Chemical Analysis of Surface-Level Ozone Exceedances during the 2015 Pan American Games
Abstract
:1. Introduction
2. Experimental Methods
2.1. Evaluation Datasets for the 2015 Pan American Games Period
2.2. GEM-MACH-TEB Model Description and Setup
2.3. Pollutant Emission Inventories and Emission Processing for GEM-MACH-TEB
3. Results and Discussion
3.1. Evaluating Pollutant Emissions for a Downtown Toronto Model Grid Cell
3.2. Measured O3 Time Series in Toronto during the 2015 Pan American Games Period
3.3. Model Evaluation
3.4. Case Study Analysis for Periods of O3 Exceedance
3.4.1. Synoptic-Scale Meteorology and Back Trajectories
3.4.2. Case Study Time Series Analysis
3.4.3. Modeled Pollutant Spatial Distributions, Vertical Cross Sections and Meteorological Analysis
28 July 2015 Case Study
Ozone Production Sensitivity along the Lake-Breeze Air Mass Trajectory
12 July 2015 Case Study
3.5. Recommendations for Emission Reduction Strategies
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A Updated Biogenic Standard Emission Rates for ‘Monoterpenes’ and ‘Other VOC’ Species for Boreal Forest Tree Species
BEIS v3.09c | BEIS v3.09c | Updated | Updated | Comments | |
---|---|---|---|---|---|
Monoterpene µgC/m2/h | Other VOC µg/m2/h | Monoterpene µgC/m2/h | Other VOC µg/m2/h | ||
Birch | 66 | 408 | 990 | 140 | MEGAN 2.10 [80] |
Larch | 33 | 408 | 1250 | 140 | MEGAN 2.10 [80] |
Pine Jack | 1849 | 13,881 | 924 | 6941 | Reduction by 2 considering satellite LAI |
Populus | 33 | 408 | 990 | 140 | MEGAN 2.10 [80] |
Spruce Black | 3971 | 1620 | 1986 | 810 | Reduction by 2 considering satellite LAI |
Balsam Poplar/Aspen | 68 | 408 | 990 | 140 | MEGAN 2.10 [80] |
References
- Alotaibi, R.; Bechle, M.; Marshall, J.D.; Ramani, T.; Zietsman, J.; Nieuwenhuijsen, M.J.; Khreis, H. Traffic related air pollution and the burden of childhood asthma in the contiguous United States in 2000 and 2010. Environ. Int. 2019, 127, 858–867. [Google Scholar] [CrossRef] [PubMed]
- Thurston, G.D.; Kipen, H.; Annesi-Maesano, I.; Balmes, J.; Brook, R.D.; Cromar, K.; De Matteis, S.; Forastiere, F.; Forsberg, B.; Frampton, M.W.; et al. A joint ERS/ATS policy statement: What constitutes an adverse health effect of air pollution? An analytical framework. Eur. Respir. J. 2017, 49, 1600419. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moulton, P.V.; Yang, W. Air pollution, oxidative stress, and Alzheimer’s disease. J. Environ. Public Health 2012, 2012, 472751. [Google Scholar] [CrossRef] [PubMed]
- Kilian, J.; Kitazawa, M. The emerging risk of exposure to air pollution on cognitive decline and Alzheimer’s disease—Evidence from epidemiological and animal studies. Biomed. J. 2018, 41, 141–162. [Google Scholar] [CrossRef]
- Achakulwisut, P.; Brauer, M.; Hystad, P.; Anenberg, S.C. Global, national, and urban burdens of paediatric asthma incidence attributable to ambient NO2 pollution: Estimates from global datasets. Lancet Planet. Health 2019, 3, e166–e178. [Google Scholar] [CrossRef] [Green Version]
- Levy, I.; Mihele, C.; Lu, G.; Narayan, J.; Brook, J.R. Evaluating multipollutant exposure and urban air quality: Pollutant interrelationships, neighborhood variability, and nitrogen dioxide as a proxy pollutant. Environ. Health Perspect. 2014, 122, 65–72. [Google Scholar] [CrossRef] [Green Version]
- Stieb, D.M.; Burnett, R.T.; Smith-Doiron, M.; Brion, O.; Hwashin, H.S.; Economou, V. A new multipollutant no-threshold air quality health index based on short-term associations observed in daily time-series analyses. J. Air Waste Manag. Assoc. 2008, 58, 435–450. [Google Scholar] [CrossRef] [Green Version]
