Assessment of Climate Change in Central Asia from 1980 to 2100 Using the Köppen-Geiger Climate Classification
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data
2.3. Methodologies
2.4. The Definition of Climate-Sensitivity Region
3. Results
3.1. Spatial Distribution of the Köppen-Geiger Climate Types in CA
3.2. Statistical Analysis of the Evolution of Climate Zones’ Extent
3.3. Climate−Sensitivity Intensity and Spatial Distribution
4. Discussion
4.1. Projected Changes in Precipitation and Temperature
4.2. Comparison of This Study with Prior Studies
4.3. Uncertainties
5. Conclusions
- (1)
- Although the proportions of climatic zones vary in different periods and emission scenarios, the arid climatic zone (B) (36–43%) and cold temperate climatic zone (D) (50–55%) dominated the Central Asia.
- (2)
- In both the historical and future period, the hotter and dryer subtypes of B (BWh and BSh) gradually cover more surface area in Turkmenistan and the northern Iranian Plateau, the area covered by ET shrunk in lower region of Kunlun Mountains and Tianshan Mountains. The other trends of climate type shifts did not pass the significant test during historical. However, under RCP4.5, the area covered by BWk declined and altered by BWh and BSh expansion with a rate of 25.01 and 7.13 grids/decade. The temperate climate zone and warmer subtype of D (Dfa) augmented with a rate of 6.60 and 27.15 grids/decade, which caused the downsizing in area covered by Dfb and Dfc under RCP4.5 scenario. The climatic zone shifts under RCP8.5 and RCP2.6 scenario are similar to RCP4.5 but with pronounced and small magnitude, respectively. The climate type shifts were mainly a consequence of variations of mean annual temperature, accumulate annual precipitation, temperature in hottest month and maximum precipitation in winter months.
- (3)
- In both periods and all GHG emission scenarios, the Taklimakan, Gurbantunggut, Karakum and Kyzylkum desert maintained stable arid climate type, while in the Kazakh Hills and its northern region and the Ili River valley showed a higher climate-sensitivity and might experience more frequent climatic zone shifts; the index calculated this by ensemble dataset and it was confirmed by multiple data sources.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Qin, D.; Plattner, G.; Tignor, M.; Allen, S.; Boschung, J.; Nauels, A.; Xia, Y.; Bex, V.; Midgley, P. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Available online: https://www.ipcc.ch/site/assets/uploads/2018/03/WG1AR5_SummaryVolume_FINAL.pdf (accessed on 18 December 2020).
- Mooney, H.A.; Vitousek, P.M.; Matson, P.A. Exchange of materials between terrestrial ecosystems and the atmosphere. Science 1987, 238, 926–932. [Google Scholar] [CrossRef] [PubMed]
