CNT Parameterization Based on the Observed INP Concentration during Arctic Summer Campaigns in a Marine Environment
Abstract
:1. Introduction
2. Methods
2.1. Parameterization Approach
2.2. Field Measurements
3. Results
4. Discussion and Summary
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A. Comparison of CNT Approach and a Simpler Exponential Approach
References
- Hartmann, M.; Blunier, T.; Brügger, S.O.; Schmale, J.; Schwikowski, M.; Vogel, A.; Wex, H.; Stratmann, F. Variation of ice nucleating particles in the European Arctic over the last centuries. Geophys. Res. Lett. 2019, 46. [Google Scholar] [CrossRef] [Green Version]
- Intrieri, J.M. An annual cycle of Arctic surface cloud forcing at SHEBA. J. Geophys. Res. 2002, 107, 8039. [Google Scholar] [CrossRef]
- Baker, M.B.; Peter, T. Small-scale cloud processes and climate. Nature 2008, 451, 299–300. [Google Scholar] [CrossRef]
- DeMott, P.J.; Prenni, A.J.; Liu, X.; Kreidenweis, S.M.; Petters, M.D.; Twohy, C.H.; Richardson, M.S.; Eidhammer, T.; Rogers, D.C. Predicting global atmospheric ice nuclei distributions and their impacts on climate. Proc. Natl. Acad. Sci. USA 2010, 107, 11217–11222. [Google Scholar] [CrossRef] [Green Version]
- Vali, G.; DeMott, P.J.; Möhler, O.; Whale, T.F. Technical note: A proposal for ice nucleation terminology. Atmos. Chem. Phys. 2015, 15, 10263–10270. [Google Scholar] [CrossRef] [Green Version]
- Pruppacher, H.; Klett, J. Microphysics of Clouds and Precipitation, 2nd ed.; Kluwer Academic: Boston, MA, USA, 1997. [Google Scholar]
- Fletcher, N.H. The Physics of Rain Clouds; Cambridge University Press: New York, NY, USA, 1962. [Google Scholar]
- Cooper, W.A. Ice initiation in natural clouds. In Precipitation Enhancement—A Scientific Challenge, Meteorological Monographs; Braham, R.G., Jr., Ed.; American Meteorological Society: Boston, MA, USA, 1986; Volume 21, pp. 29–32. [Google Scholar]
- Meyers, M.P.; DeMott, P.J.; Cotton, W.R. New primary ice-nucleation parameterizations in an explicit cloud model. J. Appl. Meteorol. 1992, 31, 708–721. [Google Scholar] [CrossRef] [Green Version]
- Prenni, A.J.; Harrington, J.Y.; Tjernstrom, M.; DeMott, P.J.; Avramov, A.; Long, C.N.; Kreidenweis, S.M.; Olsson, P.Q.; Verlinde, J. Can ice nucleating aerosols effect Arctic seasonal climate? Bull. Am. Meteorol. Soc. 2007, 88, 541–550. [Google Scholar] [CrossRef] [Green Version]
- Lohmann, U.; Feichter, J.; Chuang, C.C.; Penner, J.E. Predicting the number of cloud droplets in the ECHAM GCM. J. Geophys. Res. 1999, 104, 9169–9198. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Penner, J.E. Ice nucleation parameterization for global models. Meteorol. Z. 2005, 14, 499–514. [Google Scholar] [CrossRef]
- Milbrandt, J.A.; Yau, M.K. A multimoment bulk microphysics parameterization. Part I: Analysis of the role of the spectral shape parameter. J. Atmos. Sci. 2005, 62, 3051–3064. [Google Scholar] [CrossRef] [Green Version]
- Morrison, H.; Gettelman, A. A new two-moment bulk stratiform cloud microphysics scheme in the Community Atmosphere Model, version 3 (CAM3). Part I: Description and numerical tests. J. Clim. 2008, 21, 3642–3659. [Google Scholar] [CrossRef]
- Connolly, P.J.; Möhler, O.; Field, P.R.; Saathoff, H.; Burgess, R.; Choularton, T.; Gallagher, M. Studies of heterogeneous freezing by three different desert dust samples. Atmos. Chem. Phys. 2009, 9, 2805–2824. [Google Scholar] [CrossRef] [Green Version]