- Clapp, L.J.; Jenkin, M.E. Analysis of the relationship between ambient levels of O3, NO2 and NO as a function of NOx in the UK. Atmos. Environ. 2001, 35, 6391–6405. [Google Scholar] [CrossRef]
- Brown, S.S.; Ryerson, T.B.; Wollny, A.G.; Brock, C.A.; Peltier, R.; Sullivan, A.P.; Weber, R.J.; Dubé, W.P.; Trainer, M.; Meagher, J.F.; et al. Variability in nocturnal nitrogen oxide processing and its role in regional air quality. Science 2006, 311, 67–70. [Google Scholar] [CrossRef]
- Avnery, S.; Mauzerall, D.L.; Liu, J.; Horowitz, L.W. Global crop yield reductions due to surface ozone exposure: 1. Year 2000 crop production losses and economic damage. Atmos. Environ. 2011, 45, 2284–2296. [Google Scholar] [CrossRef]
- Jacobson, M. Fundamentals of Atmospheric Modeling, 1st ed.; Cambridge Press: Cambridge, UK, 1999; pp. 318–351. [Google Scholar]
- MOECC. Air Quality in Ontario Report. Ontario Ministry of the Environment and Climate Change. 2016. Available online: http://www.airqualityontario.com/press/publications.php (accessed on 26 August 2019).
- U.S. EPA. Our Nation’s Air, United States Environmental Protection Agency. 2018. Available online: https://gispub.epa.gov/air/trendsreport/2018/#home (accessed on 10 September 2019).
- Lennartson, G.J.; Schwartz, M.D. The lake breeze-ground-level O3 connection in eastern Wisconsin: A climatological perspective. Int. J. Climatol. 2002, 22, 1347–1364. [Google Scholar] [CrossRef] [Green Version]
- Makar, P.A.; Zhang, J.; Gong, W.; Stroud, C.; Sills, D.; Hayden, K.L.; Brook, J.; Levy, I.; Mihele, C.; Moran, M.D.; et al. Mass tracking for chemical analysis: The causes of ozone formation in southern Ontario during BAQS-Met 2007. Atmos. Chem. Phys. 2010, 10, 11151–11173. [Google Scholar] [CrossRef] [Green Version]
- Wentworth, G.R.; Murphy, J.G.; Sills, D.M.L. Impact of lake breezes on ozone and nitrogen oxides in the Greater Toronto Area. Atmos. Environ. 2015, 109, 52–60. [Google Scholar] [CrossRef]
- Foley, T.; Betterton, E.A.; Robert Jacko, P.E.; Hillery, J. Lake Michigan air quality: The 1994–2003 LADCO Aircraft Project (LAP). Atmos. Environ. 2011, 45, 3192–3202. [Google Scholar] [CrossRef]
- Cleary, P.A.; Fuhrman, N.; Schulz, L.; Schafer, J.; Fillingham, J.; Bootsma, H.; McQueen, J.; Tang, Y.; Langel, T.; McKeen, S.; et al. Ozone distributions over southern Lake Michigan: Comparisons between ferry-based observations, shoreline-based DOAS observations and model forecasts. Atmos. Chem. Phys. 2015, 15, 5109–5122. [Google Scholar] [CrossRef] [Green Version]
- McNider, R.T.; Pour-Biazar, A.; Doty, K.; White, A.; Wu, Y.; Qin, M.; Hu, Y.; Odman, T.; Cleary, P.; Kniing, E.; et al. Examination of the physical atmosphere in the Great Lakes region and its potential impact on air quality-Overwater stability and satellite assimilation. J. Alied Meteorol. Climatol. 2018, 57, 2789–2816. [Google Scholar] [CrossRef]
- Loughner, C.P.; Tzortziou, M.; Follette-Cook, M.; Pickering, K.E.; Goldberg, D.; Satam, C.; Weinheimer, A.; Crawford, J.H.; Kna, D.J.; Montzka, D.D.; et al. Impact of bay-breeze circulations on surface air quality and boundary layer export. J. Alied Meteorol. Climatol. 2014, 53, 1697–1713. [Google Scholar] [CrossRef] [Green Version]
- Goldberg, D.L.; Loughner, C.P.; Tzortziou, M.; Stehr, J.W.; Pickering, K.E.; Marufu, L.T.; Dickerson, R.R. Higher surface ozone concentrations over the Chesapeake Bay than over the adjacent land: Observations and models from the DISCOVER-AQ and CBODAQ campaigns. Atmos. Environ. 2014, 84, 9–19. [Google Scholar] [CrossRef] [Green Version]
