.; Henning, H.-M.; Holder, B.; et al. Terawatt-scale photovoltaics: Trajectories and challenges. Science
**2017**, 356, 141–143. [Google Scholar] [CrossRef] [PubMed] - Breyer, C.; Bogdanov, D.; Gulagi, A.; Aghahosseini, A.; Barbosa, L.S.; Koskinen, O.; Barasa, M.; Caldera, U.; Afanasyeva, S.; Child, M.; et al. On the role of solar photovoltaics in global energy transition scenarios. Prog. Photovolt. Res. Appl.
**2017**, 25, 727–745. [Google Scholar] [CrossRef] - Foken, T. Micrometeorology; Springer: New York, NY, USA, 2008; p. 308. [Google Scholar]
- Brunet, Y. Turbulent Flow in Plant Canopies: Historical Perspective and Overview. Bound. Layer Meteorol.
**2020**, 1772, 315–364. [Google Scholar] [CrossRef] - Prasad, K.B.R.R.H.; Srinivas, C.V.; Singh, A.B.; Naidu, C.V.; Baskaran, R.; Venkatraman, B. Turbulence characteristics of surface boundary layer over the Kalpakkam tropical coastal station, India. Theor. Appl. Clim.
**2018**, 131, 827–843. [Google Scholar] [CrossRef] - Dyer, A.J.; Garratt, J.R.; Francey, R.J.; McIlroy, I.C.; Bacon, N.E.; Hyson, P.; Bradley, E.F.; Denmead, O.T.; Tsvang, L.R.; Volkov, Y.A.; et al. An international turbulence comparison experiment (ITCE 1976). Bound. Layer Meteorol.
**1982**, 24, 181–209. [Google Scholar] [CrossRef] - Shuhua, L.; Jie, L.; Heping, L.; Fuming, L.; Jianhua, W.; .Chan, J.C.L.; CHEN, A.Y.S.; Fei, H.; Huizhi, L. Characteristics of Turbulence Spectra and Local Isotropy in EBEX-2000. Chin. J. Atmos. Sci.
**2005**, 29, 213–224. [Google Scholar] - Raupach, M.R.; Finnigan, J.J. The Influence of Topography on Meteorological Variables and Surface-Atmosphere Interactions. J. Hydrol.
**1997**, 190, 182–213. [Google Scholar] [CrossRef] - Van Gorsel, E.; Christen, A.; Feigenwinter, C.; Parlow, E.; Vogt, R. Daytime Turbulence Statistics above a Steep Forested Slope. Bound. Layer Meteorol.
**2003**, 109, 311–329. [Google Scholar] [CrossRef][Green Version] - Moraes, O.; Acevedo, O.; DeGrazia, G.; Anfossi, D.; DaSilva, R.; Anabor, V. Surface layer turbulence parameters over a complex terrain. Atmos. Environ.
**2005**, 39, 3103–3112. [Google Scholar] [CrossRef] - Solanki, R.; Singh, N.; Kumar, N.V.P.K.; Rajeev, K.; Dhaka, S.K. Time Variability of Surface-Layer Characteristics over a Mountain Ridge in the Central Himalayas During the Spring Season. Bound. Layer Meteorol.
**2015**, 158, 453–471. [Google Scholar] [CrossRef] - Pleim, J.E. A Simple, Efficient Solution of Flux–Profile Relationships in the Atmospheric Surface Layer. J. Appl. Meteorol. Clim.
**2006**, 45, 341–347. [Google Scholar] [CrossRef] - Businger, J.A.; Wyngaard, J.C.; Izumi, Y.; Bradley, E.F. Flux-profile relationships in the atmospheric surface layer. J. Atmos.
**1971**, 28, 181–189. [Google Scholar] [CrossRef] - Haugen, D.A.; Kaimal, J.C.; Bradley, E.F. An experimental study of Reynolds stress and heat flux in the atmospheric surface layer. Q. J. R. Meteorol. Soc.
**1971**, 97, 168–180. [Google Scholar] [CrossRef] - Shikhovtsev, A.; Kovadlo, P.; Lukin, V.; Nosov, V.; Kiselev, A.; Kolobov, D.Y.; Kopylov, E.A.; Shikhovtsev, M.; Avdeev, F. Statistics of the Optical Turbulence from the Micrometeorological Measurements at the Baykal Astrophysical Observatory Site. Atmosphere
**2019**, 10, 661. [Google Scholar] [CrossRef][Green Version] - Helgason, W.D.; Pomeroy, J.W. Characteristics of the Near-Surface Boundary Layer within a Mountain Valley during Winter. J. Appl. Meteorol. Clim.
