Characteristics and the Potential Influence of Fugitive PM10 Emissions from Enclosed Storage Yards in Iron and Steel Plant
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection and Analysis
2.2. CFD Simulation
2.2.1. Modeling Method
2.2.2. Governing Equations
- ρ
- Density
- u
- Velocity
- P
- Pressure
- T
- Temperature
- μT
- Dynamic viscosity
- k
- Turbulent kinetic energy
- ε
- Turbulent dissipation rate
2.2.3. Boundary Conditions
- Average wind speed at the research plane
- Friction velocity
- Von Karman constant
- Height of the research plane
- Roughness length
- Time-average velocity of the fluid at a point P adjacent to the wall
- Shear stress on the wall in the direction of the velocity
- Kinematic viscosity
- Distance of the point P from the wall
- E
- A function of the wall roughness
2.2.4. Solution Procedure, Computational Grid, Convergence and Time Requirements
2.2.5. Fugitive Dust Sources
Shovel Loader
- Emission factor of the loading process (kg/t)
- k
- Granularity factor, 0.35 for PM10
- u
- Average wind speed (m/s), obtained from CFD simulation result
- M
- Moisture content, 0.1% for sinters and 8% for powdered iron
- Removal efficiency of related dust control method (0 in this case)
Road Dust Emission
- Road dust emission rate (kg/s)
- Average emission factor of road dust (g/km)
- Road length (km)
- Number of passed vehicle per second
- Emission factor of the road dust (g/km)
- Granularity factor, 0.62 for PM10
- Dust load of the road, 10 g/m2 (as onsite measurement)
- Average vehicle weight, 60 metric ton.
- Removal efficiency of related dust control method (0 in this case)
2.2.6. Particle Deposition
3. Results and Discussion
3.1. PM Characteristics of Enclosed Yard
3.2. Test of Simulation Results
3.3. Wind Field of Enclosed Stockpile Yards
3.4. PM10 Distribution Simulation
- PM10 discharge rate of enclosed yard (mg/s)
- Number of gates
- The nth gate
- Height of the nth gate, 6 m in this case
- PM10 concentration at the nth gate (mg/m3)
- u
- Air velocity at the nth gate (m/s)
- Included angle between airflow direction and extension line of the gate
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Li, B.; Gasser, T.; Ciais, P.; Piao, S.; Tao, S.; Balkanski, Y.; Hauglustaine, D.; Boisier, J.P.; Chen, Z.; Huang, M.; et al. The contribution of China’s emissions to global climate forcing. Nature 2016, 531, 357–361. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Ying, C.; Meng, X.; Fu, J.; Wang, B. The contribution of anthropogenic sources to the aerosols over East China Sea. Atmos. Environ. 2015, 127, 22–33. [Google Scholar] [CrossRef]
- Aries, E.; Anderson, D.R.; Fisher, R.; Fray, T.A.T.; Hemfrey, D. PCDD/F and “Dioxin-like” PCB emissions from iron ore sintering plants in the UK. Chemosphere 2006, 65, 1470–1480. [Google Scholar] [CrossRef]
- Tsai, J.H.; Lin, K.H.; Chen, C.Y.; Ding, J.Y.; Choa, C.G.; Chiang, H.L. Chemical constituents in particulate emissions from an integrated iron and steel facility. J. Hazard. Mater. 2007, 147, 111–119. [Google Scholar] [CrossRef]
- Wang, X.; Yan, L.; Lei, Y.; He, K.; He, J. Estimation of primary particulate emissions from iron and steel industry in China. Acta Sci. Circum. 2016, 36, 3033–3037. [Google Scholar]
- Bi, X.; Feng, Y.; Wu, J.; Wang, Y.; Zhu, T.J. Source apportionment of PM10 in six cities of northern China. Atmos. Environ. 2007, 41, 903–912. [Google Scholar] [CrossRef]
- Ho, K.F.; Lee, S.C.; Chow, J.C.; Watson, J.G. Characterization of PM10 and PM2.5 source profiles for fugitive dust in Hong Kong. Atmos. Environ. 2003, 37, 1023–1032. [Google Scholar] [CrossRef]
- Jiang, N.; Dong, Z.; Xu, Y.; Yu, F.; Yin, S.; Zhang, R.; Tang, X. Characterization of PM10 and PM2.5 Source Profiles of Fugitive Dust in Zhengzhou, China. Aerosol Air Qual. Res. 2018, 18, 314–329. [Google Scholar] [CrossRef] [Green Version]
- Dall’Osto, M.; Booth, M.J.; Smith, W.; Fisher, R.; Harrison, R.M. A Study of the Size Distributions and the Chemical Characterization of Airborne Particles in the Vicinity of a Large Integrated Steelworks. Aerosol Sci. Technol. 2008, 42, 981–991. [Google Scholar] [CrossRef] [Green Version]
- ESA. European Sealing Association, Sealing Technologye-BAT Guidance Notes. Publication number 014/05. 2005. Available online: https://www.europeansealing.com/environmental/sealing-technology-bat-guidance-note/ (accessed on 6 August 2020).