- Niedermeier, D.; Hartmann, S.; Shaw, R.A.; Covert, D.; Mentel, T.F.; Schneider, J.; Poulain, L.; Reitz, P.; Spindler, C.; Clauß, T.; et al. Heterogeneous freezing of droplets with immersed mineral dust particles—Measurements and parameterization. Atmos. Chem. Phys. 2010, 10, 3601–3614. [Google Scholar] [CrossRef] [Green Version]
- Archuleta, C.M.; DeMott, P.J.; Kreidenweis, S.M. Ice nucleation by surrogates for atmospheric mineral dust and mineral dust/sulfate particles at cirrus temperatures. Atmos. Chem. Phys. 2005, 5, 2617–2634. [Google Scholar] [CrossRef] [Green Version]
- Field, P.R.; Heymsfield, A.J.; Bansemer, A. Shattering and particle interarrival times measured by optical array probes in ice clouds. J. Atmos. Ocean. Technol. 2006, 23, 1357–1371. [Google Scholar] [CrossRef] [Green Version]
- Kanji, Z.A.; Abbatt, J.P.D. Laboratory studies of ice formation via deposition mode nucleation onto mineral dust and n-hexane soot samples. J. Geophys. Res. 2006, 111, D16204. [Google Scholar] [CrossRef]
- Eastwood, M.L.; Cremel, S.; Gehrke, C.; Girard, E.; Bertram, A.K. Ice nucleation on mineral dust particles: Onset conditions, nucleation rates and contact angles. J. Geophys. Res. 2008, 113, D22203. [Google Scholar] [CrossRef] [Green Version]
- Welti, A.; Lüönd, F.; Lohmann, U. Influence of particle size on the ice nucleating ability of mineral dusts. Atmos. Chem. Phys. 2009, 9, 6705–6715. [Google Scholar] [CrossRef] [Green Version]
- Hoose, C.; Möhler, O. Heterogeneous ice nucleation on atmospheric aerosols: A review of results from laboratory experiments. Atmos. Chem. Phys. 2012, 12, 9817–9854. [Google Scholar] [CrossRef] [Green Version]
- Murray, B.J.; O’Sullivan, D.; Atkinson, J.D.; Webb, M.E. Ice nucleation by particles immersed in supercooled cloud droplets. Chem. Soc. Rev. 2012, 41, 6519–6554. [Google Scholar] [CrossRef] [Green Version]
- Möhler, O.; Field, P.R.; Connolly, P.; Benz, S.; Saathoff, H.; Schnaiter, M.; Wagner, R.; Cotton, R.; Krämer, M.; Mangold, A.; et al. Efficiency of the deposition mode ice nucleation on mineral dust particles. Atmos. Chem. Phys. 2006, 6, 3007–3021. [Google Scholar] [CrossRef] [Green Version]
- Pratt, K.A.; Demott, P.J.; French, J.R.; Wang, Z.; Westphal, D.L.; Heymsfield, A.J.; Twohy, C.H.; Prenni, A.J.; Prather, K.A. In situ detection of biological particles in cloud ice-crystals. Nat. Geosci. 2009, 2, 398–401. [Google Scholar] [CrossRef]
- Sullivan, R.C.; Guazzotti, S.A.; Sodeman, D.A.; Prather, K.A. Direct observations of the atmospheric processing of Asian mineral dust. Atmos. Chem. Phys. 2007, 7, 1213–1236. [Google Scholar] [CrossRef] [Green Version]
- Cziczo, D.J.; Froyd, K.D.; Gallavardin, S.J.; Moehler, O.; Benz, S.; Saathoff, H.; Murphy, D.M. Deactivation of ice nuclei due to atmospherically relevant surface coatings. Environ. Res. Lett. 2009, 4, 044013. [Google Scholar] [CrossRef]
- Eastwood, M.L.; Cremel, S.; Wheeler, M.; Murray, B.J.; Girard, E.; Bertram, A.K. Effects of sulfuric acid and ammonium sulfate coatings on the ice nucleation properties of kaolinite particles. Geophys. Res. Lett. 2009, 36, L02811. [Google Scholar] [CrossRef] [Green Version]
- Phillips, V.T.J.; DeMott, P.J.; Andronache, C. An empirical parameterization of heterogeneous ice nucleation for multiple chemical species of aerosol. J. Atmos. Sci. 2008, 65, 2757–2783. [Google Scholar] [CrossRef]
- Steinke, I.; Hoose, C.; Möhler, O.; Connolly, P.; Leisner, T. A new temperature- and humidity-dependent surface site density approach for deposition ice nucleation. Atmos. Chem. Phys. 2015, 15, 3703–3717. [Google Scholar] [CrossRef] [Green Version]
