Grey Cast Iron Brake Discs Laser Cladded with Nickel-Tungsten Carbide—Friction, Wear and Airborne Wear Particle Emission
Abstract
:1. Introduction
2. Experiments
3. Results
4. Conclusions
- Both wear and particle emission were reduced by using laser cladded discs compared to grey cast iron discs.
- The laser cladded discs in comparison to the reference grey cast iron discs:
- Achieved halved mass loss wear and quartered specific wear without substantial increase in the pin wear.
- The friction coefficient increased from the 0.5 level to the 0.6 level.
- The particle emission concentration decreased about 30%, from over 100 to 70 particles/cm3.
- The size partition of particles below 7 µm was approximately halved.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Substance, EC/List No. CAS No | Molecular Formula | Harmonized Hazard Classification and Labeling | Properties of Concern |
---|---|---|---|
Iron 231-096-4 7439-89-6 | Fe | Classified | (No) |
Notified toxic to aquatic life, eye and skin irritation | |||
Carbon (Graphite) 231-955-3 7782-42-5 | C | No classified hazards | (No) |
Notified, eye and respiratory irritation | |||
Chromium 231-157-5 7440-47-3 | Cr | No classified hazards | (No) |
Notified, allergies and respiratory irritations | |||
Nickel 231-111-4 7440-02-0 | Ni | Classified | Officially suspected, (* Doubts) Officially recognized, (* Doubts) (* Doubts) |
Notified | |||
Cobalt 231-158-0 7440-48-4 | Co | Classified, aquatic life, allergies and respiratory irritations | (* Doubts) Officially recognized, (* Doubts) Officially recognized (* Doubts) |
Notified | |||
Molybdenum 231-107-2 7439-98-7 | Mo | No classified hazards | (No) |
Notified, suspected of damaging fertility or the unborn child | |||
Manganese 231-105-1 7439-96-5 | Mn | Classified, aquatic life | (No) |
Notified | |||
Tungsten 231-143-9 7440-33-7 | W | Classified | (No) |
Notified | |||
Tungsten carbide 235-123-0 | WC | No classified hazards | (No) |
Notified | |||
Silicon 231-130-8 7440-21-3 | Si | No classified hazards | (No) |
No notified hazards | |||
Quartz 238-878-4 14808-60-7 | SiO2 | Classified, long/repeated exposure | (** No overall agreement) |
No notified hazards |
References
- Maluf, O.; Angeloni, M.; Milan, M.T.; Spinelli, D.; Filho, W.W.B. Development of materials for automotive disc brakes. Minerva 2007, 4, 149–158. [Google Scholar]
- Abdul Hamid, M.K.; Kaulan, A.M.; Syahrullai, S.; Abu Bakar, A.R. Frictional characteristic under corroded disc brakes. Procedia Eng. 2013, 68, 668–673. [Google Scholar] [CrossRef] [Green Version]
- Djafri, M.; Bouchetara, M.; Busch, C.; Weber, S. Effects of humidity and corrosion on the tribological behaviour of the brake disc materials. Wear 2014, 321, 8–15. [Google Scholar] [CrossRef]
- Noh, H.J.; Jang, H. Friction instability induced by iron and iron oxides on friction material surface. Wear 2018, 400, 93–99. [Google Scholar] [CrossRef]
- Miguel, A.G.; Cass, G.R.; Glovsky, M.M.; Weiss, J. Allergens in Paved Road Dust and Airborne Particles. Environ. Sci. Technol. 1999, 33, 4159–4168. [Google Scholar] [CrossRef] [Green Version]
- Harrison, R.M.; Jones, A.M.; Gietl, J.; Yin, J.; Green, D.C. Estimation of the contributions of brake dust, tire wear, and resuspension to non-exhaust traffic particles derived from atmospheric measurements. Environ. Sci. Technol. 2012, 46, 6523–6529. [Google Scholar] [CrossRef]
- Olofsson, U.; Olander, L.; Jansson, A. A study of airborne wear particles generated from a sliding contact. ASME J. Trib. 2009, 131, 044503. [Google Scholar] [CrossRef]
- Olofsson, U.; Olander, L. On the Identification of Wear Modes and Transitions Using Airborne Wear Particles Generated from Sliding Steel-on-Steel Contact. Trib. Int. 2013, 59, 104–113. [Google Scholar] [CrossRef]
- Lyu, Y.; Leonardi, M.; Wahlström, J.; Gialanella, S.; Olofsson, U. Friction, wear and airborne particle emission from Cu-free brake materials. Trib. Int. 2020, 141, 105959. [Google Scholar] [CrossRef]
- Alemani, M.; Wahlström, J.; Olofsson, U. On the influence of car brake system parameters on particulate matter emissions. Wear 2018, 396, 67–74. [Google Scholar] [CrossRef]
- Abbasi, S.; Jansson, A.; Olander, L.; Olofsson, U.; Sellgren, U. A pin-on-disc study of the rate of airborne wear particle emissions from railway braking materials. Wear 2012, 284, 18–29. [Google Scholar] [CrossRef] [Green Version]
- Fauchais, P.L.; Heberlein, J.V.R.; Boulos, M. Thermal Spray Fundamentals—From Powder to Part; Springer: Berlin, Germany, 2014. [Google Scholar]
- Demir, A.; Samur, R.; Kilicaslan, I. Investigation of the coatings applied onto brake discs on disc-brake pad pair. Metalurgija 2009, 48, 161–166. [Google Scholar]
- Gusseisenbremsscheibe Gewinnt Deutschen Innovationspreis—Fachartikel; DVS Media GmbH: Düsseldorf, Germany, 2018; Volume 9. (In German)
- Elbrigmann, T. Hard like Diamond. Porsche Cust. Mag. Christophorus 2017, 4, 384. [Google Scholar]
- Wikipedia. Available online: https://en.wikipedia.org/wiki/Conflict_resource (accessed on 4 May 2020).
