Overview of Observed Clausius-Clapeyron Scaling of Extreme Precipitation in Midlatitudes
Abstract
:1. Introduction
2. Clausius–Clapeyron Relation
3. Precipitation-Temperature Scaling Identified by Observational Studies
3.1. Variables Used for Analysis of the P-T Scaling
3.2. Increase of the P-T Scaling and Super-CC Scaling
3.3. Decrease of the P-T Scaling at Higher Temperatures
4. Data Sets and Methods Used
4.1. Methods to Depict the P-T Scaling
4.2. Disaggregation of Precipitation Events
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
CAPE | Convective Available Potential Energy |
CC | Clausius-Clapeyron |
P-T | precipitation-temperature |
SYNOP | surface synoptic observations |
THR | threshold temperature |
References
- Held, I.M.; Soden, B.J. Robust responses of the hydrological cycle to global warming. J. Clim. 2006, 19, 5686–5699. [Google Scholar] [CrossRef]
- O’Gorman, P.A. Precipitation extremes under climate change. Curr. Clim. Chang. Rep. 2015, 1, 49–59. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Myhre, G.; Alterskjær, K.; Stjern, C.W.; Hodnebrog, Ø.; Marelle, L.; Samset, B.H.; Sillmann, J.; Schaller, N.; Fischer, E.; Schulz, M.; et al. Frequency of extreme precipitation increases extensively with event rareness under global warming. Sci. Rep. 2019, 9, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pall, P.; Allen, M.; Stone, D.A. Testing the Clausius–Clapeyron constraint on changes in extreme precipitation under CO2 warming. Clim. Dyn. 2007, 28, 351–363. [Google Scholar] [CrossRef]
- Allen, M.R.; Ingram, W.J. Constraints on future changes in climate and the hydrologic cycle. Nature 2002, 419, 228–232. [Google Scholar] [CrossRef]
- Trenberth, K.E.; Dai, A.; Rasmussen, R.M.; Parsons, D.B. The changing character of precipitation. Bull. Am. Meteorol. Soc. 2003, 84, 1205–1218. [Google Scholar] [CrossRef]
- Christensen, J.H.; Christensen, O.B. Climate modelling: Severe summertime flooding in Europe. Nature 2003, 421, 805–806. [Google Scholar] [CrossRef]
- Sherwood, S.C.; Ingram, W.; Tsushima, Y.; Satoh, M.; Roberts, M.; Vidale, P.L.; O’Gorman, P.A. Relative humidity changes in a warmer climate. J. Geophys. Res. Atmos. 2010, 115, D09104. [Google Scholar] [CrossRef] [Green Version]
- Donat, M.G.; Lowry, A.L.; Alexander, L.V.; O’Gorman, P.A.; Maher, N. More extreme precipitation in the world’s dry and wet regions. Nat. Clim. Chang. 2016, 6, 508–513. [Google Scholar] [CrossRef]
- Lu, J.; Xue, D.; Gao, Y.; Chen, G.; Leung, L.; Staten, P. Enhanced hydrological extremes in the western United States under global warming through the lens of water vapor wave activity. NPJ Clim. Atmos. Sci. 2018, 1, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Nayak, S.; Dairaku, K.; Takayabu, I.; Suzuki-Parker, A.; Ishizaki, N.N. Extreme precipitation linked to temperature over Japan: Current evaluation and projected changes with multi-model ensemble downscaling. Clim. Dyn. 2018, 51, 4385–4401. [Google Scholar] [CrossRef] [Green Version]
- Hodnebrog, Ø.; Marelle, L.; Alterskjær, K.; Wood, R.; Ludwig, R.; Fischer, E.; Richardson, T.; Forster, P.; Sillmann, J.; Myhre, G. Intensification of summer precipitation with shorter time-scales in Europe. Environ. Res. Lett. 2019, 14, 124050. [Google Scholar] [CrossRef]
- Giorgi, F.; Raffaele, F.; Coppola, E. The response of precipitation characteristics to global warming from climate projections. Earth Syst. Dyn. 2019, 10, 73–89. [Google Scholar] [CrossRef] [Green Version]