- Hoegh-Guldberg, O.; Jacob, D.; Bindi, M.; Brown, S.; Camilloni, I.; Diedhiou, A.; Djalante, R.; Ebi, K.; Engelbrecht, F.; Guiot, J. Impacts of 1.5 °C Global Warming on Natural and Human Systems. In Global Warming of 1.5 °C; An IPCC Special Report; IPCC Secretariat: Geneva, Switzerland, 2018. [Google Scholar]
- Ezcurra, E. Global Deserts Outlook; UNEP/Earthprint: Hertfordshire, UK, 2006. [Google Scholar]
- Yu, Y.; Pi, Y.; Yu, X.; Ta, Z.; Sun, L.; Disse, M.; Zeng, F.; Li, Y.; Chen, X.; Yu, R. Climate change, water resources and sustainable development in the arid and semi-arid lands of Central Asia in the past 30 years. J. Arid Land 2019, 11, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Hu, Z.; Zhang, C.; Hu, Q.; Tian, H. Temperature Changes in Central Asia from 1979 to 2011 Based on Multiple Datasets. J. Clim. 2014, 27, 1143–1167. [Google Scholar] [CrossRef]
- Huang, J.; Ji, M.; Xie, Y.; Wang, S.; He, Y.; Ran, J. Global semi-arid climate change over last 60 years. Clim. Dyn. 2016, 46, 1131–1150. [Google Scholar] [CrossRef] [Green Version]
- Feng, S.; Hu, Q.; Huang, W.; Ho, C.-H.; Li, R.; Tang, Z. Projected climate regime shift under future global warming from multi-model, multi-scenario CMIP5 simulations. Glob. Planet. Chang. 2014, 112, 41–52. [Google Scholar] [CrossRef]
- Barry, R.G.; Chorley, R.J. Atmosphere, Weather and Climate; Routledge: New York, NY, USA, 2009. [Google Scholar]
- Cramer, W.P.; Leemans, R. Assessing impacts of climate change on vegetation using climate classification systems. In Vegetation Dynamics & Global Change; Springer: Boston, MA, USA, 1993; pp. 190–217. [Google Scholar]
- Belda, M.; Holtanová, E.; Halenka, T.; Kalvová, J. Climate classification revisited: From Köppen to Trewartha. Clim. Res. 2014, 59, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Beck, H.E.; Zimmermann, N.E.; McVicar, T.R.; Vergopolan, N.; Berg, A.; Wood, E.F. Present and future Köppen-Geiger climate classification maps at 1-km resolution. Sci. Data 2018, 5, 180214, Correction in: 2020, 7, 1–2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, D.; Chen, H.W. Using the Köppen classification to quantify climate variation and change: An example for 1901–2010. Environ. Dev. 2013, 6, 69–79. [Google Scholar] [CrossRef]
- Feng, S.; Ho, C.-H.; Hu, Q.; Oglesby, R.J.; Jeong, S.-J.; Kim, B.-M. Evaluating observed and projected future climate changes for the Arctic using the Köppen-Trewartha climate classification. Clim. Dyn. 2012, 38, 1359–1373. [Google Scholar] [CrossRef] [Green Version]
- Chan, D.; Wu, Q. Significant anthropogenic-induced changes of climate classes since 1950. Sci. Rep. 2015, 5, 13487. [Google Scholar] [CrossRef] [Green Version]