- Vilhena, L.M.; Fernandes, C.M.; Soares, E.; Sacramento, J.; Senos, A.M.R.; Ramalho, A. Abrasive wear resistance of WC–Co and WC–AISI 304 composites by ball-cratering method. Wear 2016, 346, 99–107. [Google Scholar] [CrossRef]
- Toyserkani, E.; Khajepour, A.; Corbin, S. Laser Cladding; CRC Press: Boca Raton, FL, USA, 2005. [Google Scholar]
- Zhang, Z.; Kovacevic, R. Laser cladding of iron-based erosion resistant metal matrix composites. J. Manuf. Process. 2019, 38, 63–75. [Google Scholar] [CrossRef]
- Gramstat, S.; Wanninger, R.; Reinhold, B.; Sieber, H.; Eggenschwiler, P.D. Hard-metal coated brake discs—investigation of tribology, mechanical robustness and wear products, EB2019-MDS-020. In Proceedings of the Eurobrakes 2019, Dresden, Germany, 21–23 May 2019. [Google Scholar]
- Davis, J.R. (Ed.) Surface Engineering for Corrosion and Wear Resistance; ASM Int.: Materials Park, OH, USA, 2001. [Google Scholar]
- EN 14700, Welding consumables—Welding consumables for hard facing. In Proceedings of the European Committee for Standardization—CEN, Brussels, Belgium, 30 April 2014.
- Fruehan, R.J.; Fortini, O.; Paxton, H.W.; Brindle, R. Theoretical Minimum Energies to Produce Steel for Selected Conditions; Carnegie Mellon University: Pittsburgh, PA, USA, 2000. [Google Scholar]
- Grigoratos, T.; Martini, G. Brake wear particle emissions: A review. Environ. Sci. Pollut. Res. 2015, 22, 2491–2504. [Google Scholar] [CrossRef] [Green Version]
- Wahlström, J.; Söderberg, A.; Olander, L.; Olofsson, U.; Jansson, A. A pin-on-disc simulation of airborne wear particles from disc brakes. Wear 2010, 268, 763–769. [Google Scholar] [CrossRef]
- Powers, M.C. A new roundness scale for sedimentary particles. J. Sediment. Petrol. 1953, 23, 117–119. [Google Scholar] [CrossRef]
- Wahlström, J.; Matjeka, V.; Lyu, Y.; Söderberg, A. Contact pressure and sliding velocity maps of the friction, wear and emission from a low-metallic/cast iron disc brake contact pair. Trib. Ind. 2017, 39, 460–470. [Google Scholar] [CrossRef] [Green Version]
- Eriksson, M.; Bergman, F.; Jacobson, S. Surface characterization of brake pads after running under silent and squealing conditions. Wear 1999, 232, 163–167. [Google Scholar] [CrossRef]
- Nosko, O.; Borrajo-Pelaez, R.; Hedström, P.; Olofsson, U. Porosity and shape of airborne wear microparticles generated by sliding contact between a low-metallic friction material and a cast iron. J. Aerosol. Sci. 2017, 113, 130–140. [Google Scholar] [CrossRef]
- Wahlström, J.; Lyu, Y.; Matjeka, V.; Söderberg, A. Pin-on-disc tribometer study of disc brake contact pairs with respect to wear and airborne particle emissions. Wear 2017, 384, 124–130. [Google Scholar]
- ECHA—European Chemical Agency. Available online: https://echa.europa.eu/ (accessed on 4 May 2020).