- DeMott, P.; Prenni, A.; McMeeking, G.; Sullivan, R.; Petters, M.; Tobo, Y.; Niemand, M.; Möhler, O.; Snider, J.; Wang, Z.; et al. Integrating laboratory and field data to quantify the immersion freezing ice nucleation activity of mineral dust particles. Atmos. Chem. Phys. 2015, 15, 393–409. [Google Scholar] [CrossRef] [Green Version]
- DeMott, P.J.; Hill, T.C.J.; McCluskey, C.S.; Prather, K.A.; Collins, D.B.; Sullivan, R.C.; Ruppel, M.J.; Mason, R.H.; Irish, V.E.; Lee, T.; et al. Sea spray aerosol as a unique source of ice nucleating particles. Proc. Natl. Acad. Sci. USA 2016, 113, 5797–5803. [Google Scholar] [CrossRef] [Green Version]
- Harrison, A.D.; Whale, T.F.; Carpenter, M.A.; Holden, M.A.; Neve, L.; O’Sullivan, D.; Vergara-Temprado, J.; Murray, B.J. Not all feldspars are equal: A survey of ice nucleating properties across the feldspar group of minerals. Atmos. Chem. Phys. 2016, 16, 10927–10940. [Google Scholar] [CrossRef] [Green Version]
- Ullrich, R.; Hoose, C.; Möhler, O.; Niem, M.; Wagner, R.; Höhler, K.; Hiranuma, N.; Saathoff, H.; Leisner, T. A new ice nucleation active site parameterization for desert dust and soot. J. Atmos. Sci. 2017, 74, 699–717. [Google Scholar] [CrossRef]
- Girard, E.; Dueymes, G.; Du, P.; Bertram, A.K. Assessment of the effects of acid-coated ice nuclei on the Arctic cloud microstructure, atmospheric dehydration, radiation and temperature during winter. Int. J. Climatol. 2013, 33, 599–614. [Google Scholar] [CrossRef]
- Keita, S.A.; Girard, E. Importance of Chemical Composition of Ice Nuclei on the Formation of Arctic Ice Clouds. Pure Appl. Geophys. 2016, 173, 3141–3163. [Google Scholar] [CrossRef]
- Abbatt, J.P.D.; Leaitch, W.R.; Aliabadi, A.A.; Bertram, A.K.; Blanchet, J.-P.; Boivin-Rioux, A.; Bozem, H.; Burkart, J.; Chang, R.Y.W.; Charette, J.; et al. Overview paper: New insights into aerosol and climate in the Arctic. Atmos. Chem. Phys. 2019, 19, 2527–2560. [Google Scholar] [CrossRef] [Green Version]
- Westbrook, C.D.; Illingworth, A.J. Evidence that ice forms primarily in supercooled liquid clouds at temperatures > −27 °C. Geophys. Res. Lett. 2011, 38, L14808. [Google Scholar] [CrossRef]
- Mason, R.H.; Chou, C.; McCluskey, C.S.; Levin, E.J.T.; Schiller, C.L.; Hill, T.C.J.; Huffman, J.A.; DeMott, P.J.; Bertram, A.K. The micro-orifice uniform deposit impactor-droplet freezing technique (MOUDI-DFT) for measuring concentrations of ice nucleating particles as a function of size: Improvements and initial validation. Atmos. Meas. Tech. 2015, 8, 2449–2462. [Google Scholar] [CrossRef] [Green Version]
- Irish, V.E.; Hanna, S.J.; Willis, M.D.; China, S.; Thomas, J.L.; Wentzell, J.J.B.; Cirisan, A.; Si, M.; Leaitch, W.R.; Murphy, J.G.; et al. Ice nucleating particles in the marine boundary layer in the Canadian Arctic during summer 2014. Atmos. Chem. Phys. 2019, 19, 1027–1039. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.P.; Hazra, A.; Levin, Z. Parameterizing ice nucleation rates using contact angle and activation energy derived from laboratory data. Atmos. Chem. Phys. 2008, 8, 7431–7449. [Google Scholar] [CrossRef] [Green Version]
- Marcolli, C.; Gedamke, S.; Peter, T.; Zobrist, B. Efficiency of immersion mode ice nucleation on surrogates of mineral dust. Atmos. Chem. Phys. 2007, 7, 5081–5091. [Google Scholar] [CrossRef] [Green Version]
