Damage Analysis of Three Long-Track Tornadoes Using High-Resolution Satellite Imagery
Abstract
:1. Introduction
2. Methods
2.1. The 3 March 2019 Tornado Event
2.2. Data Description
2.3. Normalized Difference Vegetation Index
2.4. Principal Components Analysis
2.5. Correlating Remotely Sensed Products and Estimated Wind Speeds
2.6. Evaluating Remotely Sensed Products Across Tornado Widths
3. Results
3.1. Principal Component Analysis of Pre- and Post-Event Imagery
3.2. Correlating Remotely Sensed Products and Estimated Wind Speeds
3.3. Examination of Damage Signatures Across Tornado Path Width
3.4. Landcover
3.5. A region of Displacement between the Survey-Defined Tornado Path and NDVI Decrease
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Peterson, C.J.; Rebertus, A.J. Tornado damage and initial recovery in three adjacent, lowland temperate forests in Missouri. J. Veg. Sci. 1997, 8, 559–564. [Google Scholar] [CrossRef]
- Peterson, C.J. Consistent influence of tree diameter and species on damage in nine eastern North America tornado blowdowns. For. Ecol. Manag. 2007, 250, 96–108. [Google Scholar] [CrossRef]
- Gutter, B.; Brown, M.; Cox, D.A. Investigation of Vegetation Discontinuities Related to the Yazoo City Tornado Scar and Enhanced Convection. J. Geol. Geosci. 2015, 4, 185. [Google Scholar] [CrossRef]
- White, S.D.; Hart, J.L.; Schweitzer, C.J.; Dey, D.C. Altered structural development and accelerated succession from intermediate-scale wind disturbance in Quercus stands on the Cumberland Plateau, USA. For. Ecol. Manag. 2015, 336, 52–64. [Google Scholar] [CrossRef]
- Trammell, B.W.; Hart, J.L.; Schweitzer, C.J.; Dey, D.C.; Steinberg, M.K. Effects of intermediate-severity disturbance on composition and structure in mixed Pinus-hardwood stands. For. Ecol. Manag. 2017, 400, 110–122. [Google Scholar] [CrossRef]
- Gallo, K.; Smith, T.; Jungbluth, K.; Schumacher, P. Hail Swaths Observed from Satellite Data and Their Relation to Radar and Surface-Based Observations: A Case Study from Iowa in 2009. Weather Forecast. 2012, 27, 796–802. [Google Scholar] [CrossRef]
- Gallo, K.; Schumacher, P.; Boustead, J.; Ferguson, A. Validation of Satellite Observations of Storm Damage to Cropland with Digital Photographs. Weather Forecast. 2019, 34, 435–446. [Google Scholar] [CrossRef]
- Fujita, T.; Bradbury, D.; Van Thullenar, C.F. Palm Sunday tornadoes of April 11, 1965. Mon. Weather. Rev. 1970, 98, 29–69. [Google Scholar] [CrossRef]
- Davies-Jones, R.; Burgess, D.; Lemon, L.; Purcell, D. Interpretation of surface marks and debris pattern from the 24 May 1973 Union City, Oklahoma tornado. Mon. Weather Rev. 1978, 106, 12–21. [Google Scholar] [CrossRef] [Green Version]
- Edwards, R.; LaDue, J.G.; Ferree, J.T.; Scharfenberg, K.; Maier, C.; Coulbourne, W.L. Tornado Intensity Estimation: Past, Present, and Future. Bull. Amer. Meteor. Soc. 2013, 94, 641–653. [Google Scholar] [CrossRef]
- Godfrey, C.M.; Peterson, C.J. Estimating Enhanced Fujita Scale Levels Based on Forest Damage Severity. Weather Forecast. 2016, 32, 243–252. [Google Scholar] [CrossRef]
- Womble, J.A.; Wood, R.L.; Mohammadi, M.E. Multi-scale remote sensing of tornado effects. Front. Built Environ. 2018, 4, 1–21. [Google Scholar] [CrossRef]
- Wagner, M.; Doe, R.K.; Johnson, A.; Chen, Z.; Das, J.; Cerveny, R.S. Unpiloted Aerial Systems (UASs) Application for Tornado Damage Surveys: Benefits and Procedures. Bull. Am. Meteor. Soc. 2019, 100, 2405–2409. [Google Scholar] [CrossRef]
