Variability and Trend in Integrated Water Vapour from ERA-Interim and IGRA2 Observations over Peninsular Malaysia
Abstract
:1. Introduction
2. Data and Methodology
2.1. Radiosonde
2.2. CM-SAF from ATOVS
2.3. ERA-Interim Reanalysis
2.4. Inter Comparison of Means and Variability of IWV
2.5. Trend Analysis
3. Results and Discussion
3.1. Comparison of IWV from ERA with RS and SAF Observations
3.1.1. Evaluation of IWV Means
3.1.2. Evaluation of Seasonal and Interannual Means
3.2. Variability of IWV for the 31-Year Period
3.2.1. Temporal Variation
3.2.2. Spatial Variation
3.3. Long Term Trends in ERA and RS IWV (1988–2018)
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Wagner, T.; Beirle, S.; Grzegorski, M.; Platt, U. Global trends (1996–2003) of total column precipitable water observed by Global Ozone Monitoring Experiment (GOME) on ERS-2 and their relation to near-surface temperature. J. Geophys. Res. 2006, 111, D12102. [Google Scholar] [CrossRef] [Green Version]
- Dai, A.; Wang, J.; Thorne, P.W.; Parker, D.E.; Haimberger, L.; Wang, X.L. A New Approach to Homogenize Daily Radiosonde Humidity Data. J. Clim. 2011, 24, 965–991. [Google Scholar] [CrossRef]
- Trenberth, K.E.; Fasullo, J.; Smith, L. Trends and variability in column-integrated atmospheric water vapor. Clim. Dyn. 2005, 24, 741–758. [Google Scholar] [CrossRef]
- Trenberth, K.E. Atmospheric moisture residence times and cycling: Implications for rainfall rates and climate change. Clim. Chang. 1998, 39, 667–694. [Google Scholar] [CrossRef]
- Alshawaf, F.; Balidakis, K.; Dick, G.; Heise, S.; Wickert, J. Estimating trends in atmospheric water vapor and temperature time series over Germany. Atmos. Meas. Tech. 2017, 10, 3117–3132. [Google Scholar] [CrossRef] [Green Version]
- Tuller, S.E. The relationship between precipitable water vapor and surface humidity in New Zealand. Mon. Weather Rev. 1977, 26, 197–212. [Google Scholar] [CrossRef]
- Peng, W.; Tongchuan, X.; Jiageng, D.; Jingmin, S.; Yanling, W.; Qingli, S.; Xin, D.; Hongliang, Y.; Dejun, S.; Jinrong, Z. Trends and Variability in Precipitable Water Vapor throughout North China from 1979 to 2015. Adv. Meteorol. 2017, 2017, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Dai, A.; Mears, C. Global Water Vapor Trend from 1988 to 2011 and Its Diurnal Asymmetry Based on GPS, Radiosonde, and Microwave Satellite Measurements. J. Clim. 2016, 29, 5205–5222. [Google Scholar] [CrossRef]
- Durre, I.; Williams, C.N.; Yin, X.; Vose, R.S. Radiosonde-based trends in precipitable water over the Northern Hemisphere: An update. J. Geophys. Res. Atmos. 2009, 114, 1–8. [Google Scholar] [CrossRef]
- Xu, G.; Ware, R.S.; Zhang, W.; Feng, G.; Liao, K.; Liu, Y. Effect of off-zenith observations on reducing the impact of precipitation on ground-based microwave radiometer measurement accuracy. Atmos. Res. 2014, 140–141, 85–94. [Google Scholar] [CrossRef]
- Opaluwa, Y.D.; Norazmi, M.F.; Musa, T.A.; Othman, R.; Eyo, E. Trend in ground-based GPS sensing of atmospheric water vapour: The Malaysian perspective. J. Teknol. 2014, 71, 35–47. [Google Scholar] [CrossRef] [Green Version]
- Bevis, M.; Businger, S.; Herring, T.A.; Rocken, C.; Anthes, R.A.; Ware, R.H. GPS meteorology: Remote sensing of atmospheric water vapor using the global positioning system. J. Geophys. Res. 1992, 97, 15787. [Google Scholar] [CrossRef]
- Wang, Y.; Tang, L.; Zhang, J.; Gao, T.; Wang, Q.; Song, Y.; Hua, D. Investigation of Precipitable Water Vapor Obtained by Raman Lidar and Comprehensive Analyses with Meteorological Parameters in Xi’an. Remote Sens. 2018, 10, 967. [Google Scholar] [CrossRef] [Green Version]
- Schröder, M.; Jonas, M.; Lindau, R.; Schulz, J.; Fennig, K. The CM SAF SSM/I-based total column water vapour climate data record: Methods and evaluation against re-analyses and satellite. Atmos. Meas. Tech. 2013, 6, 765–775. [Google Scholar] [CrossRef] [Green Version]