- Sills, D.M.L.; Brook, J.R.; Levy, I.; Makar, P.A.; Zhang, J.; Taylor, P.A. Lake breezes in the southern Great Lakes region and their influence during BAQS-Met 2007. Atmos. Chem. Phys. 2011, 11, 7955–7973. [Google Scholar] [CrossRef] [Green Version]
- Brook, J.R.; Makar, P.A.; Sills, D.M.L.; Hayden, K.L.; McLaren, R. Exploring the nature of air quality over southwestern Ontario: Main findings from the Border Air Quality and Meteorology Study. Atmos. Chem. Phys. 2013, 13, 10461–10482. [Google Scholar] [CrossRef] [Green Version]
- Hastie, D.R.; Narayan, J.; Schiller, C.; Niki, H.; Shepson, P.B.; Sills, D.M.L.; Taylor, P.A.; Moroz, W.M.J.; Drummond, J.W.; Reid, N.; et al. Observational evidence for the impact of the lake breeze circulation on ozone concentrations in Southern Ontario. Atmos. Environ. 1999, 33, 323–335. [Google Scholar] [CrossRef] [Green Version]
- Geddes, J.A.; Murphy, J.G.; Wang, D.K. Long term changes in nitrogen oxides and volatile organic compounds in Toronto and the challenges facing local ozone control. Atmos. Environ. 2009, 43, 3407–3415. [Google Scholar] [CrossRef]
- Pugliese, S.C.; Murphy, J.G.; Geddes, J.A.; Wang, J.M. The impacts of precursor reduction and meteorology on ground-level ozone in the Greater Toronto Area. Atmos. Chem. Phys. 2014, 14, 8197–8207. [Google Scholar] [CrossRef] [Green Version]
- Joe, P.; Belair, S.; Bernier, N.B.; Bouchet, V.; Brook, J.R.; Brunet, D.; Burrows, W.; Charland, J.-P.; Dehghan, A.; Driedger, N.; et al. The environment Canada pan and parapan American science showcase project. Bull. Am. Meteorol. Soc. 2018, 99, 921–953. [Google Scholar] [CrossRef]
- Ontario Ministry of Finance. Ontario Population Projections, 2018–2046, Based on the 2026 Census; Ontario Ministry of Finance: Toronto, ON, Canada, 2019.
- Thermo Fisher Scientific. Thermo Fisher Scientific Model 49i Instruction Manual UV Photometric O3 Analyzer; Thermo Fisher Scientific: Waltham, MA, USA, 2011. [Google Scholar]
- Thermo Fisher Scientific. Model 42i Instruction Manual Chemiluminescence NO-NO2-NOX Analyzer; Thermo Fisher Scientific: Waltham, MA, USA, 2015. [Google Scholar]
- Dunlea, E.J.; Herndon, S.C.; Nelson, D.D.; Volkamer, R.M.; San Martini, F.; Sheehy, P.M.; Zahniser, M.S.; Shorter, J.H.; Wormhoudt, J.C.; Lamb, B.K.; et al. Evaluation of nitrogen dioxide chemiluminescence monitors in a polluted urban environment. Atmos. Chem. Phys. 2007, 7, 2691–2704. [Google Scholar] [CrossRef] [Green Version]
- Liggio, J.; Gordon, M.; Smallwood, G.; Li, S.-M.; Stroud, C.; Staebler, R.; Lu, G.; Lee, P.; Taylor, B.; Brook, J.R. Are emissions of black carbon from gasoline vehicles underestimated? Insights from near and on-road measurements. Environ. Sci. Technol. 2012, 46, 4819–4828. [Google Scholar] [CrossRef] [PubMed]
- Mariani, Z.; Dehghan, A.; Joe, P.; Sills, D. Observations of Lake-Breeze Events during the Toronto 2015 Pan-American Games. Bound. Layer Meteorol. 2018, 166, 113–135. [Google Scholar] [CrossRef]
- Anselmo, D.M.D.; Moran, S.; Ménard, V.; Bouchet, P.; Makar, W.; Gong, A.; Kallaur, P.-A.; Beaulieu, H.; Landry, C.; Stroud, P.; et al. A new Canadian air quality forecast model: GEM-MACH15. In Proceedings of the 12th AMS Conference on Atmospheric Chemistry, Boston, MA, USA, 17–21 January 2000; American Meteorological Society: Boston, MA, USA; p. 6. Available online: http://ams.confex.com/ams/pdfpapers/165388.pdf (accessed on 10 August 2019).