- Wang, M.; Overland, J.E. Detecting Arctic climate change using Köppen climate classification. Clim. Chang. 2004, 67, 43–62. [Google Scholar] [CrossRef]
- Schiemann, R.; Lüthi, D.; Vidale, P.L.; Schär, C. The precipitation climate of Central Asia—Intercomparison of observational and numerical data sources in a remote semiarid region. Int. J. Climatol. 2008, 28, 295–314. [Google Scholar] [CrossRef]
- Peel, M.C.; Finlayson, B.L.; McMahon, T.A. Updated World Map of the Köppen-Geiger Climate Classification. Hydrol. Earth Syst. Sci. 2007, 11, 1633–1644. [Google Scholar] [CrossRef] [Green Version]
- Cowan, P.J. Geographic usage of the terms Middle Asia and Central Asia. J. Arid Environ. 2007, 69, 359–363. [Google Scholar] [CrossRef]
- Kharlamova, N.; Revyakin, V. Regional climate and environmental change in Central Asia. In Environmental Security and Sustainable Land Use-with Special Reference to Central Asia; Springer: Dordrecht, The Netherlands, 2006; pp. 19–26. [Google Scholar]
- Lioubimtseva, E.; Henebry, G.M. Climate and environmental change in arid Central Asia: Impacts, vulnerability, and adaptations. J. Arid Environ. 2009, 73, 963–977. [Google Scholar] [CrossRef]
- Hu, R.; Jiang, F.; Wang, Y.; Li, J.; Li, Y.; Abdimijit, A.; Luo, G.; Zhang, J. Arid ecological and geographical conditions in five countries of Central Asia. Arid Zone Res. 2014, 31, 1–12. [Google Scholar]
- Bothe, O.; Fraedrich, K.; Zhu, X. Precipitation climate of Central Asia and the large-scale atmospheric circulation. Theor. Appl. Climatol. 2012, 108, 345–354. [Google Scholar] [CrossRef]
- Song, S.; Bai, J. Increasing Winter Precipitation over Arid Central Asia under Global Warming. Atmosphere 2016, 7, 139. [Google Scholar] [CrossRef] [Green Version]
- Harris, I.; Jones, P.D.; Osborn, T.J.; Lister, D.H. Updated high-resolution grids of monthly climatic observations–the CRU TS3. 10 Dataset. Int. J. Climatol. 2014, 34, 623–642. [Google Scholar] [CrossRef] [Green Version]
- Willmott, C.J.; Matsuura, K. Terrestrial Air Temperature and Precipitation: Monthly and Annual Time Series (1950–1999) Version 1.02; Center for Climatic Research, University of Delaware: Newark, Delaware, 2001. [Google Scholar]
- Dee, D.P.; Uppala, S.M.; Simmons, A.; Berrisford, P.; Poli, P.; Kobayashi, S.; Andrae, U.; Balmaseda, M.; Balsamo, G.; Bauer, D.P. The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc. 2011, 137, 553–597. [Google Scholar] [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Viovy, N. CRUNCEP Version 7-Atmospheric Forcing Data for the Community Land Model; Research Data Archive at the National Center for Atmospheric Research; Computational and Information Systems Laboratory: Boulder CO, USA, 2018. [Google Scholar]