- Amodio, M.; Andriani, E.; Dambruoso, P.R.; Gennaro, G.D.; Gilio, A.D.; Intini, M.; Palmisani, J.; Tutino, M. A monitoring strategy to assess the fugitive emission from a steel plant. Atmos. Environ. 2013, 79, 455–461. [Google Scholar] [CrossRef]
- Santacatalina, M.; Reche, C.; Minguillón, M.C.; Escrig, A.; Sanfelix, V.; Carratalá, A.; Nicolásd, J.F.; Yuberod, E.; Crespod, J.; Alastuey, A.; et al. Impact of fugitive emissions in ambient PM levels and composition: A case study in Southeast Spain. Sci. Total Environ. 2010, 408, 4999–5009. [Google Scholar] [CrossRef] [PubMed]
- Hassim, M.H.; Pérez, A.L.; Hurme, M. Estimation of chemical concentration due to fugitive emissions during chemical process design. Process Saf. Environ. Prot. 2010, 88, 173–184. [Google Scholar] [CrossRef]
- Ju, Y.; Sun, Y.; Sa, Z.; Pan, J.; Wang, J.; Hou, Q.; Li, Q.; Yan, Z.; Liu, J. A new approach to estimate fugitive methane emissions from coal mining in China. Sci. Total Environ. 2016, 543, 514–523. [Google Scholar] [CrossRef] [PubMed]
- Khaparde, V.V.; Bhanarkar, A.D.; Majumdar, D.; Rao, C.V.C. Characterization of polycyclic aromatic hydrocarbons in fugitive PM10 emissions from an integrated iron and steel plant. Sci. Total Environ. 2016, 562, 155–163. [Google Scholar] [CrossRef]
- Jian, G.; Ma, Z.; Lei, L.; Tong, W.J. Monitoring and Analysis on Characteristic Pollutants of Fugitive Emission in Iron and Steel Enterprises. Chin. J. Environ. Manag. 2016, 8, 97–102. [Google Scholar]
- Badr, T.; Harion, J.L. Effect of aggregate storage piles configuration on dust emissions. Atmos. Environ. 2007, 41, 360–368. [Google Scholar] [CrossRef]
- Guo, L.; Chen, Y.; Wang, F.; Meng, X.; Xu, Z.; Zhuang, G. Effects of Asian dust on the atmospheric input of trace elements to the East China Sea. Mar. Chem. 2014, 163, 19–27. [Google Scholar] [CrossRef]
- Launder, B.E.; Spalding, D.B. The numerical computation of turbulent flows. Pergamon 1983, 96–116. [Google Scholar]
- Tenneke, H. The logarithmic wind profile. J. Atmos. Sci. 1973, 30, 234–238. [Google Scholar] [CrossRef]
- Soberanis, M.A.E.; Bassam, A.; Mérida, W. Analysis of energy dissipation and turbulence kinetic energy using high frequency data for wind energy applications. J. Wind Eng. Ind. Aerodyn. 2016, 151, 137–145. [Google Scholar] [CrossRef]
- Guidelines. Ministry of Ecology and Environment of the People’s Republic of China, Nankai University. Technical Guidelines for Compiling Emission Inventories of Particulate Matter from Fugitive Dust Sources. 2014. Available online: http://www.mee.gov.cn/gkml/hbb/bgg/201501/W020150107594588131490.pdf (accessed on 6 August 2020).
- Baur, X.; Sanyal, S.; Abraham, J.L. Mixed-dust pneumoconiosis: Review of diagnostic and classification problems with presentation of a work-related case. Sci. Total Environ. 2019, 652, 413–421. [Google Scholar] [CrossRef]
- Börü, Ü.T.; Bilgiç, A.B.; Toksoy, C.K.; Yılmaz, A.Y.; Tasdemir, M.; Sensöz, N.P.; Çakmak, Ö.Ö.; Duman, A.; Bölük, C. Prevalence of Multiple Sclerosis in a Turkish City Bordering an Iron and Steel Factory. J. Clin. Neurol. 2018, 14, 234–241. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hleis, D.; Fernándezolmo, I.; Ledoux, F.; Kfoury, A.; Courcot, L.; Desmonts, T.; Courcot, D. Chemical profile identification of fugitive and confined particle emissions from an integrated iron and steelmaking plant. J. Hazard. Mater. 2013, 250, 246–255. [Google Scholar] [CrossRef] [PubMed]
- Death, D.L.; Cunningham, A.P.; Pollard, L.J. Multi-element analysis of iron ore pellets by Laser-induced Breakdown Spectroscopy and Principal Components Regression. Spectrochim. Acta Part B At. Spectrosc. 2008, 63, 763–769. [Google Scholar] [CrossRef]
- Hsieh, L.H.; Ja, W. Effect of Raw Material Composition on the Mineral Phases in Lime-fluxed Iron Ore Sinter. ISIJ Int. 1993, 33, 462–473. [Google Scholar] [CrossRef]
- Average Wind Speed and Wind Direction Data of Hebei. Available online: http://www.tianqihoubao.com (accessed on 6 August 2020).