- Morrison, A.; Villarini, G.; Zhang, W.; Scoccimarro, E. Projected changes in extreme precipitation at sub-daily and daily time scales. Glob. Planet. Chang. 2019, 182, 103004. [Google Scholar] [CrossRef] [Green Version]
- Oh, S.G.; Sushama, L. Short-duration precipitation extremes over Canada in a warmer climate. Clim. Dyn. 2020, 54, 2493–2509. [Google Scholar] [CrossRef]
- Sousa, P.M.; Ramos, A.M.; Raible, C.C.; Messmer, M.; Tomé, R.; Pinto, J.G.; Trigo, R.M. North Atlantic Integrated Water Vapor Transport—From 850 to 2100 CE: Impacts on Western European Rainfall. J. Clim. 2020, 33, 263–279. [Google Scholar] [CrossRef]
- Frich, P.; Alexander, L.V.; Della-Marta, P.; Gleason, B.; Haylock, M.; Tank, A.K.; Peterson, T. Observed coherent changes in climatic extremes during the second half of the twentieth century. Clim. Res. 2002, 19, 193–212. [Google Scholar] [CrossRef] [Green Version]
- Trenberth, K.E. Changes in precipitation with climate change. Clim. Res. 2011, 47, 123–138. [Google Scholar] [CrossRef] [Green Version]
- Westra, S.; Alexander, L.V.; Zwiers, F.W. Global increasing trends in annual maximum daily precipitation. J. Clim. 2013, 26, 3904–3918. [Google Scholar] [CrossRef] [Green Version]
- Ribes, A.; Thao, S.; Vautard, R.; Dubuisson, B.; Somot, S.; Colin, J.; Planton, S.; Soubeyroux, J.M. Observed increase in extreme daily rainfall in the French Mediterranean. Clim. Dyn. 2019, 52, 1095–1114. [Google Scholar] [CrossRef]
- Li, G.; Harrison, S.P.; Bartlein, P.J.; Izumi, K.; Colin Prentice, I. Precipitation scaling with temperature in warm and cold climates: An analysis of CMIP5 simulations. Geophys. Res. Lett. 2013, 40, 4018–4024. [Google Scholar] [CrossRef] [Green Version]
- Stephens, G.L.; Ellis, T.D. Controls of global-mean precipitation increases in global warming GCM experiments. J. Clim. 2008, 21, 6141–6155. [Google Scholar] [CrossRef]
- Boucher, O.; Randall, D.; Artaxo, P.; Bretherton, C.; Feingold, G.; Forster, P.; Kerminen, V.M.; Kondo, Y.; Liao, H.; Lohmann, U.; et al. Clouds and aerosols. In Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2013; pp. 571–657. [Google Scholar]
- Allan, R.P.; Liu, C.; Zahn, M.; Lavers, D.A.; Koukouvagias, E.; Bodas-Salcedo, A. Physically consistent responses of the global atmospheric hydrological cycle in models and observations. Surv. Geophys. 2014, 35, 533–552. [Google Scholar] [CrossRef] [Green Version]
- Kundzewicz, Z.W. Changes in Flood Risk in Europe; CRC Press: Boca Raton, FL, USA, 2019. [Google Scholar]
- Madsen, H.; Lawrence, D.; Lang, M.; Martinkova, M.; Kjeldsen, T. Review of trend analysis and climate change projections of extreme precipitation and floods in Europe. J. Hydrol. 2014, 519, 3634–3650. [Google Scholar] [CrossRef] [Green Version]
- Sunyer, M.; Hundecha, Y.; Lawrence, D.; Madsen, H.; Willems, P.; Martinkova, M.; Vormoor, K.; Bürger, G.; Hanel, M.; Kriaučiūnienė, J.; et al. Inter-comparison of statistical downscaling methods for projection of extreme precipitation in Europe. Hydrol. Earth Syst. Sci. 2015, 19, 1827–1847. [Google Scholar] [CrossRef] [Green Version]
- Lehmann, J.; Coumou, D.; Frieler, K. Increased record-breaking precipitation events under global warming. Clim. Chang. 2015, 132, 501–515. [Google Scholar] [CrossRef]
- Hand, W.H.; Fox, N.I.; Collier, C.G. A study of twentieth-century extreme rainfall events in the United Kingdom with implications for forecasting. Meteorol. Appl. 2004, 11, 15–31. [Google Scholar] [CrossRef] [Green Version]