- Liu, Z.; Wong, M.S.; Nichol, J.; Chan, P.W. A multi-sensor study of water vapour from radiosonde, MODIS and AERONET: A case study of Hong Kong. Int. J. Climatol. 2013, 33, 109–120. [Google Scholar] [CrossRef] [Green Version]
- Chen, B.; Liu, Z. Global water vapor variability and trend from the latest 36 year (1979 to 2014) data of ECMWF and NCEP reanalyses, radiosonde, GPS, and microwave satellite. J. Geophys. Res. Atmos. 2016, 121, 11442–11462. [Google Scholar] [CrossRef]
- Ross, R.J.; Elliott, W.P. Tropospheric Water Vapor Climatology and Trends over North America: 1973–93. J. Clim. 1996, 9, 3561–3574. [Google Scholar] [CrossRef] [Green Version]
- Parracho, A.C.; Bock, O.; Bastin, S. Global IWV trends and variability in atmospheric reanalyses and GPS observations. Atmos. Chem. Phys. 2018, 18, 16213–16237. [Google Scholar] [CrossRef] [Green Version]
- Xie, B.; Zhang, Q.; Ying, Y. Trends in Precipitable Water and Relative Humidity in China: 1979–2005. J. Appl. Meteorol. Climatol. 2011, 50, 1985–1994. [Google Scholar] [CrossRef]
- Arguez, A.; Vose, R.S. The definition of the standard WMO climate normal: The key to deriving alternative climate normals. Bull. Am. Meteorol. Soc. 2011, 92, 699–704. [Google Scholar] [CrossRef]
- Alshawaf, F.; Hinz, S.; Mayer, M.; Meyer, F.J. Constructing accurate maps of atmospheric water vapor by combining interferometric synthetic aperture radar and GNSS observations. J. Geophys. Res. Atmos. 2015, 120, 1391–1403. [Google Scholar] [CrossRef]
- Uppala, S.M.; KÅllberg, P.W.; Simmons, A.J.; Andrae, U.; Bechtold, V.D.C.; Fiorino, M.; Gibson, J.K.; Haseler, J.; Hernandez, A.; Kelly, G.A.; et al. The ERA-40 re-analysis. Q. J. R. Meteorol. Soc. 2005, 131, 2961–3012. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, D.; Zhai, P.; Gu, G.; He, J. Spatial Distributions and Seasonal Variations of Tropospheric Water Vapor Content over the Tibetan Plateau. J. Clim. 2013, 26, 5637–5654. [Google Scholar] [CrossRef]
- Makama, E.K.; Lim, H.S. Characteristics of precipitable water over Peninsular Malaysia from satellite and in situ data. Terr. Atmos. Ocean. Sci. 2017, 28, 979–992. [Google Scholar] [CrossRef] [Green Version]
- Peng, G.; Li, J.; Chen, Y.; Norizan, A.P.; Tay, L. High-resolution surface relative humidity computation using MODIS image in Peninsular Malaysia. Chinese Geogr. Sci. 2006, 16, 260–264. [Google Scholar] [CrossRef]
- Amirabadizadeh, M.; Huang, Y.F.; Lee, T.S. Recent Trends in Temperature and Precipitation in the Langat River Basin, Malaysia. Adv. Meteorol. 2015, 2015, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Mahmud, M.R.; Numata, S.; Matsuyama, H.; Hosaka, T.; Hashim, M. Assessment of effective seasonal downscaling of TRMM precipitation data in Peninsular Malaysia. Remote Sens. 2015, 7, 4092–4111. [Google Scholar] [CrossRef] [Green Version]
- Wong, C.L.; Venneker, R.; Uhlenbrook, S.; Jamil, A.B.M.; Zhou, Y. Variability of rainfall in Peninsular Malaysia. Hydrol. Earth Syst. Sci. Discuss. 2009, 6, 5471–5503. [Google Scholar] [CrossRef] [Green Version]
- Dee, D.P.; Uppala, S.M.; Simmons, A.J.; Berrisford, P.; Poli, P.; Kobayashi, S.; Andrae, U.; Balmaseda, M.A.; Balsamo, G.; Bauer, P.; et al. The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc. 2011, 137, 553–597. [Google Scholar] [CrossRef]
- Ccoica-López, K.; Pasapera-Gonzales, J.; Jimenez, J. Spatio-Temporal Variability of the Precipitable Water Vapor over Peru through MODIS and ERA-Interim Time Series. Atmosphere 2019, 10, 192. [Google Scholar] [CrossRef] [Green Version]
- National Centers for Environmental Information Home Page. Available online: https://www.ncdc.noaa.gov/data-access/weather-balloon/integrated-global-radiosonde-archive (accessed on 10 June 2020).