- Kulkarni, G.; Dobbie, S. Ice nucleation properties of mineral dust particles: Determination of onset RHi, IN active fraction, nucleation time-lag, and the effect of active sites on contact angles. Atmos. Chem. Phys. 2010, 10, 95–105. [Google Scholar] [CrossRef] [Green Version]
- Chernoff, D.I.; Bertram, A.K. Effects of sulfate coatings on the ice nucleation properties of a biological ice nucleus and several types of minerals. J. Geophys. Res. 2010, 115, D20205. [Google Scholar] [CrossRef] [Green Version]
- Lüönd, F.; Stetzer, O.; Welti, A.; Lohmann, U. Experimental study on the ice nucleation ability of size selected kaolinite particles in the immersion mode. J. Geophys. Res. 2010, 115, D14201. [Google Scholar] [CrossRef]
- Wheeler, M.J.; Bertram, A.K. Deposition nucleation on mineral dust particles: A case against classical nucleation theory with the assumption of a single contact angle. Atmos. Chem. Phys. 2012, 12, 1189–1201. [Google Scholar] [CrossRef] [Green Version]
- Welti, A.; Lüönd, F.; Kanji, Z.A.; Stetzer, O.; Lohmann, U. Time dependence of immersion freezing: An experimental study on size selected kaolinite particles. Atmos. Chem. Phys. 2012, 12, 9893–9907. [Google Scholar] [CrossRef] [Green Version]
- Murray, B.J.; Broadley, S.L.; Wilson, T.W.; Atkinson, J.D.; Wills, R.H. Heterogeneous freezing of water droplets containing kaolinite particles. Atmos. Chem. Phys. 2011, 11, 4191–4207. [Google Scholar] [CrossRef] [Green Version]
- Keita, S.A.; Girard, É.; Raut, J.-C.; Leriche, M.; Pelon, J.; Onishi, T.; Blanchet, J.-P.; Cirisan, A. A new parameterization of ice heterogeneous nucleation coupled to aerosol chemistry in WRF-Chem model version 3.5.1: Evaluation through the ISDAC measurements. Geosci. Model Dev. Discuss. 2020. [Google Scholar] [CrossRef] [Green Version]
- Zobrist, B.; Koop, T.; Luo, B.P.; Marcolli, C.; Peter, T. Heterogeneous ice nucleation rate coefficient of water droplets coated by a nonadecanol monolayer. J. Phys. Chem. C 2007, 111, 2149–2155. [Google Scholar] [CrossRef]
- Smith, R.S.; Kay, B.D. The existence of supercooled liquid water at 150 K. Nature 1999, 398, 788–791. [Google Scholar] [CrossRef]
- Eadie, W.J. A Molecular Theory of the Homogeneous Nucleation of Ice in Supercooled Water. Ph.D. Thesis, University of Chicago, Cloud Physics Lab, Chicago, IL, USA, 1971. [Google Scholar]
- DeMott, P.J.; Rogers, D.C. Freezing nucleation rates of dilute solution droplets measured between −30 °C and −40 °C in laboratory simulations of natural clouds. J. Artnos. Sci. 1990, 47, 1056–1064. [Google Scholar] [CrossRef]
- Reinhardt, A.; Doye, J.P.K. Homogeneous TIP4P/2005 ice nucleation at low supercooling. J. Chem. Phys. 2013, 139, 096102. [Google Scholar] [CrossRef] [Green Version]
- Ickes, L.; Welti, A.; Hoose, C.; Lohmann, U. Classical nucleation theory of homogeneous freezing of water: Thermodynamic and kinetic parameters. Phys. Chem. Chem. Phys. 2015, 17, 5514–5537. [Google Scholar] [CrossRef] [PubMed]
- Trainer, M.G.; Toon, O.B.; Tolbert, M.A. Measurements of depositional ice nucleation on insoluble substrates at low temperatures: Implications for Earth and Mars. J. Phys. Chem. C. 2009, 113, 2036–2040. [Google Scholar] [CrossRef]
- Ladino, L.A.; Abbatt, J.P.D. Laboratory investigation of Martian water ice cloud formation using dust aerosol stimulants. J. Geophys. Res. 2013, 118, 14–25. [Google Scholar] [CrossRef]
- Ming, Y.; Russell, L. Predicted hygroscopic growth of sea salt aerosol. J. Geophys. Res. 2001, 106, 28259–28274. [Google Scholar] [CrossRef]