- Barbero, R.; Fowler, H.; Lenderink, G.; Blenkinsop, S. Is the intensification of precipitation extremes with global warming better detected at hourly than daily resolutions? Geophys. Res. Lett. 2017, 44, 974–983. [Google Scholar] [CrossRef] [Green Version]
- Schroeer, K.; Kirchengast, G. Sensitivity of extreme precipitation to temperature: The variability of scaling factors from a regional to local perspective. Clim. Dyn. 2018, 50, 3981–3994. [Google Scholar] [CrossRef] [Green Version]
- Lenderink, G.; Van Meijgaard, E. Increase in hourly precipitation extremes beyond expectations from temperature changes. Nat. Geosci. 2008, 1, 511–514. [Google Scholar] [CrossRef]
- Berg, P.; Moseley, C.; Haerter, J.O. Strong increase in convective precipitation in response to higher temperatures. Nat. Geosci. 2013, 6, 181–185. [Google Scholar] [CrossRef]
- Ali, H.; Mishra, V. Contrasting response of rainfall extremes to increase in surface air and dewpoint temperatures at urban locations in India. Sci. Rep. 2017, 7, 1–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Panthou, G.; Mailhot, A.; Laurence, E.; Talbot, G. Relationship between surface temperature and extreme rainfalls: A multi-time-scale and event-based analysis. J. Hydrometeorol. 2014, 15, 1999–2011. [Google Scholar] [CrossRef]
- Fujibe, F. Annual variation of extreme precipitation intensity in Japan: Assessment of the validity of Clausius-Clapeyron scaling in seasonal change. SOLA 2016, 12, 106–110. [Google Scholar] [CrossRef] [Green Version]
- Sharma, S.; Mujumdar, P. On the relationship of daily rainfall extremes and local mean temperature. J. Hydrol. 2019, 572, 179–191. [Google Scholar] [CrossRef]
- Nayak, S.; Takemi, T. Dependence of extreme precipitable water events on temperature. Atmósfera 2019, 32, 159–165. [Google Scholar] [CrossRef]
- Lenderink, G.; Barbero, R.; Loriaux, J.; Fowler, H. Super-Clausius–Clapeyron scaling of extreme hourly convective precipitation and its relation to large-scale atmospheric conditions. J. Clim. 2017, 30, 6037–6052. [Google Scholar] [CrossRef]
- Rulfová, Z.; Kyselý, J. Trends of convective and stratiform precipitation in the Czech Republic, 1982–2010. Adv. Meteorol. 2014, 2014, 647938. [Google Scholar] [CrossRef]
- Han, X.; Xue, H.; Zhao, C.; Lu, D. The roles of convective and stratiform precipitation in the observed precipitation trends in Northwest China during 1961–2000. Atmos. Res. 2016, 169, 139–146. [Google Scholar] [CrossRef]
- Goulden, C.E.; Mead, J.; Horwitz, R.; Goulden, M.; Nandintsetseg, B.; McCormick, S.; Boldgiv, B.; Petraitis, P.S. Interviews of Mongolian herders and high resolution precipitation data reveal an increase in short heavy rains and thunderstorm activity in semi-arid Mongolia. Clim. Chang. 2016, 136, 281–295. [Google Scholar] [CrossRef] [Green Version]
- Ye, H.; Fetzer, E.J.; Wong, S.; Lambrigtsen, B.H. Rapid decadal convective precipitation increase over Eurasia during the last three decades of the 20th century. Sci. Adv. 2017, 3, e1600944. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chernokulsky, A.; Kozlov, F.; Zolina, O.; Bulygina, O.N.; Mokhov, I.; Semenov, V. Observed changes in convective and stratiform precipitation over Northern Eurasia during the last decades. Environ. Res. Lett. 2019, 14, 045001. [Google Scholar] [CrossRef]
- Westra, S.; Fowler, H.; Evans, J.; Alexander, L.; Berg, P.; Johnson, F.; Kendon, E.; Lenderink, G.; Roberts, N. Future changes to the intensity and frequency of short-duration extreme rainfall. Rev. Geophys. 2014, 52, 522–555. [Google Scholar] [CrossRef]