- Taylor, K.E.; Stouffer, R.J.; Meehl, G.A. An overview of CMIP5 and the experiment design. Bull. Am. Meteorol. Soc. 2012, 93, 485–498. [Google Scholar] [CrossRef] [Green Version]
- Madsen, H. Time Series Analysis; CRC Press: Boca Raton, FL, USA, 2007. [Google Scholar]
- Hamed, K.H. Trend detection in hydrologic data: The Mann–Kendall trend test under the scaling hypothesis. J. Hydrol. 2008, 349, 350–363. [Google Scholar] [CrossRef]
- Zhang, P.; Cai, Y.; Yang, W.; Yi, Y.; Yang, Z.; Fu, Q. Contributions of climatic and anthropogenic drivers to vegetation dynamics indicated by NDVI in a large dam-reservoir-river system. J. Clean. Prod. 2020, 256, 120477. [Google Scholar] [CrossRef]
- Li, Y.; Zhu, G. A new definition method of climate-sensitive region and its prediction. Acta Geogr. Sin. 2018, 73, 1283–1295. [Google Scholar]
- Luo, M.; Liu, T.; Meng, F.; Duan, Y.; Bao, A.; Frankl, A.; De Maeyer, P. Spatiotemporal characteristics of future changes in precipitation and temperature in Central Asia. Int. J. Climatol. 2019, 39, 1571–1588. [Google Scholar] [CrossRef]
- Rubel, F.; Kottek, M. Observed and projected climate shifts 1901–2100 depicted by world maps of the Köppen-Geiger climate classification. Meteorol. Z. 2010, 19, 135–141. [Google Scholar] [CrossRef] [Green Version]
- Jo, S.; Ahn, J.B.; Cha, D.h.; Min, S.K.; Suh, M.S.; Byun, Y.H.; Kim, J.U. The Köppen-Trewartha Climate-Type Changes over the CORDEX-East Asia Phase 2 Domain Under 2 and 3° C Global Warming. Geophys. Res. Lett. 2019, 46, 14030–14041. [Google Scholar] [CrossRef] [Green Version]
- Beck, C.; Grieser, J.; Kottek, M.; Rubel, F.; Rudolf, B. Characterizing global climate change by means of Köppen climate classification. Klimastatusbericht 2005, 51, 139–149. [Google Scholar]
- Huang, J.-p.; Guan, X.-d.; Ji, F. Enhanced cold-season warming in semi-arid regions. Atmos. Chem. Phys. 2012, 12, 5391. [Google Scholar] [CrossRef] [Green Version]
- Chen, F.; Huang, W.; Jin, L.; Chen, J.; Wang, J. Spatiotemporal precipitation variations in the arid Central Asia in the context of global warming. Sci. China Earth Sci. 2011, 54, 1812–1821. [Google Scholar] [CrossRef]
- Hassan, I.; Kalin, R.M.; White, C.J.; Aladejana, J.A. Selection of CMIP5 GCM ensemble for the projection of Spatio-temporal changes in precipitation and temperature over the Niger Delta, Nigeria. Water 2020, 12, 385. [Google Scholar] [CrossRef] [Green Version]
- Jiang, D.; Tian, Z.; Lang, X. Reliability of climate models for China through the IPCC Third to Fifth Assessment Reports. Int. J. Climatol. 2016, 36, 1114–1133. [Google Scholar] [CrossRef]
- Deng, Z.; Qiu, X.; Liu, J.; Madras, N.; Wang, X.; Zhu, H. Trend in frequency of extreme precipitation events over Ontario from ensembles of multiple GCMs. Clim. Dyn. 2016, 46, 2909–2921. [Google Scholar] [CrossRef]