- Makar, P.A.; Gong, W.; Milbrandt, J.; Hogrefe, C.; Zhang, Y.; Curci, G.; Žabkar, R.; Im, U.; Balzarini, A.; Baró, R.; et al. Feedbacks between air pollution and weather, Part 1: Effects on weather. Atmos. Environ. 2015, 115, 442–469. [Google Scholar] [CrossRef]
- Makar, P.A.; Gong, W.; Hogrefe, C.; Zhang, Y.; Curci, G.; Žabkar, R.; Milbrandt, J.; Im, U.; Balzarini, A.; Baró, R.; et al. Feedbacks between air pollution and weather, part 2: Effects on chemistry. Atmos. Environ. 2015, 115, 499–526. [Google Scholar] [CrossRef]
- Gong, W.; Makar, P.A.; Zhang, J.; Milbrandt, J.; Gravel, S.; Hayden, K.L.; Macdonald, A.M.; Leaitch, W.R. Modelling aerosol-cloud-meteorology interaction: A case study with a fully coupled air quality model (GEM-MACH). Atmos. Environ. 2015, 115, 695–715. [Google Scholar] [CrossRef]
- Moran, M.D.; Lupu, A.; Zhang, J.; Savic-Jovcic, V.; Gravel, S. A comprehensive performance evaluation of the next generation of the Canadian operational regional air quality deterministic prediction system. In International Technical Meeting on Air Pollution Modelling and its Application; Springer Proceedings in Complexity; Springer: Cham, Switzerland, 2018; pp. 75–81. [Google Scholar]
- Caron, J.-F.; Milewski, T.; Buehner, M.; Fillion, L.; Reszka, M.; Macpherson, S.; St-James, J. Implementation of deterministic weather forecasting systems based on ensemble-variational data assimilation at Environment Canada. Part II: The regional system. Mon. Weather Rev. 2015, 143, 2560–2580. [Google Scholar] [CrossRef]
- Milbrandt, J.A.; Bélair, S.; Faucher, M.; Vallée, M.; Carrera, M.L.; Glazer, A. The pan-Canadian High Resolution (2.5 km) Deterministic Prediction System. Weather Forecast. 2016, 31, 1791–1816. [Google Scholar] [CrossRef]
- Carrera, M.L.; Bélair, S.; Bilodeau, B. The Canadian Land Data Assimilation System (CaLDAS): Description and synthetic evaluation study. J. Hydrometeorol. 2015, 16, 1293–1314. [Google Scholar] [CrossRef]
- Dupont, F.; Chittibabu, P.; Fortin, V.; Rao, Y.R.; Lu, Y. Assessment of a NEMO-based hydrodynamic modelling system for the Great Lakes. Water Qual. Res. J. Can. 2012, 47, 198–214. [Google Scholar] [CrossRef]
- Durnford, D.V.; Fortin, G.C.; Smith, B.; Archambault, D.; Deacu, F.; Dupont, S.; Dyck, Y.; Martinez, Y.; Klyszejko, M.; Mackay, L.; et al. Toward an operational water cycle prediction system for the Great Lakes and St. Lawrence river. Bull. Am. Meteorol. Soc. 2018, 521–546. [Google Scholar] [CrossRef]
- Masson, V.; Grimmond, C.S.B.; Oke, T.R. Evaluation of the Town Energy Balance (TEB) scheme with direct measurements from dry districts in two cities. J. Appl. Meteorol. 2000, 41, 1011–1026. [Google Scholar]
- Sarrat, C.; Lemonsu, A.; Masson, V.; Guedalia, D. Impact of urban heat island on regional atmospheric pollution. Atmos. Environ. 2006, 40, 1743–1758. [Google Scholar] [CrossRef]
- Leroyer, S.; Bélair, S.; Spacek, L.; Gultepe, I. Modelling of radiation-based thermal stress indicators for urban numerical weather prediction. Urban Clim. 2018, 25, 64–81. [Google Scholar] [CrossRef]
- Ren, S.; Stroud, C.; Belair, S.; Leroyer, S.; Moran, M.; Zhang, J.; Akingunola, A.; Makar, P. Impact of Urban Land Use and Anthropogenic Heat on Air Quality in Urban Environments. In International Technical Meeting on Air Pollution Modelling and its Application; Springer Proceedings in Complexity; Springer: Cham, Switzerland, 2020; pp. 153–158. [Google Scholar]