- Mattar, C.; Sobrino, J.A.; Julien, Y.; Morales, L. Trends in column integrated water vapour over Europe from 1973 to 2003. Int. J. Climatol. 2011, 31, 1749–1757. [Google Scholar] [CrossRef]
- Adeyemi, B.; Joerg, S. Analysis of water vapor over Nigeria using radiosonde and satellite data. J. Appl. Meteorol. Climatol. 2012, 51, 1855–1866. [Google Scholar] [CrossRef]
- Li, J.; Wolf, W.W.; Menzel, W.P.; Zhang, W.; Huang, H.-L.; Achtor, T.H. Global Soundings of the Atmosphere from ATOVS Measurements: The Algorithm and Validation. J. Appl. Meteorol. 2000, 39, 1248–1268. [Google Scholar] [CrossRef]
- Europian Meteorological Satellite (EUMETSAT): Satellite Application for Climate Monitoring (CM SAF) Home Page. Available online: http://www.cmsaf.eu/wui (accessed on 4 June 2020).
- European Centre for Medium-Range Weather Forecasts (ECMWF):|Advancing Global Numerical Weather Prediction (NWP) through International Collaboration. Available online: https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era-interim (accessed on 3 June 2020).
- Ning, T.; Wickert, J.; Deng, Z.; Heise, S.; Dick, G.; Vey, S.; Schöne, T. Homogenized Time Series of the Atmospheric Water Vapor Content Obtained from the GNSS Reprocessed Data. J. Clim. 2016, 29, 2443–2456. [Google Scholar] [CrossRef]
- Khambhammettu, P. Annual Groundwater Monitoring Report: Mann-Kendall Analysis for the Ford Ord Site; HydroGeologic, Inc: Reston, VA, USA, 2004. [Google Scholar]
- Theil, H. A Rank-Invariant Method of Linear and Polynomial Regression Analysis, I, II, III. Nederl. Akad. Wetensch. 1950, 53, 386–392, 521–525, 1397–1412. [Google Scholar]
- Sen, P.K. Estimates of the Regression Coefficient Based on Kendall’s Tau. J. Am. Stat. Assoc. 1968, 63, 1379–1389. [Google Scholar] [CrossRef]
- Gocic, M.; Trajkovic, S. Analysis of changes in meteorological variables using Mann-Kendall and Sen’ s slope estimator statistical tests in Serbia. Glob. Planet. Chang. 2013, 100, 172–182. [Google Scholar] [CrossRef]
- Soden, B.J.; Lanzante, J.R. An assessment of satellite and radiosonde climatologies of upper-tropospheric water vapor. J. Clim. 1996, 9, 1235–1250. [Google Scholar] [CrossRef]
- Courcoux, N.; Schröder, M. The CM SAF ATOVS tropospheric water vapour and temperature data record: Overview of methodology and evaluation. Earth Syst. Sci. Data Discuss. 2015, 127–171. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, L. Systematic Errors in Global Radiosonde Precipitable Water Data from Comparisons with Ground-Based GPS Measurements. J. Clim. 2008, 21, 2218–2238. [Google Scholar] [CrossRef]
- Waller, J.A.; Dance, S.L.; Lawless, A.S.; Nichols, N.K.; Eyre, J.R. Representativity error for temperature and humidity using the Met Office high-resolution model. Q. J. R. Meteorol. Soc. 2014, 140, 1189–1197. [Google Scholar] [CrossRef]
- Miloshevich, L.M.; Paukkunen, A.; Vömel, H.; Oltmans, S.J. Development and Validation of a Time-Lag Correction for Vaisala Radiosonde Humidity Measurements. J. Atmos. Ocean. Technol. 2004, 21, 1305–1327. [Google Scholar] [CrossRef]
- Liu, Y.; Tang, N. Humidity sensor failure: A problem that should not be neglected. Atmos. Meas. Tech. 2014, 7, 3909–3916. [Google Scholar] [CrossRef] [Green Version]
- Li, Z. Comparison of precipitable water vapor derived from radiosonde, GPS, and Moderate-Resolution Imaging Spectroradiometer measurements. J. Geophys. Res. 2003, 108, 4651. [Google Scholar] [CrossRef]
