Comparison of Assimilating All-Sky and Clear-Sky Satellite Radiance for Typhoon Chan-Hom and Nangka Forecasts
Abstract
:1. Introduction
2. Typhoons Chan-Hom and Nangka
3. All-Sky Assimilation Methodology
3.1. Quality Control
3.2. Moist Control Variable Selection
3.3. Experiment Design
3.4. Clear-Sky and All-Sky CRTM Simulations
4. Results and Discussions
4.1. Statistical Results from All Cycles
4.1.1. Impacts on Track and Intensity Forecasts
4.1.2. Impacts on the Analysis Fields
4.2. Results from One Cycle
4.2.1. Track and Intensity Forecasts
4.2.2. Vertical Structures of the Typhoons
4.2.3. Initial Fields Difference
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Simmons, A.; Hollingsworth, A. Some aspects of the improvement in skill of numerical weather prediction. Q. J. R. Meteorol. Soc. 2002, 128, 647–677. [Google Scholar] [CrossRef]
- Geer, A.J.; Baordo, F.; Bormann, N.; English, S.; Kazumori, M.; Lawrence, H.; Lean, P. The growing impact of satellite observations sensitive to humidity, cloud and precipitation. Q. J. R. Meteorol. Soc. 2017, 143, 3189–3206. [Google Scholar] [CrossRef]
- McNally, A.P.; Watts, P.D. A cloud detection algorithm for high-spectral-resolution infrared sounders. Q. J. R. Meteorol. Soc. 2003, 129, 3411–3423. [Google Scholar] [CrossRef]
- Chen, S.H.; Vandenberghe, F.; Petty, G.W.; Bresch, J. Application of SSM/I satellite data to a hurricane simulation. Q. J. R. Meteorol. Soc. 2006, 130, 801–825. [Google Scholar] [CrossRef] [Green Version]
- Bell, W.; English, S.J.; Candy, B.; Atkinson, N.; Hilton, F.; Baker, N.; Swadley, S.D.; Campbell, W.F.; Bormann, N.; Kelly, G. The assimilation of SSMIS radiances in numerical weather prediction models. IEEE Trans. Geosci. Remote Sens. 2008, 46, 884–900. [Google Scholar] [CrossRef]
- Liu, Z.; Schwartz, C.S.; Snyder, C.; Ha, S. Impact of assimilating AMSU-A radiances on forecasts of 2008 Atlantic Tropical Cyclones initialized with a limited-area ensemble Kalman filter. Mon. Weather Rev. 2012, 140, 4017–4034. [Google Scholar] [CrossRef] [Green Version]
- Zou, X.; Qin, Z.; Weng, F. Improved Quantitative Precipitation Forecasts by MHS Radiance Data Assimilation with a Newly Added Cloud Detection Algorithm. Mon. Weather Rev. 2013, 141, 3203–3221. [Google Scholar] [CrossRef]
- Ma, Z.; Maddy, E.; Zhang, B.; Zhu, T.; Boukabara, S. Impact Assessment of Himawari-8 AHI Data Assimilation in NCEP GDAS/GFS with GSI. J. Atmos. Ocean. Technol. 2017, 34, 797–815. [Google Scholar] [CrossRef]
- Kim, D.; Kim, H. Effect of Assimilating Himawari-8 Atmospheric Motion Vectors on Forecast Errors over East Asia. J. Atmos. Ocean. Technol. 2018, 35, 1737–1752. [Google Scholar] [CrossRef]
- Geer, A.J.; Bauer, P.; O’Dell, C.W. A Revised Cloud Overlap Scheme for Fast Microwave Radiative Transfer in Rain and Cloud. J. Appl. Meteorol. Climatol. 2009, 48, 2257–2270. [Google Scholar] [CrossRef]
- Saunders, R.; Hocking, J.; Rundle, D.; Rayer, P.; Matricardi, M.; Geer, A.; Lupu, C. RTTOV-12 Science and Validation Report; NWPSAF-MO-TV-032 v1.1; EUMETSAT NWP-SAF: 2013. Available online: https://www.google.com.sg/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&cad=rja&uact=8&ved=2ahUKEwiq8Zve3e7pAhVGBKYKHdaBCsMQFjAAegQIBBAB&url=https%3A%2F%2Fnwpsaf.eu%2Fsite%2Fdownload%2Fdocumentation%2Frtm%2Fdocs_rttov12%2Frttov12_svr.pdf&usg=AOvVaw03xwGQR4p2B9kLlxcotn7L (accessed on 7 June 2020).