**2012**, 51, 583–597. [Google Scholar] [CrossRef] - Barman, N.; Borgohain, A.; Kundu, S.S.; Roy, R.; Saha, B.; Solanki, R.; Kumar, N.V.P.K.; Raju, P.L.N. Daytime Temporal Variation of Surface-Layer Parameters and Turbulence Kinetic Energy Budget in Topographically Complex Terrain Around Umiam, India. Bound. Layer Meteorol.
**2019**, 172, 149–166. [Google Scholar] [CrossRef] - Monin, A.S.; Obukhov, A.M. Basic Turbulent Mixing Laws in the Atmospheric Surface Layer. Contrib. Geophys. Inst. Acad. Sci. Ussr
**1954**, 151, 163–187. [Google Scholar] - Nosov, V.V.; Emaleev, O.N.; Nosov, E.V. Semiempirical hypotheses of the turbulence theory in anisotropic boundary layer. In Proceedings of the SPIE Proceedings; International Society for Optics and Photonics: Bellingham, WA, USA, 2004; Volume 5743, pp. 110–131. [Google Scholar]
- Panofsky, H.A.; Tennekes, H.; Lenschow, D.H.; Wyngaard, J.C. The characteristics of turbulent velocity components in the surface layer under convective conditions. Bound. Layer Meteorol.
**1977**, 11, 355–361. [Google Scholar] [CrossRef] - Lange, B.; Larsen, S.; Hojstrup, J.; Barthelmie, R. The influence of thermal effects on the wind speed profile of the coastalmarine boundary layer. Bound. Layer Meteorol.
**2004**, 112, 587–617. [Google Scholar] [CrossRef] - Huizhi, L.; Zhongxiang, H. Turbulent Characteristics in the Surface Layer over Gerze Area in the Tibetan Plateau. Chin. J. Atmos. Sci.
**2000**, 24, 289–300. [Google Scholar] - Yaoming, M.; Weiqiang, M.; Zeyong, H.; Maoshan, L.; Jiemin, W. Similarity Analysis of Atmospheric Turbulent Strength over Grassland Surface of Qinghai-Xizang Plateau. Plateau Meteorol.
**2002**, 21, 514–517. [Google Scholar] - Huizhi, L.; Zhongxiang, H. Turbulent Statistical Characteristics over the Urban Surface. Chin. J. Atmos. Sci.
**2002**, 26, 241–248. [Google Scholar] - Hedde, T.; Durand, P. Turbulence intensities and bulk coefficients in the surface layer above the sea. Bound. Layer Meteorol.
**1994**, 71, 415–432. [Google Scholar] [CrossRef] - Huiwang, G.; Ming, G.; Renlei, W.; Yuhuan, X. Analysis of the Characteristics of the Atmospheric Turbulene Strength and the Similarity of the Standard Deviations of Wind Velocity over the North Yellow Sea. Period. Ocean Univ. China
**2009**, 39, 563–568+578. [Google Scholar] - Yaoming, M.; Jieming, W.; Wei, L.; Qingrong, Z.; Boqiang, M. The Study of the Characteristics of Both the Atmospheric Turbulence Structure and the Transfer in the Lower Layer of the Atmosphere above the Nansha Islands Area. Chin. J. Atmos. Sci.
**1997**, 21, 102–110. [Google Scholar] - Nosov, V.; Lukin, V.; Torgaev, A. Turbulence Scales of the Monin–Obukhov Similarity Theory in the Anisotropic Mountain Boundary Layer. Russ. Phys. J.
**2020**, 63, 244–249. [Google Scholar] [CrossRef] - Nemet, G.F. Net Radiative Forcing from Widespread Deployment of Photovoltaics. Environ. Sci. Technol.
**2009**, 43, 2173–2178. [Google Scholar] [CrossRef] - Burg, B.R.; Ruch, P.; Paredes, S.; Michel, B. Placement and efficiency effects on radiative forcing of solar installations. In Proceedings of the 11th International Conference on Concentrator Photovoltaic Systems: Cpv-11; AIP Publishing: Melville, NY, USA, 2015; Volume 1679, p. 090001. [Google Scholar]
- Hernandez, R.R.; Easter, S.; Murphymariscal, M.L.; Maestre, F.T.; Tavassoli, M.; Allen, E.B.; Barrows, C.W.; Belnap, J.; Ochoahueso, R.; Ravi, S.; et al. Environmental impacts of utility-scale solar energy. Renew. Sustain. Energy Rev.
