A Multiscale Numerical Modeling Study of Smoke Dispersion and the Ventilation Index in Southwestern Colorado
Abstract
:1. Introduction
2. Materials and Methods
2.1. Location Description and Fire Event Summary
2.2. ARPS Model Configuration and Parameterization
2.3. FLEXPART-WRF Model Configuration, Parameterization, and Experiment Design
2.4. Analysis Methodology
3. Results and Discussion
3.1. Meteorological Model Validation
3.2. Thunderstorm Outflow Summary
3.3. Particle Behavior Overview
3.4. Ensemble Mean RT Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Brioude, J.; Arnold, D.; Stohl, A.; Cassiani, M.; Morton, D.; Seibert, P.; Angevine, W.; Evan, S.; Dingwell, A.; Fast, J.D.; et al. The Lagrangian particle dispersion model FLEXPART-WRF version 3.1. Geosci. Model. Dev. 2013, 6, 1889–1904. [Google Scholar] [CrossRef] [Green Version]
- Colorado Department of Public Health and Environment. Colorado Smoke Management Program Manual; Colorado Department of Public Health and Environment: Denver, CO, USA, 2017; Available online: https://www.colorado.gov/pacific/sites/default/files/AP{_OB_}ManualColoSmoke.pdf (accessed on 25 June 2020).
- Chiodi, A.M.; Larkin, N.K.; Varner, J.M.; Hiers, J.K. Sensitivity of prescribed burn weather windows to atmospheric dispersion parameters over southeastern USA. Int. J. Wildland Fire 2019, 28, 589–600. [Google Scholar] [CrossRef] [Green Version]
- Utah Office of Administrative Rules. Emission Standards: General Burning; Utah Office: Salt Lake City, UT, USA, 2019; Available online: https://rules.utah.gov/publicat/code/r307/r307-202.htm (accessed on 25 June 2020).
- Maxwell, C.; Goodrick, S.; Curcio, G. Practical Tools: Meteorology and Simple Models for Predicting Smoke Movement and Potential Smoke Effects. In NWCG Smoke Management Guide for Prescribed Fire; Peterson, J., Lahm, P., Fitch, M., George, M., Haddow, D., Melvin, M., Hyde, J., Eberhardt, E., Eds.; National Wildfire Coordinating Group: Boise, ID, USA, 2018; pp. 190–219. [Google Scholar]
- Ferguson, S.A. Smoke Dispersion Prediction Systems. In Smoke Management Guide for Prescribed and Wildland Fire: 2001 Edition; Hardy, C.C., Ottmar, R.D., Peterson, J.L., Core, J.E., Seamon, P., Eds.; National Wildfire Coordination Group: Boise, ID, USA, 2001; pp. 163–178. [Google Scholar]
- Achtemeier, G.L.; Naeher, L.P.; Blake, J.; Rathbun, S. On the relevance of the ventilation index as a tool for regulating prescribed fire. In Proceedings of the 24th Tall Timbers Fire Ecology Conference: The Future of Prescribed Fire: Public Awareness, Health, and Safety, Tallahassee, FL, USA, 11–15 January 2009; Robertson, K.M., Galley, K.E.M., Masters, R.E., Eds.; Tall Timbers Research Station: Tallahassee, FL, USA, 2009; p. 79. [Google Scholar]
- Kiefer, M.T.; Charney, J.J.; Zhong, S.; Heilman, W.E.; Bian, X.; Hom, J.L.; Patterson, M. Evaluation of the Ventilation Index in Complex Terrain: A Dispersion Modeling Study. J. Appl. Meteorol. Clim. 2019, 58, 551–568. [Google Scholar] [CrossRef]
- Goodrick, S.L.; Achtemeier, G.L.; Larkin, N.K.; Liu, Y.; Strand, T.M. Modelling Smoke Transport from Wildland Fires: A Review. Int. J. Wildland Fire 2013, 22, 83–94. [Google Scholar] [CrossRef]
- Xue, M.; Droegemeier, K.K.; Wong, V. The Advanced Regional Prediction System (ARPS)—A Multi-Scale Nonhydrostatic Atmosphere Simulation and Prediction Model. Part I: Model Dynamics and Verification. Meteorol. Atmos. Phys. 2000, 75, 463–485. [Google Scholar] [CrossRef]
- Xue, M.; Droegemeier, K.K.; Wong, V.; Shapiro, A.; Brewster, K.; Carr, F.; Weber, D.; Liu, Y.; Wang, D. The Advanced Regional Prediction System (ARPS)—A Multi-Scale Nonhydrostatic Atmosphere Simulation and Prediction Tool. Part II: Model Physics and Applications. Meteorol. Atmos. Phys. 2001, 76, 143–165. [Google Scholar] [CrossRef]
- Rogers, E.; DiMego, G.; Black, T.; Ek, M.; Ferrier, B.; Gayno, G.; Janjic, Z.; Lin, Y.; Pyle, M.; Wong, V.; et al. The NCEP North American Mesoscale Modeling System: Recent Changes and Future Plans. In Proceedings of the 23rd Conference on Weather Analysis and Forecasting/19th Conference on Numerical Weather Prediction, Omaha, NE, USA, 1–5 June 2009; p. 2A.4. Available online: http://ams.confex.com/ams/pdfpapers/154114.pdf (accessed on 25 June 2020).