- Balogun, E.E.; Adedokun, J.A. On the Variations in Precipitable Water over Some West African Stations during the Special Observation Period of WAMEX. Mon. Weather Rev. 1986, 114, 772–776. [Google Scholar] [CrossRef] [Green Version]
- Peixoto, J.P.; Oort, A.H. Climatology of relative humidity. Am. Meteorol. Soc. 1996, 9, 3443–3463. [Google Scholar]
- Varikoden, H.; Preethi, B.; Samah, A.A.; Babu, C.A. Seasonal variation of rainfall characteristics in different intensity classes over Peninsular Malaysia. J. Hydrol. 2011, 404, 99–108. [Google Scholar] [CrossRef]
- Vyas Pandey, A.K.; Misra, S.B.Y. Climate Change and Agriculture in India: Impact and Adaptation; Sheraz Mahdi, S., Ed.; Springer International Publishing: Cham, Switzerland, 2019; ISBN 978-3-319-90085-8. [Google Scholar]
- MMD. Climate Change Scenarios for Malaysia 2001–2099; Malaysian Meteorological Department, Ministry of Science, Technology and Innovation: Kuala Lumpur, Malaysia, 2009. [Google Scholar]
- Seemann, S.W.; Borbas, E.E.; Knuteson, R.O.; Stephenson, G.R.; Huang, H.L. Development of a global infrared land surface emissivity database for application to clear sky sounding retrievals from multispectral satellite radiance measurements. J. Appl. Meteorol. Climatol. 2008, 47, 108–123. [Google Scholar] [CrossRef]
- Camerlengo, A.; Somchit, N. Monthly and Annual Rainfall Variability in Peninsular Malaysia. Pertanika J. Sci. Technol. 2000, 8, 73–83. [Google Scholar]
- Salihin, S.; Musa, T.A.; Radzi, Z.M. Spatio-temporal estimation of integrated water vapour over the Malaysian peninsula during monsoon season. In Proceedings of the International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences-ISPRS Archives, Kuala Lumpur, Malaysia, 4 October 2017; Volume 42, pp. 165–175. [Google Scholar]
- Willoughby, A.A.; Aro, T.O.; Owolabi, I.E. Seasonal variations of radio refractivity gradients in Nigeria. J. Atmos. Solar-Terrestrial Phys. 2002, 64, 417–425. [Google Scholar] [CrossRef]
- Camerlengo, A.L.; Demmler, M.I. Wind-driven circulation of Peninsular Malaysia’s Eastern continental shelf. Sci. Mar. 1997, 61, 203–211. [Google Scholar]
- Suhaila, J.; Jemain, A.A. Investigating the impacts of adjoining wet days on the distribution of daily rainfall amounts in Peninsular Malaysia. J. Hydrol. 2009, 368, 17–25. [Google Scholar] [CrossRef]
- Tangang, F.T. Low frequency and quasi-biennial oscillations in the Malaysian precipitation anomaly. Int. J. Climatol. 2001, 21, 1199–1210. [Google Scholar] [CrossRef]
- Oki, T.; Musiake, K. Seasonal Change of the Diurnal Cycle of Precipitation over Japan and Malaysia. J. Appl. Meteorol. 1994, 33, 1445–1463. [Google Scholar] [CrossRef] [Green Version]
- Saini, S.; Gulati, A. El Niño and Indian Droughts-A Scoping Exercise, Working Paper; Indian Council for Research on International Economic Relations: New Delhi, India, 2014. [Google Scholar]
- Ng Meng, W.; Alejandro, C.; Abdul Wahab, A. A Study Of Global Warming In Malaysia. J. Teknol. F 2005, 42, 1–10. [Google Scholar]
Data/Source | Study Area/Location | Instrument | Temporal/ Spatial Resolution | Temporal Coverage | ||
---|---|---|---|---|---|---|
Name | Longitude (Degree) | Latitude (Degree) | ||||