- Nissen, K.M.; Ulbrich, U. Increasing frequencies and changing characteristics of heavy precipitation events threatening infrastructure in Europe under climate change. Nat. Hazards Earth Syst. Sci. 2017, 17, 1177–1190. [Google Scholar] [CrossRef] [Green Version]
- Houze, R.A., Jr. Cloud Dynamics; Academic Press: Cambridge, MA, USA, 2014; Volume 104. [Google Scholar]
- Alduchov, O.A.; Eskridge, R.E. Improved Magnus form approximation of saturation vapor pressure. J. Appl. Meteorol. 1996, 35, 601–609. [Google Scholar] [CrossRef]
- Manola, I.; Van Den Hurk, B.; De Moel, H.; Aerts, J.C. Future extreme precipitation intensities based on a historic event. Hydrol. Earth Syst. Sci. 2018, 22. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.; Guerit, L.; Foreman, B.Z.; Hassenruck-Gudipati, H.J.; Adatte, T.; Honegger, L.; Perret, M.; Sluijs, A.; Castelltort, S. Estimating regional flood discharge during Palaeocene-Eocene global warming. Sci. Rep. 2018, 8, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Molnar, P.; Fatichi, S.; Gaál, L.; Szolgay, J.; Burlando, P. Storm type effects on super Clausius–Clapeyron scaling of intense rainstorm properties with air temperature. Hydrol. Earth Syst. Sci. 2015, 19, 1753–1766. [Google Scholar] [CrossRef]
- Schleiss, M. How intermittency affects the rate at which rainfall extremes respond to changes in temperature. Earth Syst. Dyn. 2018, 9, 955–968. [Google Scholar] [CrossRef] [Green Version]
- Formayer, H.; Fritz, A. Temperature dependency of hourly precipitation intensities–surface versus cloud layer temperature. Int. J. Climatol. 2017, 37, 1–10. [Google Scholar] [CrossRef]
- Ivancic, T.J.; Shaw, S.B. A US-based analysis of the ability of the Clausius-Clapeyron relationship to explain changes in extreme rainfall with changing temperature. J. Geophys. Res. Atmos. 2016, 121, 3066–3078. [Google Scholar] [CrossRef] [Green Version]
- Zhang, W.; Villarini, G.; Wehner, M. Contrasting the responses of extreme precipitation to changes in surface air and dew point temperatures. Clim. Chang. 2019, 154, 257–271. [Google Scholar] [CrossRef] [Green Version]
- Lenderink, G.; Mok, H.; Lee, T.; Van Oldenborgh, G. Scaling and trends of hourly precipitation extremes in two different climate zones–Hong Kong and the Netherlands. Hydrol. Earth Syst. Sci. 2011, 15, 3033–3041. [Google Scholar] [CrossRef] [Green Version]
- Grillakis, M.G.; Koutroulis, A.G. Hydrometeorological Extremes in a Warmer Climate: A Local Scale Assessment for the Island of Crete. In Proceedings of the Multidisciplinary Digital Publishing Institute Proceedings, New York, NY, USA, 15–30 November 2018; Volume 7, pp. 22–29. [Google Scholar]
- Sim, I.; Lee, O.; Kim, S. Sensitivity analysis of extreme daily rainfall depth in summer season on surface air temperature and dew-point temperature. Water 2019, 11, 771. [Google Scholar] [CrossRef] [Green Version]
- Huang, D.; Yan, P.; Xiao, X.; Zhu, J.; Tang, X.; Huang, A.; Cheng, J. The tri-pole relation among daily mean temperature, atmospheric moisture and precipitation intensity over China. Glob. Planet. Chang. 2019, 179, 1–9. [Google Scholar] [CrossRef]
- Salby, M.L. Physics of the Atmosphere and Climate; Cambridge University Press: Cambridge, UK, 2012. [Google Scholar]
- Rennó, N.O.; Ingersoll, A.P. Natural convection as a heat engine: A theory for CAPE. J. Atmos. Sci. 1996, 53, 572–585. [Google Scholar] [CrossRef] [Green Version]