**2014**, 29, 766–779. [Google Scholar] [CrossRef][Green Version] - Chang, R.; Shen, Y.; Luo, Y.; Wang, B.; Yang, Z.; Guo, P. Observed surface radiation and temperature impacts from the large-scale deployment of photovoltaics in the barren area of Gonghe, China. Renew. Energy
**2018**, 118, 131–137. [Google Scholar] [CrossRef] - Yang, L.; Gao, X.; Lv, F.; Hui, X.; Ma, L.; Hou, X. Study on the local climatic effects of large photovoltaic solar farms in desert areas. Sol. Energy
**2017**, 144, 244–253. [Google Scholar] [CrossRef] - Armstrong, A.; Ostle, N.J.; Whitaker, J. Solar park microclimate and vegetation management effects on grassland carbon cycling. Environ. Res. Lett.
**2016**, 11, 074016. [Google Scholar] [CrossRef][Green Version] - Broadbent, A.M.; Krayenhoff, E.S.; Georgescu, M.; Sailor, D.J. The Observed Effects of Utility-Scale Photovoltaics on Near-Surface Air Temperature and Energy Balance. J. Appl. Meteorol. Clim.
**2019**, 58, 989–1006. [Google Scholar] [CrossRef] - Wilson, K.; Goldstein, A.; Falge, E.; Aubinet, M.; Baldocchi, D.D.; Berbigier, P.; Bernhofer, C.; Ceulemans, R.; Dolman, A.; Field, C.; et al. Energy balance closure at FLUXNET sites. Agric. For. Meteorol.
**2002**, 113, 223–243. [Google Scholar] [CrossRef][Green Version] - Massman, W.J. A simple method for estimating frequency response corrections for eddy covariance systems. Agric. For. Meteorol.
**2000**, 104, 185–198. [Google Scholar] [CrossRef] - Schotanus, P.; Nieuwstadt, F.; De Bruin, H. Temperature measurement with a sonic anemometer and its application to heat and moisture fluxes. Bound. Layer Meteorol.
**1983**, 26, 81–93. [Google Scholar] [CrossRef] - Webb, E.K.; Pearman, G.I.; Leuning, R. Correction of flux measurements for density effects due to heat and water-vapor transfer. Q. J. R. Meteorol. Soc.
**1980**, 106, 85–100. [Google Scholar] [CrossRef] - RB, S. Introduction to Boundary Layer Meteorology; Springer: Dordrecht, The Netherlands, 1988. [Google Scholar]
- Rosenberg, N.J.; Blad, B.B.; Verma, S.B. Microclimate: The Biological Environment, 2nd ed.; John Wiley & Son: New York, NY, USA, 1983; p. 135. [Google Scholar]
- Qiang, Z.; Zeng, J.; Yao, T. Interaction of aerodynamic roughness length and windflow conditions and its parameterization over vegetation surface. Chin. Sci. Bull.
**2012**, 57, 1559–1567. [Google Scholar] [CrossRef][Green Version] - Prueger, J.H.; Kustas, W.P.; Hipps, L.; Hatfield, J.L. Aerodynamic parameters and sensible heat flux estimates for a semi-arid ecosystem. J. Arid. Environ.
**2004**, 57, 87–100. [Google Scholar] [CrossRef] - Ao, Y.H.; Lv, S.H.; Han, B.; Li, Z.G. Analysis on Micrometeorology Characteristics in Surface Layer over Badan Jaran Desert in summer. Plateau Meteorol.
**2013**, 32, 1682–1691. [Google Scholar] - Xinqian, Z.; Fan, Y.; Chaofan, L.; Honglin, P.; Chunrong, J.; Mamtimin, A.; Wen, H.; Xinghua, Y.; Chenglong, Z. The Turbulence Strength of Surface Layer and Land Surface Processes over Guaizi Lake Shifting Sandy Land on the Northern Margin of Badain Jaran Desert. J. Desert Res.
**2019**, 39, 103–112. [Google Scholar] - McBean, G.A. The variations of the statistics of wind, temperature and humidity fluctuations with stability. Bound. Layer Meteorol.
**1971**, 1, 438–457. [Google Scholar] [CrossRef] - Singha, A.; Sadr, R. Characteristics of surface layer turbulence in coastal area of Qatar. Environ. Fluid Mech.
**2012**, 12, 515–531. [Google Scholar] [CrossRef]