- Colbert, M.; Stensrud, D.J.; Markowski, P.M.; Richardson, Y.P. Processes Associated with Convection Initiation in the North American Mesoscale Forecast System, Version 3 (NAMv3). Weather Forecast 2019, 34, 683–700. [Google Scholar] [CrossRef]
- Benjamin, S.G.; Weygandt, S.S.; Brown, J.M.; Hu, M.; Alexander, C.R.; Smirnova, T.G.; Olson, J.B.; James, E.P.; Dowell, D.C.; Grell, G.A.; et al. A North American Hourly Assimilation and Model Forecast Cycle: The Rapid Refresh. Mon. Weather Rev. 2016, 144, 1669–1694. [Google Scholar] [CrossRef]
- Lee, T.R.; Buban, M.; Turner, D.D.; Meyers, T.P.; Baker, C.B. Evaluation of the High-Resolution Rapid Refresh (HRRR) Model Using Near-Surface Meteorological and Flux Observations from Northern Alabama. Weather Forecast 2019, 34, 635–663. [Google Scholar] [CrossRef]
- Buxton, C.; Heffernan, R.; Van Cleave, D.T.; Hockenberry, H.; Rudack, D.E.; James, R.S. Fire Weather Products in the National Blend of Models v3.1. In Proceedings of the 99th American Meteorological Society Annual Meeting, Phoenix, AZ, USA, 6–10 January 2019; p. 6.4. [Google Scholar]
- Eresmaa, N.; Karppinen, A.; Joffre, S.M.; Räsänen, J.; Talvitie, H. Mixing height determination by ceilometer. Atmos. Chem. Phys. 2007, 6, 1485–1493. [Google Scholar] [CrossRef] [Green Version]
- Münkel, C.; Eresmaa, N.; Räsänen, J.; Karppinen, A. Retrieval of mixing height and dust concentration with LiDAR ceilometer. Bound. Layer Meteorol. 2007, 124, 117–128. [Google Scholar] [CrossRef]
- Caicedo, V.; Rappenglück, B.; Lefer, B.; Morris, G.; Toledo, D.; Delgado, R. Comparison of aerosol lidar retrieval methods for boundary layer height detection using ceilometer aerosol backscatter data. Atmos. Meas. Tech. 2017, 10, 1609–1622. [Google Scholar] [CrossRef] [Green Version]
- Parker, M.D.; Johnson, R.H. Structures and Dynamics of Quasi–2D Mesoscale Convective Systems. J. Atmos. Sci. 2004, 61, 545–567. [Google Scholar] [CrossRef] [Green Version]
- Michioka, T.; Chow, F.K. High-Resolution Large-Eddy Simulations of Scalar Transport in Atmospheric Boundary Layer Flow over Complex Terrain. J. Appl. Meteorol. Clim. 2008, 47, 3150–3169. [Google Scholar] [CrossRef] [Green Version]
- Snook, N.; Xue, M.; Jung, Y. Tornado-Resolving Ensemble and Probabilistic Predictions of the 20 May 2013 Newcastle–Moore EF5 Tornado. Mon. Weather. Rev. 2019, 147, 1215–1235. [Google Scholar] [CrossRef] [Green Version]
- Dupont, S.; Brunet, Y. Influence of Foliar Density Profile on Canopy Flow: A Large-Eddy Simulation Study. Agric. For. Meteorol. 2008, 148, 976–990. [Google Scholar] [CrossRef]
- Kiefer, M.T.; Zhong, S.; Heilman, W.E.; Charney, J.J.; Bian, X. Evaluation of an ARPS-Based Canopy Flow Modeling System for use in Future Operational Smoke Prediction Efforts. J. Geophys. Res. 2013, 118, 6175–6188. [Google Scholar] [CrossRef]
- Wang, Z.; Huang, N.; Pähtz, T. The Effect of Turbulence on Drifting Snow Sublimation. Geophys. Res. Lett. 2019, 46, 11568–11575. [Google Scholar] [CrossRef] [Green Version]