- Lepore, C.; Veneziano, D.; Molini, A. Temperature and CAPE dependence of rainfall extremes in the eastern United States. Geophys. Res. Lett. 2015, 42, 74–83. [Google Scholar] [CrossRef]
- Pumo, D.; Carlino, G.; Blenkinsop, S.; Arnone, E.; Fowler, H.; Noto, L.V. Sensitivity of extreme rainfall to temperature in semi-arid Mediterranean regions. Atmos. Res. 2019, 225, 30–44. [Google Scholar] [CrossRef]
- Byrne, M.P.; O’Gorman, P.A. The response of precipitation minus evapotranspiration to climate warming: Why the “wet-get-wetter, dry-get-drier” scaling does not hold over land. J. Clim. 2015, 28, 8078–8092. [Google Scholar] [CrossRef]
- Lenderink, G.; Van Meijgaard, E. Linking increases in hourly precipitation extremes to atmospheric temperature and moisture changes. Environ. Res. Lett. 2010, 5, 025208. [Google Scholar] [CrossRef]
- Busuioc, A.; Birsan, M.V.; Carbunaru, D.; Baciu, M.; Orzan, A. Changes in the large-scale thermodynamic instability and connection with rain shower frequency over Romania: Verification of the Clausius–Clapeyron scaling. Int. J. Climatol. 2016, 36, 2015–2034. [Google Scholar] [CrossRef]
- Blenkinsop, S.; Chan, S.; Kendon, E.; Roberts, N.; Fowler, H. Temperature influences on intense UK hourly precipitation and dependency on large-scale circulation. Environ. Res. Lett. 2015, 10, 054021. [Google Scholar] [CrossRef] [Green Version]
- Pumo, D.; Carlino, G.; Arnone, E.; Noto, L.V. Relationship between extreme rainfall and surface temperature in Sicily (Italy). EPiC Ser. Eng. 2018, 3, 1718–1726. [Google Scholar]
- Lenderink, G.; Van Meijgaard, E. Unexpected rise in extreme precipitation caused by a shift in rain type? Nat. Geosci. 2009, 2, 373. [Google Scholar] [CrossRef]
- Lochbihler, K.; Lenderink, G.; Siebesma, A.P. The spatial extent of rainfall events and its relation to precipitation scaling. Geophys. Res. Lett. 2017, 44, 8629–8636. [Google Scholar] [CrossRef]
- Singh, M.S.; O’Gorman, P.A. Influence of microphysics on the scaling of precipitation extremes with temperature. Geophys. Res. Lett. 2014, 41, 6037–6044. [Google Scholar] [CrossRef]
- Haerter, J.O.; Berg, P. Unexpected rise in extreme precipitation caused by a shift in rain type? Nat. Geosci. 2009, 2, 372–373. [Google Scholar] [CrossRef]
- Haerter, J.; Berg, P.; Hagemann, S. Heavy rain intensity distributions on varying time scales and at different temperatures. J. Geophys. Res. Atmos. 2010, 115, D17102. [Google Scholar] [CrossRef]
- Loriaux, J.M.; Lenderink, G.; De Roode, S.R.; Siebesma, A.P. Understanding convective extreme precipitation scaling using observations and an entraining plume model. J. Atmos. Sci. 2013, 70, 3641–3655. [Google Scholar] [CrossRef]
- Moseley, C.; Hohenegger, C.; Berg, P.; Haerter, J.O. Intensification of convective extremes driven by cloud–cloud interaction. Nat. Geosci. 2016, 9, 748–752. [Google Scholar] [CrossRef] [Green Version]
- Martinkova, M.; Hanel, M. Evaluation of relations between extreme precipitation and temperature in observational time series from the Czech Republic. Adv. Meteorol. 2016, 2016, 2975380. [Google Scholar] [CrossRef]
- Park, I.H.; Min, S.K. Role of convective precipitation in the relationship between subdaily extreme precipitation and temperature. J. Clim. 2017, 30, 9527–9537. [Google Scholar] [CrossRef]
- Singleton, A.; Toumi, R. Super-Clausius–Clapeyron scaling of rainfall in a model squall line. Q. J. R. Meteorol. Soc. 2013, 139, 334–339. [Google Scholar] [CrossRef]