Dataset | Resolution | Origin |
---|---|---|
CRU V3.1 | 0.5° × 0.5° | The Climatic Research Unit at the University of East Anglia |
UDel_AirT_Precip | 0.5° × 0.5° | University of Delaware |
ERA-Intreim | 0.25° × 0.25° | ECMRWF |
ERA5 | 0.25° × 0.25° | ECMWF |
CRUNCEP | 0.5° × 0.5° | NCEP |
CanESM2 | 2.185° × 2.815° | Canadian Centre for Climate, Canada |
CNRM-CM5 | 1.40° × 1.40° | Centre National de Recherches Meteorologiques, France |
CSIRO-Mk3.6 | 1.875° × 1.875° | Commonwealth Scientific and Industrial Research, Australia |
GFDL-CM3 | 2.5° × 2.0° | Geophysical Fluid Dynamics Laboratory, USA |
GISS-E2-R | 2.5° × 2.0° | NASA Goddard Institute for Space Studies, USA |
HadGEM2-ES | 1.875° × 1.875° | Met Office Hadley Centre, UK |
IPSL-CM5A-LR | 3.75° × 3.75° | Institute Pierre-Simon Laplace, France |
MIROC5 | 1.40° × 1.40° | Atmosphere and Ocean Research Institute, Japan |
MPI-ESM-LR | 1.875° × 1.875° | Max Planck Institute for Meteorology, Germany |
MRI-CGCM3 | 1.125° × 1.125° | Meteorological Research Institute, Japan |
NorESM1-M | 2.5° × 1.875° | Norwegian Climate Centre, Norway |
Zone | Type\Sub-Type | Criteria |
---|---|---|
A Tropical | Tcold ≥ 18 | |
Af Rainforest | Pdry ≥ 60 | |
Am Monsoon | Not(Af) & Pdry ≥ 100-MAP/25 | |
Aw Savannah | Not(Af) & Pdry < 100-MAP/25 | |
B Arid | MAT < 10*Pth | |
BW Desert | MAT < 5*Pth | |
BWh Hot Desert | MAT ≥ 18 | |
BWk Cold Desert | MAT < 18 | |
BS Steppe | MAT ≥ 5*Pth | |
BSh Hot Steppe | MAT ≥ 18 | |
BSk Cold Steppe | MAT < 18 | |
C Temperate | Thot > 10&0 < Tcold < 18 | |
Cs Dry Summer | Psdry < 40&Psdry < Pwwet/3 | |
Csa Hot Summer | Thot ≥ 22 | |
Csb Warm Summer | Not (Csa) & Tmon10 ≥ 4 | |
Csc Dry Summer | Not (Csa or Csb) & 1 < Tmon10 < 4 | |
Cw Dry Winter | Pwdry < Pswet/10 | |
Cwa Hot Summer | Thot ≥ 22 | |
CwbWarm Summer | Not (Cwa) & Tmon10 ≥ 4 | |
Cwc Cold Summer | Not (Cwa or Cwb) & 1<Tmon10< 4 | |
Cf Without Dry Season | Not (Cs) or (Cw) | |
Cfa Hot Summer | Thot ≥ 22 | |
Cfb Warm Summer | Not (Cfa) & Tmon10 ≥ 4 | |
Cfc Cold Summer | Not (Cfa or Cfb) & 1 < Tmon10 < 4 | |
D Cold Temperate | Thot > 10 & Tcol ≤ 0 | |
Ds Dry Summer | Psdry < 40 & Psdry < Pwwet/3 | |
Dsa Hot Summer | Thot > 22 | |
DsbWarm Summer | Not (Dsa) & Tmon10 ≥ 4 | |
Dsc Cold Summer | Not (Dsa, Dsb or Dsd) | |
DsdVeryColdWinter | Not (Dsa or Dsb) & Tcold < 38 | |
Dw Dry Winter | Pwdry < Pswet/10 | |
Dwa Hot Summer | Thot > 22 | |
Dwb Warm Summer | Not (Dwa) & Tmon10 ≥ 4 | |
Dwc Cold Summer | Not (Dwa, Dwb or Dwd) | |
Dwd Very Cold Winter | Not (Dwa or Dwb) & Tcold < 38 | |
Df Without Dry Season | Not (Ds) or (Dw) | |
Dfa Hot Summer | Thot > 22 | |
Dfb Warm Summer | Not (a) & Tmon10 ≥ 4 | |