- Molthan, A.; Bell, J.; Cole, T.; Burks, J. Satellite-based identification of tornado damage tracks from the 27 April 2011 severe weather outbreak. J. Operational Meteor. 2014, 2, 191–208. [Google Scholar] [CrossRef]
- Cannon, J.B.; Hepinstall-Cymerman, J.; Godfrey, C.M.; Peterson, C.J. Landscape-scale characteristics of forest tornado damage in mountainous terrain. Landsc. Ecol. 2016, 31, 2097–2114. [Google Scholar] [CrossRef]
- Lyza, A.W.; Castro, R.; Lenning, E.; Friedlein, M.T.; Borchardt, B.S.; Clayton, A.W.; Knupp, K.R. A Multi-Platform Reanalysis of the Kankakee Valley Tornado Cluster on 30 June 2014. Electron. J. Sev. Storms Metereol. (EJSSM) 2019, 14, 1–64. [Google Scholar]
- Jedlovec, G.J.; Nair, U.; Haines, S.L. Detection of Storm Damage Tracks with EOS Data. Weather Forecast. 2006, 21, 249–267. [Google Scholar] [CrossRef]
- Kingfield, D.M.; de Beurs, K.M. Landsat Identification of Tornado Damage by Land Cover and an Evaluation of Damage Recovery in Forests. J. Appl. Meteor. Climatol. 2017, 56, 965–987. [Google Scholar] [CrossRef]
- Yuan, M.; Dickens-Micozzi, M.; Magsig, M.A. Analysis of Tornado Damage Tracks from the 3 May Tornado Outbreak Using Multispectral Satellite Imagery. Weather Forecast. 2002, 17, 382–398. [Google Scholar] [CrossRef]
- Myint, S.W.; Yuan, M.; Cerveny, R.S.; Giri, C.P. Comparison of Remote Sensing Image Processing Techniques to Identify Tornado Damage Areas from Landsat TM Data. Sensors 2008, 8, 1128–1156. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burow, D.; Rundquist, B.; Atkinson, C. NDVI change analysis and damage mapping of the Vilonia, Arkansas tornado, 27 April 2014. Pap. Appl. Geogr. 2017, 3, 85–100. [Google Scholar] [CrossRef]
- Peterson, R.E. Johannes Letzmann: A Pioneer in the Study of Tornadoes. Weather Forecast. 1992, 7, 166–184. [Google Scholar] [CrossRef] [Green Version]
- Wood, V.T.; White, L.W. A New Parametric Model of Vortex Tangential-Wind Profiles: Development, Testing, and Verification. J. Atmos. Sci. 2011, 68, 990–1006. [Google Scholar] [CrossRef]
- Wood, V.T.; White, L.W. A Parametric Wind–Pressure Relationship for Rankine versus Non-Rankine Cyclostrophic Vortices. J. Atmos. Oceanic Technol. 2013, 30, 2850–2867. [Google Scholar] [CrossRef] [Green Version]
- Kim, Y.C.; Matsui, M. Analytical and empirical models of tornado vortices: A comparative study. J. Wind Eng. Ind. Aerodyn. 2017, 171, 230–247. [Google Scholar] [CrossRef]
- Holland, A.P.; Riordan, A.J.; Franklin, E.C. A Simple Model for Simulating Tornado Damage in Forests. J. Appl. Meteor. Climatol. 2006, 45, 1597–1611. [Google Scholar] [CrossRef]
- Beck, V.; Dotzek, N. Reconstruction of Near-Surface Tornado Wind Fields from Forest Damage. J. Appl. Meteor. Climatol. 2010, 49, 1517–1537. [Google Scholar] [CrossRef] [Green Version]
- Karstens, C.D.; Gallus, W.A.; Lee, B.D.; Finley, C.A. Analysis of Tornado-Induced Tree Fall Using Aerial Photography from the Joplin, Missouri, and Tuscaloosa–Birmingham, Alabama, Tornadoes of 2011. J. Appl. Meteor. Climatol. 2013, 52, 1049–1068. [Google Scholar] [CrossRef] [Green Version]
- Strader, S.M.; Ashley, W.; Irizarry, A.; Hall, S. A climatology of tornado intensity assessments. Meteorol. Appl. 2015, 22, 513–524. [Google Scholar] [CrossRef]
- National Weather Service Peachtree City. March 3, 2019 Tornadoes. Available online: https://www.weather.gov/ffc/20190303_tornadoes (accessed on 26 February 2020).