- Wu, L.Y.; Tong, S.R.; Zhou, L.; Wang, W.G.; Ge, M.F. Synergistic effects between SO2 and HCOOH on α-Fe2O3. J. Phys. Chem. A. 2013, 117, 3972–3979. [Google Scholar] [CrossRef]
- Tai, J.; Fu, H.; Kong, L.; Yang, X.; Chen, J. A mechanism observation on the photochemical reaction between SO2 and α-Fe2O3. J. Environ. Sci. 2008, 28, 401–406. [Google Scholar]
- Zhang, Q.J.; Wang, X.; Chen, J.M.; Zhuang, G.S. Formation of Fe(II) (aq) and sulfate via heterogeneous reaction of SO2 with Fe2O3. Chem. J. Chin. Univ. 2006, 27, 1347–1350. [Google Scholar]
- Wang, F.J.; Chen, Y.; Guo, Z.G.; Gao, H.W.; Mackey, K.R.; Yao, X.H.; Zhuang, G.S.; Paytan, A. Combined effects of iron and copper from atmospheric dry deposition on ocean productivity. Geophys. Res. Lett. 2017, 44, 2546–2555. [Google Scholar] [CrossRef]
Sampling Period | Wind Direction (°) | Wind Speed (m/s) | ||
---|---|---|---|---|
8:00–8:50 | S | 180 | light air | 0.5 |
9:00–9:50 | S | 180 | light breeze | 2.5 |
10:00–10:50 | NE | 45 | fresh breeze | 9.4 |
11:00–11:50 | S | 180 | light air | 0.5 |
13:00–13:50 | N | 0 | light air | 0.5 |
14:00–14:50 | NE | 45 | fresh breeze | 9.4 |
15:00–15:50 | NE | 45 | fresh breeze | 9.4 |
16:00–16:50 | S | 180 | light breeze | 2.5 |
17:00–17:50 | N | 0 | light breeze | 2.5 |
Wind Direction | Wind Speed (m/s) | PM10 Concentration (mg/m3) | ||||
---|---|---|---|---|---|---|
Gate1 | Gate2 | Gate3 | Gate4 | Gate5 | ||
N | 0.5 | 8.7 | 13.2 | 21.1 | 0.143 | 0.143 |
2.5 | 12.9 | 14.3 | 10.4 | 0.143 | 0.145 | |
4.4 | 14.2 | 15.4 | 10.7 | 0.145 | 0.145 | |
6.7 | 16.7 | 17.9 | 12.7 | 0.144 | 0.143 | |
9.4 | 19.0 | 20.2 | 13.3 | 0.144 | 0.143 | |
12.7 | 20.9 | 22.1 | 15.0 | 0.144 | 0.145 | |
NE | 0.5 | 8.0 | 16.0 | 16.5 | 0.6 | 0.4 |
2.5 | 8.5 | 13.2 | 10.9 | 0.4 | 0.6 | |
4.4 | 9.1 | 10.3 | 4.8 | 0.2 | 0.9 | |
6.7 | 10.0 | 11.1 | 5.3 | 0.2 | 1.1 | |
9.4 | 10.6 | 11.6 | 4.8 | 0.2 | 1.2 | |
12.7 | 8.8 | 9.5 | 3.8 | 0.2 | 1.0 | |
E | 0.5 | 10.2 | 21.4 | 68.1 | 97.5 | 14.0 |
2.5 | 2.8 | 5.4 | 17.2 | 28.4 | 4.6 | |
4.4 | 2.0 | 3.6 | 10.9 | 18.4 | 3.4 | |
6.7 | 1.7 | 2.8 | 8.0 | 13.5 | 2.9 | |
9.4 | 1.5 | 2.3 | 6.4 | 10.6 | 2.5 | |
12.7 | 1.2 | 1.8 | 5.0 | 8.3 | 2.1 | |
SE | 0.5 | 14.9 | 22.6 | 8.2 | 21.8 | 6.8 |
2.5 | 11.8 | 16.9 | 1.8 | 10.1 | 5.4 | |
4.4 | 19.0 | 27.0 | 1.1 | 13.4 | 8.9 | |
6.7 | 24.0 | 30.4 | 1.1 | 14.7 | 8.8 | |
9.4 | 20.8 | 29.6 | 0.6 | 14.3 | 10.6 | |
12.7 | 21.8 | 31.1 | 0.5 | 14.8 | 10.9 | |
S | 0.5 | 0.177 | 0.147 | 0.148 | 18.1 | 31.2 |
2.5 | 0.143 | 0.143 | 0.143 | 5.0 | 9.7 | |