- Lee, S.-H.; McKeen, S.A.; Sailor, D.J. A regression approach for estimation of anthropogenic heat flux based on a bottom-up air pollutant emission database. Atmos. Environ. 2014, 95, 629–633. [Google Scholar] [CrossRef] [Green Version]
- Pendlebury, D.; Gravel, S.; Moran, M.D.; Lupu, A. Impact of chemical lateral boundary conditions in a regional air quality forecast model on surface ozone predictions during stratospheric intrusions. Atmos. Environ. 2018, 174, 148–170. [Google Scholar] [CrossRef]
- Zheng, Y.; Alapaty, K.; Herwehe, J.A.; Del Genio, A.D.; Niyogi, D. Improving high-resolution weather forecasts using the Weather Research and Forecasting (WRF) model with an updated Kain-Fritsch scheme. Mon. Weather Rev. 2016, 144, 833–860. [Google Scholar] [CrossRef]
- Stroud, C.A.; Morneau, G.; Makar, P.A.; Moran, M.D.; Gong, W.; Pabla, B.; Zhang, J.; Bouchet, V.S.; Fox, D.; Venkatesh, S.; et al. OH-reactivity of volatile organic compounds at urban and rural sites across Canada: Evaluation of air quality model predictions using speciated VOC measurements. Atmos. Environ. 2008, 42, 7746–7756. [Google Scholar] [CrossRef]
- NPRI, National Pollutant Release Inventory. (ECCC (Environment and Climate Change Canada). Available online: https://www.canada.ca/en/services/environment/pollution-waste-management/national-pollutant-release-inventory.html (accessed on 26 May 2019).
- APEI. Air Pollutant Emission Inventory (APEI) Report 1990–2013. Environment and Climate Change Canada February 2015. 2013. Available online: http://www.publications.gc.ca/site/eng/9.810709/publication.html (accessed on 27 May 2019).
- APEI. Air Pollutant Emission Inventory (APEI) Report 1990–2015. Environment and Climate Change Canada February, 2015. 2015. Available online: http://www.publications.gc.ca/site/eng/9.810709/publication.html (accessed on 27 May 2019).
- MOVES2014a User Guide. EPA-420-B-15-095. Office of Transportation and Air Quality, U.S. Environmental Protection Agency. 2015. Available online: http://nepis.epa.gov/Exe/ZyPDF.cgi?Dockey=P100NNCY.pdf (accessed on 15 June 2019).
- APETD, Air Pollutant Emissions Trends Data. United States Environmental Protection Agency. April 2017. Available online: www.epa.gov/air-emissions-inventories/air-pollutant-emissions-trends-data (accessed on 15 September 2019).
- AMPD, Air Market Program Data, Acid Rain Program. United States Environmental Protection Agency. April 2017. Available online: https://ampd.epa.gov/ampd/ (accessed on 26 August 2019).
- Zhang, J.Q.; Zheng, M. Moran, Impact of new North American Emissions Inventories on Urban Mobile Source Emissions for High Resolution Air Quality Modeling. In Proceedings of the 8th Intern. Workshop on Air Quality Forecasting Research, Toronto, ON, Canada, 10–12 January 2017; Available online: https://cpaess.ucar.edu/sites/default/files/meetings/2017/iwaqfr/presentations/2.%20Zhang%2C%20Junhua%20-%20High_Resolution_Onroad_Emissions_2017IWAQFR_Session2_Junhua_Zhang.t (accessed on 26 August 2019).
- Gately, C.K.; Hutyra, L.R.; Wing, I.S.; Brondfield, M.N. A bottom up approach to on-road CO2 emissions estimates: Improved spatial accuracy and applications for regional planning. Environ. Sci. Technol. 2013, 47, 2423–2430. [Google Scholar] [CrossRef]
- U.S. EPA. SPECIATE. United States Environmental Protection Agency 2016. Available online: https://www.epa.gov/air-emissions-modeling/speciate-2 (accessed on 22 January 2020).