- Berg, P.; Haerter, J.; Thejll, P.; Piani, C.; Hagemann, S.; Christensen, J. Seasonal characteristics of the relationship between daily precipitation intensity and surface temperature. J. Geophys. Res. Atmos. 2009, 114, D18102. [Google Scholar] [CrossRef]
- Siler, N.; Roe, G. How will orographic precipitation respond to surface warming? An idealized thermodynamic perspective. Geophys. Res. Lett. 2014, 41, 2606–2613. [Google Scholar] [CrossRef]
- Utsumi, N.; Seto, S.; Kanae, S.; Maeda, E.E.; Oki, T. Does higher surface temperature intensify extreme precipitation? Geophys. Res. Lett. 2011, 38, L16708. [Google Scholar] [CrossRef]
- Prein, A.F.; Rasmussen, R.M.; Ikeda, K.; Liu, C.; Clark, M.P.; Holland, G.J. The future intensification of hourly precipitation extremes. Nat. Clim. Chang. 2017, 7, 48–52. [Google Scholar] [CrossRef]
- Chan, S.C.; Kendon, E.J.; Roberts, N.M.; Fowler, H.J.; Blenkinsop, S. Downturn in scaling of UK extreme rainfall with temperature for future hottest days. Nat. Geosci. 2016, 9, 24–28. [Google Scholar] [CrossRef] [Green Version]
- Drobinski, P.; Alonzo, B.; Bastin, S.; Silva, N.D.; Muller, C. Scaling of precipitation extremes with temperature in the French Mediterranean region: What explains the hook shape? J. Geophys. Res. Atmos. 2016, 121, 3100–3119. [Google Scholar] [CrossRef] [Green Version]
- Busuioc, A.; Baciu, M.; Breza, T.; Dumitrescu, A.; Stoica, C.; Baghina, N. Changes in intensity of high temporal resolution precipitation extremes in Romania: Implications for Clausius-Clapeyron scaling. Clim. Res. 2017, 72, 239–249. [Google Scholar] [CrossRef] [Green Version]
- Schroeer, K.; Kirchengast, G.; O, S. Strong dependence of extreme convective precipitation intensities on gauge network density. Geophys. Res. Lett. 2018, 45, 8253–8263. [Google Scholar] [CrossRef] [Green Version]
- Boessenkool, B.; Brüger, G.; Heistermann, M. Effects of sample size on estimation of rainfall extremes at high temperatures. Nat. Hazards Earth Syst. Sci. 2017, 17, 1623–1629. [Google Scholar] [CrossRef] [Green Version]
- Hardwick Jones, R.; Westra, S.; Sharma, A. Observed relationships between extreme sub-daily precipitation, surface temperature, and relative humidity. Geophys. Res. Lett. 2010, 37. [Google Scholar] [CrossRef] [Green Version]
- Blenkinsop, S.; Fowler, H.J.; Barbero, R.; Chan, S.C.; Guerreiro, S.B.; Kendon, E.; Lenderink, G.; Lewis, E.; Li, X.F.; Westra, S.; et al. The INTENSE project: Using observations and models to understand the past, present and future of sub-daily rainfall extremes. Adv. Sci. Res. 2018, 15, 117–126. [Google Scholar] [CrossRef] [Green Version]
- Mishra, V.; Wallace, J.M.; Lettenmaier, D.P. Relationship between hourly extreme precipitation and local air temperature in the United States. Geophys. Res. Lett. 2012, 39, L16403. [Google Scholar] [CrossRef]
- Wasko, C.; Sharma, A. Steeper temporal distribution of rain intensity at higher temperatures within Australian storms. Nat. Geosci. 2015, 8, 527–529. [Google Scholar] [CrossRef]
- Jenkinson, A.; Collison, F. An Initial Climatology of Gales Over the North Sea; Number 62 in Synoptic Climatology Branch Memorandum; Meteorological Office: Bracknell, UK, 1977. [Google Scholar]
- Berg, P.; Haerter, J. Unexpected increase in precipitation intensity with temperature—A result of mixing of precipitation types? Atmos. Res. 2011, 119, 56–61. [Google Scholar] [CrossRef] [Green Version]