- Liu, Q. Community Radiative Transfer Model (CRTM) applications in supporting the Suomi National Polar-orbiting Partnership (SNPP) mission validation and verification. Remote Sens. Environ. 2014, 140, 744–754. [Google Scholar] [CrossRef]
- Bauer, P.; Geer, A.J.; Lopez, P.; Salmond, D. Direct 4D-Var assimilation of all-sky radiances. Part I: Implementation. Q. J. R. Meteorol. Soc. 2010, 136, 1868–1885. [Google Scholar] [CrossRef]
- Geer, A.J.; Lonitz, K. All-sky satellite data assimilation at operational weather. Q. J. R. Meteorol. Soc. 2017, 144, 1191–1217. [Google Scholar] [CrossRef]
- Kazumori, M. Satellite Radiance Assimilation in the JMA Operational Mesoscale 4DVAR System. Mon. Weather Rev. 2014, 142, 1361–1381. [Google Scholar] [CrossRef]
- Geer, A.J.; Baordo, F.; Bormann, N.; English, S. All-Sky Assimilation of Microwave Humidity Sounders. ECMWF Tech. Memo. 2014, 140, 25–32. [Google Scholar]
- Zhu, Y.; Liu, E.H.; Mahajan, R.; Thomas, C.; Groff, D.; van Delst, P.; Collard, A. All-sky microwave radiance assimilation in the NCEP’s GSI analysis system. Mon. Weather Rev. 2016, 144, 4709–4735. [Google Scholar] [CrossRef]
- Otkin, J.A. Clear and cloudy sky infrared brightness temperature assimilation using an ensemble Kalman filter. J. Geophys. Res. 2010, 115, D19207. [Google Scholar] [CrossRef] [Green Version]
- Zhang, F.; Minamide, M.; Clothiaux, E.E. Potential impacts of assimilating all-sky infrared satellite radiance from GOES-R on convection-permitting analysis and prediction of tropical cyclones. Geophys. Res. Lett. 2016, 43, 2954–2963. [Google Scholar] [CrossRef] [Green Version]
- Minamide, M.; Zhang, F. Adaptive observation error inflation for assimilating all-sky satellite radiance. Mon. Weather Rev. 2017, 145, 1063–1081. [Google Scholar] [CrossRef]
- Honda, T.; Miyoshi, T.; Lien, G.-Y.; Nishizawa, S.; Yoshida, R.; Adachi, S.A.; Terasaki, K.; Okamoto, K.; Tomita, H.; Bessho, K. Assimilating All-Sky Himawari-8 Satellite Infrared Radiances: A Case of Typhoon Soudelor (2015). Mon. Weather Rev. 2018, 146, 213–229. [Google Scholar] [CrossRef]
- Zhang, Y.; Stensrud, D.; Zhang, F. Simultaneous Assimilation of Radar and All-Sky Satellite Infrared Radiance Observations for Convection-Allowing Ensemble Analysis and Prediction of Severe Thunderstorms. Mon. Weather Rev. 2019, 147, 4389–4409. [Google Scholar] [CrossRef]
- Okamoto, K.; Sawada, Y.; Kunii, M. Comparison of assimilating all-sky and clear-sky infrared radiances from Himawari-8 in a mesoscale system. Q. J. R. Meteorol. Soc. 2019, 145, 745–766. [Google Scholar] [CrossRef]
- Shen, F.; Min, J. Assimilating AMSU-A radiance data with the WRF Hybrid En3DVAR system for track predictions of Typhoon Megi (2010). Adv. Atmos. Sci. 2015, 9, 1231–1243. [Google Scholar] [CrossRef]
- Yang, C.; Liu, Z.; Bresch, J.; Rizvi, S.R.; Huang, X.Y.; Min, J. AMSR2 all-sky radiance assimilation and its impact on the analysis and forecast of Hurricane Sandy with a limited-area data assimilation system. Tellus A: Dyn. Meteorol. Oceanogr. 2016, 68, 30917. [Google Scholar] [CrossRef] [Green Version]
- Xian, Z.; Chen, K.; Zhu, J. All-sky assimilation of the MWHS-2 observations and evaluation the impacts on the analyses and forecasts of binary typhoons. J. Geophys. Res. 2019, 124, 6359–6378. [Google Scholar] [CrossRef]
- Brand, S. Interaction of binary tropical cyclones of the Western North Pacific Ocean. J. Appl. Meteorol. 1970, 9, 433–441. [Google Scholar] [CrossRef]
- Imaoka, K.; Kachi, M.; Fujii, H.; Murakami, H.; Hori, M.; Ono, A.; Igarashi, T.; Nakagawa, K.; Oki, T.; Hond, Y.; et al. Global Change Observation Mission (GCOM) for Monitoring Carbon, Water Cycles, and Climate Change. Proc. IEEE 2010, 98, 717–734. [Google Scholar] [CrossRef]
- Kim, S.; Liu, Y.; Johnson, F.M. A global comparison of alternate AMSR2 soil moisture products: Why do they differ? Remote Sens. Environ. 2015, 161, 43–62. [Google Scholar] [CrossRef]
- AMSR2 dataset. Available online: ftp://ftp.gportal.jaxa.jp/ (accessed on 7 June 2020).