Radiosonde/IGRA | Kota Bharu | 102.283 | 6.167 | Vaisala (RS80) Vaisala (RS 92G) | Twice daily observations (00 and 12 UTC) | 1988–1993 1994–2018 |
Penang | 100.267 | 5.300 | Vaisala (RS80) Vaisala (RS 92G) | 1988–1993 1993–2018 | ||
Kuantan | 103.217 | 3.783 | Vaisala (RS80) Vaisala (RS 92G) | 1988–1993 1994–2018 | ||
Sepang Changi | 101.700 103.983 | 2.717 1.367 | Graw DMF09 Vaisala (RS80) Vaisala (RS 92G) | 2000–2019 1988–1994 1994–2018 | ||
ERA-Interim Reanalysis/ECMWF | Peninsular Malaysia | 97–106° E | 1–7° N | NWP | 6–hourly observations/ 79 × 79 km2 | 1988–2018 |
ATOVS/CM-SAF | Peninsular Malaysia | 97–106° E | 1–7° N | ATOVS | Daily observations/ 90 × 90 km2 | 2001–2011 |
Station | RS/ERA | SAF/ERA | ||||
---|---|---|---|---|---|---|
n | MB (kgm−2) | RMS (kgm−2) | n | MB (kgm−2) | RMS (kgm−2) | |
Kota Bharu | 360 | −0.40 | 2.04 | 132 | 0.87 | 1.91 |
Penang | 372 | −0.30 | 1.50 | 132 | 1.33 | 1.87 |
Kuantan | 336 | −0.77 | 1.72 | 132 | 0.63 | 1.42 |
Sepang | 228 | −1.06 | 2.09 | 132 | 1.94 | 2.01 |
Changi | 372 | −2.85 | 4.05 | 132 | 1.34 | 2.43 |
Period | Station | ERA-Interim | Radiosonde | ||||
---|---|---|---|---|---|---|---|
Test Score (Z) | β (kgm−2 decade−1) | Trend (At 95% sig. Level) | Test Score (Z) | β (kgm−2 decade−1) | Trend (At 95% sig. Level) | ||
Annual | Kota Bharu | 2.36 | 0.09 ± 0.65 | Positive | −0.75 | −0.03 ± 0.61 * | Negative |
Penang | 3.52 | 0.15 ± 0.38 | Positive | 3.23 | 0.21 ± 0.57 | Positive | |
Kuantan | 3.38 | 0.14 ± 0.33 | Positive | 3.47 | 0.20 ± 0.44 | Positive | |
Sepang | 2.98 | 0.10 ± 0.38 | Positive | 2.03 | 0.19 ± 0.68 | Positive | |
Changi | 2.96 | 0.09 ± 0.34 | Positive | 2.38 | 0.09 ± 0.43 | Positive | |
NEM | Kota Bharu | 2.07 | 0.13 ± 0.42 | Positive | 0.22 | 0.02 ± 0.65 * | Positive |
Penang | 4.01 | 0.20 ± 0.42 | Positive | 3.51 | 0.25 ± 0.61 | Positive | |
Kuantan | 3.23 | 0.16 ± 0.38 | Positive | 3.42 | 0.20 ± 0.46 | Positive | |
Sepang | 3.60 | 0.10 ± 0.34 | Positive | 1.40 | 0.06 ± 0.63 * | Positive | |
Changi | 2.05 | 0.10 ± 0.38 | Positive | 2.67 | 0.10 ± 0.40 | Positive | |
SWM | Kota Bharu | 1.17 | 0.04 ± 0.37 * | Positive | −1.43 | −0.08 ± 0.69 * | Negative |
Penang | 2.47 | 0.11 ± 0.39 | Positive | 2.89 | 0.19 ± 0.56 | Positive | |
Kuantan | 2.64 | 0.12 ± 0.34 | Positive | 3.06 | 0.18 ± 0.48 | Positive | |
Sepang | 2.39 | 0.09 ± 0.36 | Positive | 2.40 | 0.11 ± 0.75 | Positive | |
Changi | 2.33 | 0.09 ± 0.28 | Positive | 2.89 | 0.11 ± 0.37 | Positive |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Makama, E.K.; Lim, H.S. Variability and Trend in Integrated Water Vapour from ERA-Interim and IGRA2 Observations over Peninsular Malaysia. Atmosphere 2020, 11, 1012. https://doi.org/10.3390/atmos11091012
Makama EK, Lim HS. Variability and Trend in Integrated Water Vapour from ERA-Interim and IGRA2 Observations over Peninsular Malaysia. Atmosphere. 2020; 11(9):1012. https://doi.org/10.3390/atmos11091012
Chicago/Turabian StyleMakama, Ezekiel Kaura, and Hwee San Lim. 2020. "Variability and Trend in Integrated Water Vapour from ERA-Interim and IGRA2 Observations over Peninsular Malaysia" Atmosphere 11, no. 9: 1012. https://doi.org/10.3390/atmos11091012
APA StyleMakama, E. K., & Lim, H. S. (2020). Variability and Trend in Integrated Water Vapour from ERA-Interim and IGRA2 Observations over Peninsular Malaysia. Atmosphere, 11(9), 1012. https://doi.org/10.3390/atmos11091012