**Figure 1.**Photos of the monitoring sites in the PV plant (

**a**) and the reference site (east to the PV plant) (

**b**) in the Wujiaqu Gobi area. The map (

**c**) shows the layout of the PV plant and the locations of two observation systems (from Google Earth by the end of 2018).

**Figure 2.**Diurnal variation of the atmospheric stability parameter $\zeta $ in the PV plant (

**a**) and the reference site (

**b**). The height of the box shows the range from the 25th to 75th percentile. The horizontal red line inside the box and solid red dot denote the median value and mean value, respectively. The ends of the whiskers are drawn to the 10th and 90th percentile values. (

**c**) is the diurnal variation of aerodynamic roughness ${Z}_{0}$ in the PV plant (red line) and the reference site (black line). BJT is for Beijing time.

**Figure 3.**Diurnal variation of the scaling parameter of velocity ${u}_{*}$ (

**a**) and temperature ${T}_{*}$ (

**b**) in the PV plant (red line) and the reference site (black line), BJT is to Beijing time.

**Figure 4.**The average daily variation of turbulence strength component of longitudinal wind ${I}_{\mathrm{u}}$ (

**a**), lateral wind ${I}_{\mathrm{v}}$ (

**b**), and vertical wind ${I}_{\mathrm{w}}$ (

**c**) in the PV plant (red line) and the reference site (black line), BJT is to Beijing time.

**Figure 5.**Relationship between the turbulence strength and wind speed at the PV plant (left: (

**a**,

**c**,

**e**) and the reference site (right: (

**b**,

**d**,

**f**), U is the horizonal wind speed.

**Figure 6.**Diurnal variation of turbulent kinetic energy e in the PV plant (

**a**) and the reference site (

**b**). The height of the box shows the range from the 25th to 75th percentile. The horizontal red line inside the box and solid red dot denote the median value and mean value, respectively. The ends of the whiskers are drawn to the 10th and 90th percentile values. The relationship between turbulent kinetic energy and wind speed for the PV plant (

**c**) and the reference site (

**d**), U is the horizonal wind speed.

**Figure 7.**Diurnal variation of momentum flux in the PV plant (

**a**) and the reference site (

**b**). The height of the box shows the range from the 25th to 75th percentile. The horizontal red line inside the box and the solid red dot denote the median value and mean value, respectively. The ends of the whiskers were drawn to the 10th and 90th percentile values.