- Mott, R.; Lehning, M. Meteorological modeling of very high-resolution wind fields and snow deposition for mountains. J. Hydrometeor. 2010, 11, 934–949. [Google Scholar] [CrossRef] [Green Version]
- Kiefer, M.T.; Zhong, S. An Idealized Modeling Study of Nocturnal Cooling Processes Inside a Small Enclosed Basin. J. Geophys. Res. 2011, 116, D20127. [Google Scholar] [CrossRef]
- Colette, A.G.; Chow, F.K.; Street, R.L. A Numerical Study of Inversion-Layer Breakup and the Effects of Topographic Shading in Idealized Valleys. J. Appl. Meteorol. 2003, 42, 1255–1272. [Google Scholar] [CrossRef] [Green Version]
- Myneni, R.; Knyazikhin, Y.; Park, T. MCD15A2H MODIS/Terra+Aqua Leaf Area Index/FPAR 8-day L4 Global 500m SIN Grid V006 [Data Set]. 2015. Available online: https://lpdaac.usgs.gov/products/mcd15a2hv006/ (accessed on 30 May 2019). [CrossRef]
- Moeng, C.H.; Wyngaard, J.C. Evaluation of Turbulent Transport and Dissipation Closures in Second-Order Modeling. J. Atmos. Sci. 1989, 46, 2311–2330. [Google Scholar] [CrossRef] [Green Version]
- Noilhan, J.; Planton, S. A Simple Parameterization of Land Surface Processes for Meteorological Models. Mon. Weather. Rev. 1989, 117, 536–549. [Google Scholar] [CrossRef]
- Pleim, J.E.; Xiu, A. Development and Testing of a Surface Flux and Planetary Boundary Layer Model for Application in Mesoscale Models. J. Appl. Meteorol. 1995, 34, 16–32. [Google Scholar] [CrossRef] [Green Version]
- Chou, M.D. Parameterization for the Absorption of Solar Radiation by O2 and CO2 with Application to Climate Studies. J. Clim. 1990, 3, 209–217. [Google Scholar] [CrossRef] [Green Version]
- Chou, M.D. A Solar Radiation Model for Climate Studies. J. Atmos. Sci. 1992, 49, 762–772. [Google Scholar] [CrossRef]
- Chou, M.D.; Suarez, M.J. An Efficient Thermal Infrared Radiation Parameterization for use in General Circulation Models; Technical Report Tech. Memo 104606 NASA; NASA: Washington, DC, USA; NASA Center for Aerospace Information: Linthicum Heights, MD, USA, 1994. [Google Scholar]
- Sun, W.Y.; Chang, C.Z. Diffusion Model for a Convective Layer: Part I: Numerical Simulation of Convective Boundary Layer. J. Clim. Appl. Meteorol. 1986, 25, 1445–1453. [Google Scholar] [CrossRef] [Green Version]
- Stohl, A.; Forster, C.; Frank, A.; Seibert, P.; Wotawa, G. Technical Note: The Lagrangian Particle Dispersion Model FLEXPART Version 6.2. Atmos. Chem. Phys. 2005, 5, 2461–2474. [Google Scholar] [CrossRef] [Green Version]
- Powers, J.G.; Coauthors. The Weather Research and Forecasting (WRF) model: Overview, system efforts, and future directions. Bull. Am. Meteorol. Soc. 2017, 98, 1717–1737. [Google Scholar] [CrossRef]
- Charney, J.J.; Kiefer, M.T.; Zhong, S.; Heilman, W.E.; Nikolic, J.; Bian, X.; Hom, J.L.; Clark, K.L.; Skowronski, N.S.; Gallagher, M.R.; et al. Assessing Forest Canopy Impacts on Smoke Concentrations Using a Coupled Numerical Model. Atmosphere 2019, 10, 273. [Google Scholar] [CrossRef] [Green Version]