- Wheeler, M.J.; Mason, R.H.; Steunenberg, K.; Wagstaff, M.; Chou, C.; Bertram, A.K. Immersion freezing of supermicron mineral dust particles: Freezing results, testing different schemes for describing ice nucleation, and ice nucleation active site densities. J. Phys. Chem. A 2015, 119, 4358–4372. [Google Scholar] [CrossRef]
- Lagarias, J.C.; Reeds, J.A.; Wright, M.H.; Wright, P.E. Convergence Properties of the Nelder-Mead Simplex Method in Low Dimensions. SIAM J. Optim. 1998, 9, 112–147. [Google Scholar] [CrossRef] [Green Version]
- McCluskey, C.S.; Hill, T.C.J.; Sultana, C.M.; Laskina, O.; Trueblood, J.; Santander, M.V.; Beall, C.M.; Michaud, J.M.; Kreidenweis, S.M.; Prather, K.A.; et al. A mesocosm double feature: Insights into the chemical makeup of marine ice nucleating particles. J. Atmos. Sci. 2018, 75, 2405–2423. [Google Scholar] [CrossRef]
- Murphy, D.M.; Koop, T. Review of the vapour pressures of ice and supercooled water for atmospheric applications. Q. J. Roy. Meteor. Soc. 2005, 131, 1539–1565. [Google Scholar] [CrossRef]
- Ickes, L.; Welti, A.; Lohmann, U. Classical nucleation theory of immersion freezing: Sensitivity of contact angle schemes to thermodynamic and kinetic parameters. Atmos. Chem. Phys. 2017, 17, 1713–1739. [Google Scholar] [CrossRef] [Green Version]
Date | Time Mid-Sample (UTC) | Longitude () | Latitude () |
---|---|---|---|
16/07/2014 | 21:52 | −71.117 | 71.702 |
18/07/2014 | 20:37 | −81.018 | 73.569 |
19/07/2014 | 16:18 | −83.976 | 74.110 |
21/07/2014 | 14:21 | −92.225 | 74.237 |
25/07/2014 | 19:50 | −86.998 | 74.428 |
26/07/2014 | 17:13 | −75.270 | 73.926 |
31/07/2016 | 19:42 | −70.350 | 70.846 |
01/08/2016 | 22:08 | −70.353 | 71.292 |
02/08/2016 | 13:02 | −72.960 | 71.977 |
03/08/2016 | 13:46 | −75.762 | 72.638 |
09/08/2016 | 13:14 | −75.757 | 76.317 |
10/08/2016 | 16:44 | −76.436 | 77.192 |
14/08/2016 | 12:54 | −68.535 | 80.047 |
16/08/2016(1) | 12:30 | −76.838 | 76.794 |
16/08/2016(2) | 18:30 | −77.875 | 76.053 |
16/08/2016(3) | 23:40 | −78.633 | 74.940 |
17/08/2016(1) | 12:42 | −88.119 | 74.328 |
17/08/2016(2) | 16:28 | −91.054 | 74.430 |
17/08/2016(3) | 22:08 | −95.155 | 74.659 |
19/08/2016(1) | 12:56 | −96.763 | 71.557 |
19/08/2016(2) | 19:06 | −97.699 | 71.294 |
20/08/2016(1) | 13:48 | −100.703 | 69.172 |
20/08/2016(2) | 19:10 | −101.320 | 68.723 |
21/08/2016 | 15:02 | −101.802 | 68.246 |
22/08/2016 | 13:18 | −99.888 | 68.492 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cirisan, A.; Girard, E.; Blanchet, J.-P.; Keita, S.A.; Gong, W.; Irish, V.; Bertram, A.K. CNT Parameterization Based on the Observed INP Concentration during Arctic Summer Campaigns in a Marine Environment. Atmosphere 2020, 11, 916. https://doi.org/10.3390/atmos11090916
Cirisan A, Girard E, Blanchet J-P, Keita SA, Gong W, Irish V, Bertram AK. CNT Parameterization Based on the Observed INP Concentration during Arctic Summer Campaigns in a Marine Environment. Atmosphere. 2020; 11(9):916. https://doi.org/10.3390/atmos11090916
Chicago/Turabian StyleCirisan, Ana, Eric Girard, Jean-Pierre Blanchet, Setigui Aboubacar Keita, Wanmin Gong, Vickie Irish, and Allan K. Bertram. 2020. "CNT Parameterization Based on the Observed INP Concentration during Arctic Summer Campaigns in a Marine Environment" Atmosphere 11, no. 9: 916. https://doi.org/10.3390/atmos11090916
APA StyleCirisan, A., Girard, E., Blanchet, J. -P., Keita, S. A., Gong, W., Irish, V., & Bertram, A. K. (2020). CNT Parameterization Based on the Observed INP Concentration during Arctic Summer Campaigns in a Marine Environment. Atmosphere, 11(9), 916. https://doi.org/10.3390/atmos11090916