- Drobinski, P.; Da Silva, N.; Panthou, G.; Bastin, S.; Muller, C.; Ahrens, B.; Borga, M.; Conte, D.; Fosser, G.; Giorgi, F.; et al. Scaling precipitation extremes with temperature in the Mediterranean: Past climate assessment and projection in anthropogenic scenarios. Clim. Dyn. 2018, 51, 1237–1257. [Google Scholar] [CrossRef] [Green Version]
- Fujibe, F. Clausius–Clapeyron-like relationship in multidecadal changes of extreme short-term precipitation and temperature in Japan. Atmos. Sci. Lett. 2013, 14, 127–132. [Google Scholar] [CrossRef]
- Shaw, S.B.; Royem, A.A.; Riha, S.J. The relationship between extreme hourly precipitation and surface temperature in different hydroclimatic regions of the United States. J. Hydrometeorol. 2011, 12, 319–325. [Google Scholar] [CrossRef]
- Basseville, M.; Nikiforov, I.V. Detection of Abrupt Changes: Theory and Application; Prentice Hall: Englewood Cliffs, NJ, USA, 1993; Volume 104. [Google Scholar]
- Rulfová, Z.; Kyselý, J. Disaggregating convective and stratiform precipitation from station weather data. Atmos. Res. 2013, 134, 100–115. [Google Scholar] [CrossRef]
- Tremblay, A. The stratiform and convective components of surface precipitation. J. Atmos. Sci. 2005, 62, 1513–1528. [Google Scholar] [CrossRef]
- Moseley, C.; Berg, P.; Haerter, J.O. Probing the precipitation life cycle by iterative rain cell tracking. J. Geophys. Res. Atmos. 2013, 118, 13–361. [Google Scholar] [CrossRef] [Green Version]
- Yair, Y.; Lynn, B.; Price, C.; Kotroni, V.; Lagouvardos, K.; Morin, E.; Mugnai, A.; Llasat, M.d.C. Predicting the potential for lightning activity in Mediterranean storms based on the Weather Research and Forecasting (WRF) model dynamic and microphysical fields. J. Geophys. Res. Atmos. 2010, 115. [Google Scholar] [CrossRef] [Green Version]
- Ruiz-Leo, A.M.; Hernández, E.; Queralt, S.; Maqueda, G. Convective and stratiform precipitation trends in the Spanish Mediterranean coast. Atmos. Res. 2013, 119, 46–55. [Google Scholar] [CrossRef]
Localization | Type/Season | Temperature | Precipitation | Percentile | below THR | THR | above THR |
---|---|---|---|---|---|---|---|
De Bilt, the Netherlands [32] | – | T daily | 1-h | 99%, 99.9% | ≈7% | 12 C | ≈14% |
– | T daily | 1-h max | 99%, 99.9% | ≈7% | 12 C | ≈14% | |
Four sites in W Europe [65] | – | Tdew | 1-h | 90%, 99%, 99.9% | ≈7% | 10 C | ≈14%, ≈17%, ≈17% |
– | T daily | 1-h | 99%, 99.9% | ≈7% | 10 C | ≈14% | |
Germany [33] | conv. | T daily | 1-h | 75%, 99% | ≈7% | 10 °C | above 7% |
total | T daily | 1-h | 75%, 99% | ≈7% | 12 C | above 7% | |
the Netherlands [39] | conv. | Tdew | 1-h max | above 50% | 14% | ||
Vienna, Austria [53] | – | T hourly | 1-h | 90%,95%,99% | below 7% | 12 °C | ≈14% |
– | T hourly 700–500 hPa | 1-h | 90%,95% | below 7% | −10 °C | above 7% | |
– | T hourly 700–500 hPa | 1-h | 99% | 7% for the whole range | |||
Romania [66] | – | T daily | 1-h | 99%, | ≈7% | 10 C | ≈14% |
– | T daily | 1-h | 99.9% | ≈14% | 10 C | ≈14% | |
for some stations | |||||||
United Kingdom [67] | spring | T daily | 1-h | 99% | below 7% | 10 C | above 7% |
summer | T daily | 1-h | 99% | below 7% | 15 C | above 7% | |
Sicily [63,68] | wet | T daily | 30 min, 60 min | 99% | below 7% | 10–15 C | above 7% |
dry | T daily | 30 min, 60 min | 99% | below 7% | 10–15 C | above 7% |
Localization | Observational Period | Precipitation Data | Temperature Data | Scaling Method | Other Data |
---|---|---|---|---|---|
UK [67] | 1992–2011 | 1-h more than 1300 stations | T daily | binning | daily atmospheric circulation indices |