- Globally Harmonized System of Classification and Labelling of Chemicals, 2nd revised ed.; United Nations: New York, NY, USA; Geneva, Switzerland, 2007; ISBN 978-92-1-116957-7.
Pin/Cu-Contained | Pin/Cu-Free | GCI | GCI/LC | |||
---|---|---|---|---|---|---|
Dimension (mm) | ø10 × 25 | ø10 × 25 | ø60 × 6 | |||
Manufacturing Process | Commercial brake pad | Commercial brake pad | Commercial brake disc | |||
Water jet cutting | Water jet cutting | Water jet cutting | ||||
Turning | Turning | Turning | ||||
- | Laser cladding (1) with 1535-30 +60% 4590 powder mix (Höganäs AB) conforming to EN 14,700 P Ni20 | |||||
Super-abrasive grinding (2) | ||||||
Test Surface—Test Cladded Surface | Composition (3) | Low-Metallic Brake Pad | Low-Metallic Brake Pad | Grey Cast Iron (GCI) | Powder Mix, mass %. (Cladding Includes 5% Fe-Dilution), | |
1535-30 | +60% 4590 | |||||
Al | 10.7 | 8.8 | 0.5 | 1 | 0 | |
B | N/A | N/A | N/A | 1 | 0 | |
Bi | 1.6 | 0.8 | 0 | 0 | 0 | |
C | N/A | N/A | N/A | 0.24 | 4 | |
Ca | 2.4 | 1.6 | 0 | 0 | 0 | |
Cr | 3.4 | 1.9 | 0.2 | 5.7 | 0 | |
Cu | 15 | 0.1 | 0.2 | 0 | ||
Fe | 15 | 24.8 | 95.4 | 2.5 | 0 | |
Mn | 0.2 | 0 | 0.6 | 1 | 0 | |
Ni | 0.1 | 0.4 | 0.2 | (86.66) bal. | 0 | |
P | 0.6 | 0 | 0 | 0 | 0 | |
S | 0 | 11.1 | 0.2 | 0 | 0 | |
Si | 0 | 6.6 | 1.8 | 2.9 | 0 | |
Sn | 15.4 | 10.6 | 0 | 0 | 0 | |
Ti | 0.4 | 11.9 | 0 | 0 | 0 | |
Zn | 25 | 18.8 | 0 | 0 | 0 | |
W | 0 | 96 | 0 | 96 | (96) bal. | |
Total | 98.8 | 97.4 | 99.1 | 100 | 100 | |
(Others) | 1.2 | 2.6 | 0.9 | - | - | |
Comment | Indication | Indication | Indication | Nominal | Nominal | |
Hardness | N/A, indication 60–70 HRH | <20 HRC | 58 HRC | |||
Specific density g/cm3 | 2.75 | 2.75 | 7.1 | 13.58 | ||
Roughness, 2D | As delivered | As turned | As ground (lc = 0.8 mm) | |||
Ra (µm) | 10.2 | 1.76 | 0.08 | |||
Rz (µm) | 101 | 12.7 | 0.95 | |||
Rsk () | −0.28 | −1.35 (! Biased *) | −1.58 | |||
Rsm (µm) | −720 | 210 | 354 | |||
Cut-off lc (mm) | 2.5 | 0.8 | 0.8 | |||
Comment | As indication only | * Several deep pores | Smooth. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dizdar, S.; Lyu, Y.; Lampa, C.; Olofsson, U. Grey Cast Iron Brake Discs Laser Cladded with Nickel-Tungsten Carbide—Friction, Wear and Airborne Wear Particle Emission. Atmosphere 2020, 11, 621. https://doi.org/10.3390/atmos11060621
Dizdar S, Lyu Y, Lampa C, Olofsson U. Grey Cast Iron Brake Discs Laser Cladded with Nickel-Tungsten Carbide—Friction, Wear and Airborne Wear Particle Emission. Atmosphere. 2020; 11(6):621. https://doi.org/10.3390/atmos11060621
Chicago/Turabian StyleDizdar, Senad, Yezhe Lyu, Conny Lampa, and Ulf Olofsson. 2020. "Grey Cast Iron Brake Discs Laser Cladded with Nickel-Tungsten Carbide—Friction, Wear and Airborne Wear Particle Emission" Atmosphere 11, no. 6: 621. https://doi.org/10.3390/atmos11060621
APA StyleDizdar, S., Lyu, Y., Lampa, C., & Olofsson, U. (2020). Grey Cast Iron Brake Discs Laser Cladded with Nickel-Tungsten Carbide—Friction, Wear and Airborne Wear Particle Emission. Atmosphere, 11(6), 621. https://doi.org/10.3390/atmos11060621