**Figure 8.**Diurnal variation of sensible heat flux (H:$\mathrm{W}\xb7{\mathrm{m}}^{-2}$) in the PV plant (

**a**) and the reference site (

**b**) and the latent heat flux (LE:$\mathrm{W}\xb7{\mathrm{m}}^{-2}$) in the PV plant (

**c**) and the reference site (

**d**). The height of the box shows the range from the 25th to 75th percentile. The horizontal red line inside the box and solid red dot denote the median value and mean value, respectively. The ends of the whiskers were drawn to the 10th and 90th percentile values.

**Figure 9.**Normalized standard deviation of longitudinal wind velocity (${\sigma}_{\mathrm{u}}/{u}_{*}$), lateral wind velocity (${\sigma}_{\mathrm{v}}/{u}_{*}$), and vertical wind velocity ${\sigma}_{\mathrm{w}}/{u}_{*}$ for unstable stratification conditions at the PV plant (left: (

**a**,

**c**,

**e**) and the reference site (right: (

**b**,

**d**,

**f**) from June to October 2019. The red solid line represents the empirical relations applied to the observed data.

**Figure 10.**Normalized standard deviation of longitudinal wind velocity (${\sigma}_{\mathrm{u}}/{u}_{*}$), lateral wind velocity (${\sigma}_{\mathrm{v}}/{u}_{*}$), and vertical wind velocity ${\sigma}_{\mathrm{w}}/{u}_{*}$ for stable stratification conditions at the PV plant (left: (

**a**,

**c**,

**e**) and the reference site (right: (

**b**,

**d**,

**f**) from June to October 2019. The red solid line represents the empirical relations applied to the observed data.

**Table 1.**Optimal similarity function coefficients for fitting normalized standard deviation of longitudinal wind velocity (${\sigma}_{\mathrm{u}}/{u}_{*}$), lateral wind velocity (${\sigma}_{\mathrm{v}}/{u}_{*}$), vertical wind velocity ${\sigma}_{\mathrm{w}}/{u}_{*}$ under unstable and stable stratification conditions for the observed data from June to October 2019.

${\mathit{\sigma}}_{\mathit{i}}\mathbf{/}{\mathit{u}}_{\mathbf{*}}$ | Unstable | Stable | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|

PV | REF | PV | REF | |||||||||

a | b | R^{2} | a | b | R^{2} | a | b | R^{2} | a | b | R^{2} | |

${\sigma}_{\mathrm{u}}/{u}_{*}$ | 2.24 | 11.97 | 0.67 | 3.01 | 8.67 | 0.59 | 3.16 | 3.73 | 0.41 | 3.50 | 6.05 | 0.30 |

${\sigma}_{\mathrm{v}}/{u}_{*}$ | 2.30 | 6.50 | 0.58 | 3.11 | 7.4 | 0.53 | 2.1 | 3.52 | 0.30 | 3.31 | 5.7 | 0.20 |

${\sigma}_{\mathrm{w}}/{u}_{*}$ | 1.03 | 4.51 | 0.92 | 1.01 | 5.42 | 0.89 | 1.12 | 0.67 | 0.30 | 1.08 | 0.78 | 0.15 |

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Jiang, J.; Gao, X.; Chen, B. The Impact of Utility-Scale Photovoltaics Plant on Near Surface Turbulence Characteristics in Gobi Areas. *Atmosphere* **2021**, *12*, 18.
https://doi.org/10.3390/atmos12010018

**AMA Style**

Jiang J, Gao X, Chen B. The Impact of Utility-Scale Photovoltaics Plant on Near Surface Turbulence Characteristics in Gobi Areas. *Atmosphere*. 2021; 12(1):18.
https://doi.org/10.3390/atmos12010018

**Chicago/Turabian Style**

Jiang, Junxia, Xiaoqing Gao, and Bolong Chen. 2021. "The Impact of Utility-Scale Photovoltaics Plant on Near Surface Turbulence Characteristics in Gobi Areas" *Atmosphere* 12, no. 1: 18.
https://doi.org/10.3390/atmos12010018