gridded data set | [88] | [92] | |||
Netherlands [39] | 1995–2014 | P 1-h at 30 stations | T 1-h, Tdew 1-h | binning | 1-h humidity |
Netherlands [70] | 2008–2016 | 5 min 1 km radar data | Tdew 1-h from stations | binning with constant bin widths | |
rainfall events | binning with constant bin numbers | ||||
Netherlands [74] | 8 years | P 10-min | Tdew 1-h | binning 2 C overlap | |
16 years | P 1-h | ||||
16 years | P daily | Tdew daily | |||
only wet intervals | |||||
Switzerland [51] | 1981–2011 | P 10 min | T daily | quantile regression | rel. humidity |
lightning | |||||
Germany [93] | shortest 1971–1976 | 5 stations 5 min resolution | T 1-h | binning 5 °C, overlap | 3-h synop |
longest 1971–1987 | |||||
SW Germany [33] | 1997–2004 | obrometers 90 stations 5 min resolution | T daily | binning 1 C | 3-h synop |
2007–2008 | radar | e-obs data set | |||
Vienna, Austria [53] | 1979–2011 | P 1-h at 1 station | T 1-h | binning | ERA-Interim 1979–2011 |
Austrian SE Alpine foreland [31] | 1958–2014 | P 10 min., P 1-h | T daily, Tdew daily | quantile regression | circulation type classification |
rainfall events | gridded data set | ERA-Interim data 1979–2016 | |||
Medit. France [84] | 1989–2008 | P 3-h at 220 stations | T 3-h at 220 stations | binning | atmospheric integrated water vapor |
P 3-h SAFRAN analysis system | T 3-h SAFRAN analysis system | [88] | |||
Mediterranean [94] | shortest 1995–2008 | P 3-h at approx 20 stations | T daily | binning | ERA-Interim 1989–2008 |
e-obs | exponential regression | ||||
Romania [66] | 1951–2014 | P 1-h, daily at 9 stations | T daily | binning | Best Lifted Index (four layers) |
[32] | |||||
Romania [85] | 1966–2007 | rainfall events at 6 stations | T daily | binning | maximum intensity index (IMAX) |
[32] | |||||
South Korea [77] | 1980–2014 | P 1-h at 26 stations | T 1-h, Tdew 1-h | quantile regression | humidity, pressure, cloud type |
binning with constant bin width | |||||
binning with constant bin number | |||||
Japan [95] | 1951–2010 | P 10 min, P 1-h | T monthly | least squares | |
Contiguous U.S. [96] | longest 1948–2009 | P 1-h | T daily | binning method | |
shortest 1948–1986 | at 14 stations divided in 4 regions | 2 °C | |||
Contiguous U.S. [90] | 1950–2009 | P 1-h | T daily | binning method | |
at 1029 stations | gridded at 1/16 degree | [32] | |||
Contiguous U.S. [35] | longest 1948–2009 | P 1-h | T daily | binning method | |
shortest 1948–1986 | at 14 stations divided in 4 regions | 2 °C | |||
Contiguous U.S. [54] | P 1-h | T 1-h, Tdew 1-h | off-line change point analysis | daily lightning data | |
gridded | gridded | [97] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martinkova, M.; Kysely, J. Overview of Observed Clausius-Clapeyron Scaling of Extreme Precipitation in Midlatitudes. Atmosphere 2020, 11, 786. https://doi.org/10.3390/atmos11080786
Martinkova M, Kysely J. Overview of Observed Clausius-Clapeyron Scaling of Extreme Precipitation in Midlatitudes. Atmosphere. 2020; 11(8):786. https://doi.org/10.3390/atmos11080786
Chicago/Turabian StyleMartinkova, Marta, and Jan Kysely. 2020. "Overview of Observed Clausius-Clapeyron Scaling of Extreme Precipitation in Midlatitudes" Atmosphere 11, no. 8: 786. https://doi.org/10.3390/atmos11080786
APA StyleMartinkova, M., & Kysely, J. (2020). Overview of Observed Clausius-Clapeyron Scaling of Extreme Precipitation in Midlatitudes. Atmosphere, 11(8), 786. https://doi.org/10.3390/atmos11080786