4.4 | 0.145 | 0.143 | 0.145 | 5.4 | 15.1 | |
6.7 | 0.144 | 0.145 | 0.145 | 4.7 | 15.8 | |
9.4 | 0.144 | 0.144 | 0.143 | 3.2 | 13.6 | |
12.7 | 0.143 | 0.144 | 0.143 | 2.5 | 13.0 | |
SW | 0.5 | 0.4 | 0.2 | 43.8 | 18.3 | 11.6 |
2.5 | 0.7 | 0.1 | 9.2 | 10.0 | 10.7 | |
4.4 | 1.3 | 0.1 | 5.6 | 16.0 | 20.8 | |
6.7 | 1.5 | 0.1 | 3.9 | 18.0 | 24.7 | |
9.4 | 1.4 | 0.1 | 2.9 | 17.3 | 23.7 | |
12.7 | 1.5 | 0.1 | 2.3 | 17.3 | 23.6 | |
W | 0.5 | 66.2 | 46.0 | 38.5 | 95.2 | 14.7 |
2.5 | 20.1 | 16.2 | 8.9 | 31.1 | 5.0 | |
4.4 | 13.5 | 10.6 | 5.3 | 20.9 | 3.6 | |
6.7 | 10.5 | 7.9 | 3.7 | 15.6 | 2.9 | |
9.4 | 8.7 | 6.4 | 2.9 | 12.6 | 2.5 | |
12.7 | 7.6 | 5.4 | 2.4 | 10.6 | 2.2 | |
NW | 0.5 | 14.3 | 14.9 | 22.2 | 5.4 | 1.1 |
2.5 | 36.6 | 34.2 | 13.4 | 1.8 | 1.6 | |
4.4 | 46.3 | 42.7 | 13.6 | 1.4 | 2.0 | |
6.7 | 48.2 | 46.2 | 7.8 | 0.6 | 1.9 | |
9.4 | 58.5 | 54.4 | 13.5 | 1.0 | 2.4 | |
12.7 | 64.2 | 59.7 | 14.5 | 1.0 | 2.6 |
Wind Direction | Daily PM10 Net Emission Rate (t/d) and (Cumulative Days) | |||||
---|---|---|---|---|---|---|
0.5 m/s | 2.5 m/s | 6.7 m/s | 9.4 m/s | 12.7 m/s | ||
N | 0.06 (61) | 0.22 (65) | 0.76 (44) | 1.17 (7) | 1.63 (3) | |
NE | 0.48 (1) | |||||
E | 0.05 (1) | |||||
S | 0.14 (53) | 0.21 (73) | 0.77 (44) | 0.87 (7) | ||
SW | 0.05 (1) | |||||
W | 0.02 (1) | 0.04 (1) | ||||
NW | 0.41 (1) | 1.36 (1) | 2.36 (1) | |||
Yearly Total PM10 discharge amount | 131.7 (t/year) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, Z.; Wang, F.; Ji, T.; Ma, B.; Xu, L.; Xu, Q.; He, K. Characteristics and the Potential Influence of Fugitive PM10 Emissions from Enclosed Storage Yards in Iron and Steel Plant. Atmosphere 2020, 11, 833. https://doi.org/10.3390/atmos11080833
Lin Z, Wang F, Ji T, Ma B, Xu L, Xu Q, He K. Characteristics and the Potential Influence of Fugitive PM10 Emissions from Enclosed Storage Yards in Iron and Steel Plant. Atmosphere. 2020; 11(8):833. https://doi.org/10.3390/atmos11080833
Chicago/Turabian StyleLin, Zijie, Fujiang Wang, Tao Ji, Baolong Ma, Linyan Xu, Qian Xu, and Kebin He. 2020. "Characteristics and the Potential Influence of Fugitive PM10 Emissions from Enclosed Storage Yards in Iron and Steel Plant" Atmosphere 11, no. 8: 833. https://doi.org/10.3390/atmos11080833
APA StyleLin, Z., Wang, F., Ji, T., Ma, B., Xu, L., Xu, Q., & He, K. (2020). Characteristics and the Potential Influence of Fugitive PM10 Emissions from Enclosed Storage Yards in Iron and Steel Plant. Atmosphere, 11(8), 833. https://doi.org/10.3390/atmos11080833