- National Weather Service Birmingham. Tornadoes of March 3, 2019. Available online: https://www.weather.gov/bmx/event_03032019 (accessed on 26 February 2020).
- Roueche, D.; Prevatt, D. Residential Damage Patterns Following the 2011 Tuscaloosa, AL and Joplin, MO Tornadoes. J. Disaster Res. 2013, 8, 1061–1067. [Google Scholar] [CrossRef]
- United States Geological Survey. EarthExplorer. Available online: https://earthexplorer.usgs.gov/ (accessed on 9 June 2020).
- Yang, L.; Jin, S.; Danielson, P.; Homer, C.; Gass, L.; Bender, S.M.; Case, A.; Costello, C.; Dewitz, J.; Fry, J.; et al. A new generation of the United States National Land Cover Database: Requirements, research priorities, design, and implementation strategies. ISPRS J. Photogramm. Remote Sens. 2018, 146, 108–123. [Google Scholar] [CrossRef]
- Burgess, D.; Ortega, K.; Stumpf, G.; Garfield, G.; Karstens, C.; Meyer, T.; Smith, B.; Speheger, D.; Ladue, J.; Smith, R.; et al. 20 May 2013 Moore, Oklahoma, Tornado: Damage Survey and Analysis. Weather Forecast. 2014, 29, 1229–1237. [Google Scholar] [CrossRef]
- Pettorelli, N.; Vik, J.O.; Mysterud, A.; Gaillard, J.-M.; Tucker, C.J.; Stenseth, N.C. Using the satellite-derived NDVI to assess ecological responses to environmental change. Trends Ecol. Evol. 2005, 20, 503–510. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.; Harrison, A. Standardized principal components. Int. J. Remote Sens. 1985, 6, 883–896. [Google Scholar] [CrossRef]
- Li, X.; Yeh, A.G.O. Principal component analysis of stacked multi-temporal images for the monitoring of rapid urban expansion in the Pearl River Delta. Int. J. Remote Sens. 1998, 19, 1501–1518. [Google Scholar] [CrossRef]
- Wurman, J.; Alexander, C.R. The 30 May 1998 Spencer, South Dakota, Storm. Part II: Comparison of Observed Damage and Radar-Derived Winds in the Tornadoes. Mon. Wea. Rev. 2005, 133, 97–119. [Google Scholar] [CrossRef]
- Chen, G.; Lombardo, F.T. An analytical pattern-based method for estimation of a near-surface tornadic wind field. J. Wind Eng. Industrial Aerodyn. 2019, 194, 103999. [Google Scholar] [CrossRef]
- Speheger, D.A.; Doswell, C.A.; Stumpf, G.J. The Tornadoes of 3 May 1999: Event Verification in Central Oklahoma and Related Issues. Weather Forecast. 2002, 17, 362–381. [Google Scholar] [CrossRef] [Green Version]
- Atkins, N.T.; Butler, K.M.; Flynn, K.R.; Wakimoto, R.M. An Integrated Damage, Visual, and Radar Analysis of the 2013 Moore, Oklahoma, EF5 Tornado. Bull. Am. Meteor. Soc. 2014, 95, 1549–1561. [Google Scholar] [CrossRef]