Dfc Cold Summer | Not (a, b or d) | |
Dfd Very Cold Winter | Not (a or b) & Tcold < −38 | |
E Polar | Thot < 10 | |
ET Tundra | Thot > 0 | |
EF Frost | Thot ≤ 0 |
Climate Type | Trend (104 km2/Decade) | MAP | MAT | Thot | Tcold | Pdry | Psdry | Pwdry | Pswet | Pwwet | Tmo10 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
BWh | His | 2.41 *** | 0.13 | 0.43 *** | −0.05 | −0.28 | −0.15 | −0.09 | −0.16 | −0.14 | 0.08 | −0.18 |
RCP2.6 | 0.36 *** | −0.014 | −0.02 | 0.34 *** | 0.06 | 0.01 | 0.01 | −0.02 | −0.02 | 0.04 | ||
RCP4.5 | 6.24 *** | 0.04 | 0.43 *** | −0.01 | 0.018 | −0.08 | 0.1 | −0.03 | −0.26 | −0.01 | ||
RCP8.5 | 16.53 *** | −0.10 | 0.33 *** | 0.16 | 0.15 | −0.2 * | 0.20 * | 0.11 | −0.22 ** | 0.09 | 0.1 | |
BWk | His | 4.63 | −0.5 *** | 0.36 ** | −0.02 | −0.04 | −0.17 | 0.20 | 0.15 | −0.20 | 0.11 | −0.27 * |
RCP2.6 | 0.04 | −0.31 *** | 0.06 | 0.25 ** | 0.11 | 0.08 | 0.06 | 0.17 | −0.18 * | −0.28 ** | ||
RCP4.5 | 4.48 *** | −0.35 *** | 0.14 | −0.12 | −0.05 | −0.02 | 0.05 | 0.12 | −0.22 ** | −0.10 | ||
RCP8.5 | 12.70 *** | −0.26 ** | 0.08 | −0.22 ** | 0.01 | 0.08 | −0.06 | 0.01 | −0.06 | −0.1 | −0.07 | |
BSh | His | 3.92 *** | 0.01 | 0.67 *** | −0.03 | −0.50 *** | −0.00 | 0.14 | 0.00 | 0.30 * | −0.02 | 0.10 |
RCP2.6 | 0.48 *** | 0.25 ** | −0.20 ** | 0.65 *** | 0.05 | −0.01 | −0.02 | −0.19 * | 0.12 | 0.12 | ||
RCP4.5 | 1.78 *** | 0.20 * | 0.32 *** | −0.09 | 0.08 | 0.00 | 0.01 | −0.15 | 0.01 | 0.00 | ||
RCP8.5 | 7.97 *** | 0.01 | 0.15 | 0.05 | 0.00 | −0.01 | 0.03 | −0.06 | 0.13 | 0.01 | 0.63 *** | |
BSk | His | 6.89 | −0.39 ** | 0.13 | 0.22 | 0.34 ** | 0.25 | 0.16 | 0.20 | 0.18 | −0.08 | 0.38 * |
RCP2.6 | −0.19 | −0.21 ** | −0.02 | 0.19 * | 0.20 * | −0.09 | −0.01 | −0.02 | 0.05 | 0.10 | ||
RCP4.5 | −0.09 | −0.28 *** | −0.05 | 0.09 | −0.03 | −0.01 | −0.03 | 0.12 | 0.36 *** | 0.07 | ||
RCP8.5 | −0.60 * | −0.08 | 0.06 | 0.09 | −0.19 *** | 0.10 | −0.11 | 0.07 | −0.02 | −0.14 | −0.35 *** | |
Csa | His | 1.37 | 0.56 | −0.08 | 0.07 | 0.43 ** | 0.16 | −0.24 | −0.30 * | −0.14 | −0.08 | |
RCP2.6 | 0.50 * | 0.15 | −0.04 | −0.21 * | 0.37 *** | −0.13 | 0.10 | −0.13 | 0.28 *** | 0.27 *** | ||
RCP4.5 | 1.65 *** | 0.27 *** | −0.13 | 0.02 | 0.42 *** | −0.06 | 0.04 | −0.08 | 0.06 | 0.04 | ||
RCP8.5 | 2.39 *** | 0.12 | −0.19 * | 0.07 | 0.38 *** | 0.06 | −0.09 | 0.08 | 0.12 | 0.19 * | −0.01 | |
Dsb | His | −3.68 | −0.24 | 0.21 | −0.71 *** | −0.23 | −0.28 | −0.34 ** | 0.06 | 0.23 | 0.33 * | −0.17 |
RCP2.6 | −0.29 ** | −0.00 | 0.09 | −0.32 *** | 0.07 | 0.03 | −0.08 | −0.00 | 0.15 | 0.10 | ||
RCP4.5 | −0.86 *** | −0.35 *** | 0.14 | −0.12 | −0.05 | −0.02 | 0.05 | 0.12 | −0.10 | −0.22 ** | ||
RCP8.5 | −17.76 *** | 0.16 | −0.41 *** | 0..11 | 0.20 | −0.08 | 0.06 | 0.06 | 0.11 | 0.14 | 0.16 | |