- Han, Y.; van Delst, P.; Liu, Q.; Weng, F.; Yan, B. JCSDA Community radiative Transfer Model (CRTM)-Version 1. NOAA Tech. Rep. NESDIS 2006, 122, 33. [Google Scholar]
- Dee, D.P. Variational bias correction of radiance data in the ECMWF system. In Proceedings of the ECMWF Workshop on Assimilation of High Spectral Resolution Sounders in NWP, Reading, UK, 28 June–1 July 2004. [Google Scholar]
- Dee, D.; da Silva, A. The choice of variable for atmospheric moisture analysis. Mon. Weather Rev. 2010, 131, 155–171. [Google Scholar] [CrossRef] [Green Version]
- Parrish, D.F.; Derber, J.C. The National Meteorological Center’s spectral statistical interpolation analysis system. Mon. Weather Rev. 1992, 120, 1747–1763. [Google Scholar] [CrossRef]
- Xiao, Q.; Kuo, Y.H.; Sun, J.; Lee, W.C.; Barker, D.M. An approach of radar reflectivity data assimilation and its assessment with the inland QPF of typhoon Rusa (2002) at landfall. J. Appl. Meteorol. Clim. 2007, 46, 14–22. [Google Scholar] [CrossRef] [Green Version]
- Liu, Z.; Zhang, X.; Auligne, T.; Lin, H. Variational Analysis of Hydrometeors with Satellite Radiance Observations: A simulated study. In Proceedings of the 10th WRF Users’ Workshop, Boulder, CO, USA, 23–26 June 2009. [Google Scholar]
- Dudhia, J. Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model. J. Atmos. Sci. 1989, 46, 3077–3107. [Google Scholar] [CrossRef]
- NCEP ADP Global Upper Air and Surface Weather Observations. Available online: https://rda.ucar.edu/datasets/ds337.0/ (accessed on 7 June 2020).
- ERA-Interim dataset. Available online: https://apps.ecmwf.int/datasets/data/interim-full-daily (accessed on 7 June 2020).
- Copernicus Climate Data Store. Available online: https://cds.climate.copernicus.eu/cdsapp (accessed on 7 June 2020).
- Xu, D.; Min, J.; Shen, F.; Ban, J.; Chen, P. Assimilation of MWHS radiance data from the FY-3B satellite with the WRF Hybrid-3DVAR system for the forecasting of binary typhoons. J. Adv. Model. Earth Syst. 2016, 8, 1014–1028. [Google Scholar] [CrossRef] [Green Version]
- Dong, P.; Li, W.; Huang, J.; Liu, L. Study on the Effect and Sensitivity of Water Content on the Satellite Microwave Remote Sensing. Remote Sensing Technology and Application. J. Trop. Meteorol. 2014, 30, 300–308. [Google Scholar]
- Li, M.; Ping, F.; Chen, J.; Xu, L. A simulation study on the rapid intensification of Typhoon Megi (2010) in vertical wind shear. Q. J. R. Meteorol. Soc. 2016, 17, 630–638. [Google Scholar] [CrossRef]
Frequency (GHz) | 10.65 | 18.7 | 23.8 | 36.5 | ||||
---|---|---|---|---|---|---|---|---|
Channel | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
Abs innovation (K) | 10 | 10 | 6 | 8 | 8 | 10 | 6 | 6 |
CLWP (kg/m2) | 0.35 | 0.35 | 0.3 | 0.3 | 0.25 | 0.25 | 0.10 | 0.10 |
Channel | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
---|---|---|---|---|---|---|---|---|
Clear-sky | 0.866 | 1.129 | 1.227 | 1.747 | 1.600 | 2.679 | 1.179 | 2.268 |
All-sky | 21.936 | 40.924 | 28.302 | 57.588 | 12.693 | 27.331 | 23.243 | 53.351 |
Microphysics | WSM6 (WRF Single-Moment 6-Class) |
---|---|
Cumulus parameterization | Kain Fritsch (new Eta) scheme |
Planetary boundary layer | YSU (Yonsei University) |
Surface layer | Monin Obukhov |
Longwave radiation | Rapid Radiative Transfer Model for GCMs |
Shortwave radiation | Dudhia scheme |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, J.; Zhang, L.; Guan, J.; Zhang, M. Comparison of Assimilating All-Sky and Clear-Sky Satellite Radiance for Typhoon Chan-Hom and Nangka Forecasts. Atmosphere 2020, 11, 599. https://doi.org/10.3390/atmos11060599
Wang J, Zhang L, Guan J, Zhang M. Comparison of Assimilating All-Sky and Clear-Sky Satellite Radiance for Typhoon Chan-Hom and Nangka Forecasts. Atmosphere. 2020; 11(6):599. https://doi.org/10.3390/atmos11060599
Chicago/Turabian StyleWang, Jingnan, Lifeng Zhang, Jiping Guan, and Mingyang Zhang. 2020. "Comparison of Assimilating All-Sky and Clear-Sky Satellite Radiance for Typhoon Chan-Hom and Nangka Forecasts" Atmosphere 11, no. 6: 599. https://doi.org/10.3390/atmos11060599
APA StyleWang, J., Zhang, L., Guan, J., & Zhang, M. (2020). Comparison of Assimilating All-Sky and Clear-Sky Satellite Radiance for Typhoon Chan-Hom and Nangka Forecasts. Atmosphere, 11(6), 599. https://doi.org/10.3390/atmos11060599