- Molthan, A.L.; Schultz, L.A.; McGrath, K.M.; Burks, J.E.; Camp, J.P.; Angle, K.; Bell, J.R.; Jedlovec, G.J. Incorporation and Use of Earth Remote Sensing Imagery within the NOAA/NWS Damage Assessment Toolkit. Bull. Amer. Meteor. Soc. 2019. BAMS-D-19-0097.1. [Google Scholar] [CrossRef] [PubMed]
- Kakooei, M.; Baleghi, Y. Fusion of satellite, aircraft, and UAV data for automatic disaster damage assessment. Int. J. Remote Sens. 2017, 38, 2511–2534. [Google Scholar] [CrossRef]
- Shikhov, A.; Chernokulsky, A. A satellite-derived climatology of unreported tornadoes in forested regions of northeast Europe. Remote Sens. Environ. 2018, 204, 553–567. [Google Scholar] [CrossRef]
- Skow, K.D.; Cogil, C. A High-Resolution Aerial Survey and Radar Analysis of Quasi-Linear Convective System Surface Vortex Damage Paths from 31 August 2014. Weather Forecast. 2016, 32, 441–467. [Google Scholar] [CrossRef]
Tornado | Maximum Damage Rating | Estimated Peak Wind Speed | Maximum Path Width | Path Length | Time on Ground | Mean Translational Velocity |
---|---|---|---|---|---|---|
Beauregard–Smiths Station | EF-4 | 274 km/h | 1465 m | 110 km | 76 min | 86.8 km/h |
Davisville | EF-2 | 185 km/h | 1190 m | 47 km | 30 min | 94.0 km/h |
Weedon Field | EF-2 | 209 km/h | 785 m | 50 km | 34 min | 88.2 km/h |
Value | PC1 | PC2 | PC3 | PC4 | PC5 | PC6 | PC7 | PC8 |
---|---|---|---|---|---|---|---|---|
Eigenvalue | 0.6119 | 0.1504 | 0.0228 | 0.0115 | 0.0052 | 0.0022 | 0.0014 | 0.0006 |
24 Feb Blue Eigenvector | 0.3788 | 0.1464 | 0.6197 | 0.0671 | 0.2880 | 0.2317 | 0.5153 | 0.2108 |
24 Feb Green Eigenvector | 0.3940 | 0.0514 | 0.3697 | 0.1195 | −0.5945 | 0.0019 | −0.2114 | −0.5414 |
24 Feb Red Eigenvector | 0.3893 | 0.1018 | 0.0405 | 0.7221 | −0.0682 | 0.1185 | −0.4721 | 0.2711 |
24 Feb NIR Eigenvector | 0.2139 | −0.6876 | 0.1580 | −0.1006 | 0.0296 | −0.6524 | 0.0956 | 0.1040 |
6 Mar Blue Eigenvector | 0.3857 | 0.1851 | −0.1353 | 0.3959 | 0.6252 | −0.2281 | −0.3696 | −0.2497 |
6 Mar Green Eigenvector | 0.3912 | 0.1132 | −0.2958 | 0.4271 | −0.3952 | −0.0505 | −0.0362 | 0.6358 |
6 Mar Red Eigenvector | 0.3770 | 0.1929 | −0.5357 | −0.3122 | −0.0461 | −0.1303 | 0.5652 | −0.3126 |
6 Mar NIR Eigenvector | 0.2451 | −0.6391 | −0.2450 | 0.1143 | 0.0944 | 0.6596 | −0.0200 | −0.1179 |
Percent variance explained | 75.921 | 18.662 | 2.825 | 1.429 | 0.642 | 0.273 | 0.169 | 0.079 |
Image | Slope | Intercept | Value |
---|---|---|---|
6 March NDVI | −0.0011 | 0.4279 | 0.0670 |
6 Mar − 24 Feb NDVI difference | −0.0009 | 0.0765 | 0.1040 |
6 Mar − 24 Feb NDVI difference with 3-by-3 pixel smoothing filter | −0.0011 | 0.0835 | 0.2193 |