Dfa | His | −4.36 | 0.02 | −0.15 | 0.33 * | −0.13 | 0.11 | 0.27 | 0.11 | −0.07 | −0.09 | −0.01 |
RCP2.6 | 5.76 *** | 0.19 * | 0.06 | 0.65 *** | −0.36 *** | −0.13 | 0.30 *** | 0.00 | −0.20 | 0.16 | ||
RCP4.5 | 6.78 *** | 0.20 * | −0.09 | 0.32 *** | −0.14 | 0.09 | 0.02 | −0.21 | −0.13 * | −0.02 | ||
RCP8.5 | 9.78 *** | 0.33 *** | −0.20* | 0.39 *** | −0.11 | 0.035 | 0.00 | −0.19 | −0.15 | −0.12 | −0.27 * | |
Dfb | His | 7.91 | 0.14 | 0.47 *** | −0.30 * | −0.27 | 0.19 | 0.22 | −0.02 | 0.035 | −0.11 | 0.05 |
RCP2.6 | −2.48 *** | 0.19 * | −0.25 ** | −0.66 *** | −0.07 | −0.08 | 0.060 | 0.01 | 0.18 * | −0.05 | ||
RCP4.5 | −2.99 *** | 0.03 | 0.30 *** | −0.48 ** | −0.06 | 0.13 | −0.07 | 0.09 | −0.01 | −0.07 | ||
RCP8.5 | −3.01 *** | −0.14 | 0.23 ** | −0.29 *** | 0.00 | 0.09 | −0.05 | 0.10 | −0.08 | 0.05 | 0.038 | |
Dfc | His | 1.30 | −0.25 | −0.06 | 0.17 | 0.28 | 0.14 | 0.30 * | 0.28 | 0.10 | 0.05 | 0.01 |
RCP2.6 | −2.02 *** | −0.14 | 0.09 | −0.41 *** | −0.04 | 0.29 ** | −0.23 * | 0.02 | −0.18 * | −0.08 | ||
RCP4.5 | −7.41 *** | 0.01 | −0.33 *** | −0.09 | 0.10 | −0.04 | 0.02 | −0.11 | −0.12 | 0.09 | ||
RCP8.5 | −14.38 *** | 0.01 | −0.20 * | −0.45 ** | 0.02 | −0.11 | 0.1 | −0.06 | −0.01 | −0.01 | 0.04 | |
ET | His | −2.87 *** | −0.03 | −0.49 *** | −0.10 | 0.34 ** | 0.11 | 0.10 | 0.07 | −0.21 | −0.02 | −0.03 |
RCP2.6 | −0.93 *** | −0.07 | 0.10 | −0.76 *** | 0.016 | −0.13 | 0.15 | 0.08 | −0.06 | −0.17 | ||
RCP4.5 | −2.42 *** | 0.04 | −0.47 *** | −0.29 *** | 0.038 | −0.06 | 0.04 | −0.06 | −0.01 | 0.05 | ||
RCP8.5 | −6.07 *** | 0.03 | −0.42 *** | −0.13 | −0.10 | 0.02 | −0.02 | −0.10 | −0.05 | 0.12 | −0.38 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, H.; Luo, G.; Cai, P.; Hamdi, R.; Termonia, P.; De Maeyer, P.; Kurban, A.; Li, J. Assessment of Climate Change in Central Asia from 1980 to 2100 Using the Köppen-Geiger Climate Classification. Atmosphere 2021, 12, 123. https://doi.org/10.3390/atmos12010123
He H, Luo G, Cai P, Hamdi R, Termonia P, De Maeyer P, Kurban A, Li J. Assessment of Climate Change in Central Asia from 1980 to 2100 Using the Köppen-Geiger Climate Classification. Atmosphere. 2021; 12(1):123. https://doi.org/10.3390/atmos12010123
Chicago/Turabian StyleHe, Huili, Geping Luo, Peng Cai, Rafiq Hamdi, Piet Termonia, Philippe De Maeyer, Alishir Kurban, and Jianjun Li. 2021. "Assessment of Climate Change in Central Asia from 1980 to 2100 Using the Köppen-Geiger Climate Classification" Atmosphere 12, no. 1: 123. https://doi.org/10.3390/atmos12010123
APA StyleHe, H., Luo, G., Cai, P., Hamdi, R., Termonia, P., De Maeyer, P., Kurban, A., & Li, J. (2021). Assessment of Climate Change in Central Asia from 1980 to 2100 Using the Köppen-Geiger Climate Classification. Atmosphere, 12(1), 123. https://doi.org/10.3390/atmos12010123