- Giovannini, L.; Ferrero, E.; Karl, T.; Rotach, M.W.; Staquet, C.; Trini Castelli, S.; Zardi, D. Atmospheric Pollutant Dispersion over Complex Terrain: Challenges and Needs for Improving Air Quality Measurements and Modeling. Atmosphere 2020, 11, 646. [Google Scholar] [CrossRef]
- Lu, W.; Zhong, S.; Charney, J.J.; Bian, X.; Liu, S. WRF simulation over complex terrain during a southern California wildfire event. J. Geophys. Res. 2011, 117, D05125. [Google Scholar] [CrossRef]
- Hanna, S.R. Applications in Air Pollution Modeling. In Atmospheric Turbulence and Air Pollution Modeling; Nieuwstadt, F.T.M., van Dop, H.D., Eds.; Reidel Publishing Company: Dordrecht, The Netherlands, 1982; pp. 275–310. [Google Scholar]
- Levin, E.J.T.; McMeeking, G.R.; Carrico, C.M.; Mack, L.E.; Kreidenweis, S.M.; Wold, C.E.; Moosmüller, H.; Arnott, W.P.; Hao, W.M.; Collett, J.L., Jr.; et al. Biomass Burning Smoke Aerosol Properties measured during Fire Laboratory at Missoula Experiments (FLAME). J. Geophys. Res. 2010, 115, D18210. [Google Scholar] [CrossRef]
- National Weather Service. Meteorological Development Laboratory National Blend of Models Weather Element Definitions. 2018. Available online: https://www.weather.gov/mdl/nbm_elem_def (accessed on 25 June 2020).
- Fearon, M.G.; Brown, T.J.; Curcio, G.M. Establishing a national standard method for operational mixing height determination. J. Oper. Meteor. 2015, 3, 172–189. [Google Scholar] [CrossRef]
Domain | Grid Size | Domain [km] | , [m] | [m] | N | N |
---|---|---|---|---|---|---|
D1 | 300 × 300 × 50 | 1200.0 × 1200.0 × 20.0 | 4000.0, 4000.0 | 50.0 | 10 | 25 |
D2 | 200 × 200 × 50 | 266.6 × 266.6 × 20.0 | 1333.0, 1333.0 | 25.0 | 12 | 26 |
D3 | 100 × 100 × 50 | 44.4 × 44.4 × 20.0 | 444.0, 444.0 | 10.0 | 14 | 26 |
FW | 90 × 90 × 50 | 40.0 × 40.0 × 18.9 | 444.0, 444.0 | 10.0 | 13 | 25 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kiefer, M.T.; Charney, J.J.; Zhong, S.; Heilman, W.E.; Bian, X.; Mathewson, T.O. A Multiscale Numerical Modeling Study of Smoke Dispersion and the Ventilation Index in Southwestern Colorado. Atmosphere 2020, 11, 846. https://doi.org/10.3390/atmos11080846
Kiefer MT, Charney JJ, Zhong S, Heilman WE, Bian X, Mathewson TO. A Multiscale Numerical Modeling Study of Smoke Dispersion and the Ventilation Index in Southwestern Colorado. Atmosphere. 2020; 11(8):846. https://doi.org/10.3390/atmos11080846
Chicago/Turabian StyleKiefer, Michael T., Joseph J. Charney, Shiyuan Zhong, Warren E. Heilman, Xindi Bian, and Timothy O. Mathewson. 2020. "A Multiscale Numerical Modeling Study of Smoke Dispersion and the Ventilation Index in Southwestern Colorado" Atmosphere 11, no. 8: 846. https://doi.org/10.3390/atmos11080846
APA StyleKiefer, M. T., Charney, J. J., Zhong, S., Heilman, W. E., Bian, X., & Mathewson, T. O. (2020). A Multiscale Numerical Modeling Study of Smoke Dispersion and the Ventilation Index in Southwestern Colorado. Atmosphere, 11(8), 846. https://doi.org/10.3390/atmos11080846