6 Mar − 24 Feb NDVI difference with 5-by-5 pixel smoothing filter | −0.0012 | 0.0898 | 0.2934 |
PC1 | 0.0226 | 7.7791 | 0.0131 |
PC2 | 0.0024 | 11.0071 | 0.0025 |
PC3 | −0.0161 | 10.0251 | 0.0574 |
PC4 | 0.0071 | 7.1472 | 0.0466 |
PC5 | 0.0033 | 5.193 | 0.0247 |
PC6 | −0.0002 | 5.2960 | 0.0003 |
PC7 | 0.0044 | 8.4424 | 0.1287 |
PC7 with 3-by-3 pixel smoothing filter | 0.0036 | 8.5236 | 0.2400 |
PC7 with 5-by-5 pixel smoothing filter | 0.0030 | 8.5653 | 0.3021 |
PC8 | −0.0013 | 15.3674 | 0.0223 |
Landcover Group (Tornado) | Number of Pixels | Mean NDVI-Difference Value | Standard Deviation NDVI Difference | Mean PC7 Value | Standard Deviation PC7 |
---|---|---|---|---|---|
Forested (all tornadoes) | 2064 | 0.003 | 0.032 | 8.796 | 0.079 |
Shrub/grassland (all tornadoes) | 495 | 0.012 | 0.022 | 8.779 | 0.075 |
Agricultural (all tornadoes) | 290 | 0.020 | 0.028 | 8.740 | 0.126 |
Urban (all tornadoes) | 118 | 0.004 | 0.033 | 8.790 | 0.091 |
Forested (Beauregard–Smiths Station) | 710 | −0.001 | 0.031 | 8.820 | 0.082 |
Forested (Davisville) | 710 | 0.013 | 0.025 | 8.757 | 0.061 |
Forested (Weedon Field) | 644 | −0.004 | 0.037 | 8.813 | 0.077 |
Shrub/grassland (Beauregard–Smiths Station) | 125 | 0.008 | 0.026 | 8.782 | 0.080 |
Shrub/grassland (Davisville) | 161 | 0.015 | 0.022 | 8.746 | 0.069 |
Shrub/grassland (Weedon Field) | 209 | 0.012 | 0.019 | 8.803 | 0.066 |
Agricultural (Beauregard-Smiths Station) | 77 | 0.017 | 0.028 | 8.787 | 0.100 |
Agricultural (Davisville) | 90 | 0.025 | 0.020 | 8.715 | 0.080 |
Agricultural (Weedon Field) | 123 | 0.018 | 0.032 | 8.730 | 0.159 |
Urban (Beauregard–Smiths Station) | 59 | 0.004 | 0.028 | 8.789 | 0.084 |
Urban (Davisville) | 31 | 0.014 | 0.028 | 8.758 | 0.076 |
Urban (Weedon Field) | 28 | −0.010 | 0.041 | 8.827 | 0.105 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Burow, D.; Herrero, H.V.; Ellis, K.N. Damage Analysis of Three Long-Track Tornadoes Using High-Resolution Satellite Imagery. Atmosphere 2020, 11, 613. https://doi.org/10.3390/atmos11060613
Burow D, Herrero HV, Ellis KN. Damage Analysis of Three Long-Track Tornadoes Using High-Resolution Satellite Imagery. Atmosphere. 2020; 11(6):613. https://doi.org/10.3390/atmos11060613
Chicago/Turabian StyleBurow, Daniel, Hannah V. Herrero, and Kelsey N. Ellis. 2020. "Damage Analysis of Three Long-Track Tornadoes Using High-Resolution Satellite Imagery" Atmosphere 11, no. 6: 613. https://doi.org/10.3390/atmos11060613
APA StyleBurow, D., Herrero, H. V., & Ellis, K. N. (2020). Damage Analysis of Three Long-Track Tornadoes Using High-Resolution Satellite Imagery. Atmosphere, 11(6), 613. https://doi.org/10.3390/atmos11060613