- MOECC. Air Quality in Ontario Report. Ontario Ministry of the Environment and Climate Change. 2015. Available online: http://www.airqualityontario.com/press/publications.php (accessed on 26 August 2019).
- Canadian Environmental Sustainability Indicators (CESI) Program. Available online: https://www.canada.ca/en/environment-climate-change/services/environmental-indicators/air-quality.html (accessed on 10 September 2018).
- Yu, S.; Mathur, R.; Schere, K.; Kang, D.; Pleim, J.; Otte, T.L. A detailed evaluation of the Eta-CMAQ forecast model performance for O3, its related precursors, and meteorological parameters during the 2004 ICARTT study. J. Geophys. Res. Atmos. 2007, 112, D12S14. [Google Scholar] [CrossRef] [Green Version]
- Huijnen, V.; Pozzer, A.; Arteta, J.; Brasseur, G.; Bouarar, I.; Chabrillat, S.; Christophe, Y.; Doumbia, T.; Flemming, J.; Guth, J.; et al. Pelletier, Quantifying uncertainties due to chemistry modelling-Evaluation of tropospheric composition simulations in the CAMS model (cycle 43R1). Geosci. Model Dev. 2019, 12, 1725–1752. [Google Scholar] [CrossRef] [Green Version]
- Stroud, C.A.; Moran, M.D.; Makar, P.A.; Gong, S.; Gong, W.; Zhang, J.; Slowik, J.G.; Abbatt, J.P.D.; Lu, G.; Brook, J.R.; et al. Evaluation of chemical transport model predictions of primary organic aerosol for air masses classified by particle component-based factor analysis. Atmos. Chem. Phys. 2012, 12, 8297–8321. [Google Scholar] [CrossRef] [Green Version]
- Dennis, R.; Fox, T.; Fuentes, M.; Gilliland, A.; Hanna, S.; Hogrefe, C.; Irwin, J.; Rao, S.T.; Scheffe, R.; Schere, K.; et al. A framework for evaluating regional-scale numerical photochemical modeling systems. Environ. Fluid Mech. 2010, 10, 471–489. [Google Scholar] [CrossRef] [Green Version]
- Rao, S.T.; Galmarini, S.; Puckett, K. Air quality model evaluation international initiative (AQMEII): Advancing the state of the science in regional photochemical modeling and its alication. Bull. Am. Meteorol. Soc. 2011, 92, 23–30. [Google Scholar] [CrossRef] [Green Version]
- Simon, H.; Baker, K.R.; Phillips, S. Compilation and interpretation of photochemical model performance statistics published between 2006 and 2012. Atmos. Environ. 2012, 61, 124–139. [Google Scholar] [CrossRef]
- Russell, M.; Hakami, A.; Makar, P.A.; Akingunola, A.; Zhang, J.; Moran, M.D.; Zheng, Q. An evaluation of the efficacy of very high resolution air-quality modelling over the Athabasca oil sands region, Alberta, Canada. Atmos. Chem. Phys. 2019, 19, 4393–4417. [Google Scholar] [CrossRef] [Green Version]
- Qin, M.; Yu, H.; Hu, Y.; Russell, A.G.; Odman, M.T.; Doty, K.; Pour-Biazar, A.; McNider, R.T.; Kniing, E. Improving ozone simulations in the Great Lakes Region: The role of emissions, chemistry, and dry deposition. Atmos. Environ. 2019, 202, 167–179. [Google Scholar] [CrossRef]
- U.S. EPA. Guidance on the Use of Models and Other Analyses for Demonstrating Attainment of Air Quality Goals for Ozone PM2.5 and Regional Haze; United States Environmental Protection Agency: Washington, DC, USA, 2007; p. 253.
- Chang, L.T.-C.; Duc, H.N.; Scorgie, Y.; Trieu, T.; Monk, K.; Jiang, N. Performance evaluation of CCAM-CTM regional airshed modelling for the New SouthWales Greater Metropolitan Region. Atmosphere 2018, 9, 486. [Google Scholar] [CrossRef] [Green Version]
- NCEP Meteorology Reanalysis. Available online: https://www.wpc.ncep.noaa.gov/archives (accessed on 12 January 2020).
- Kleinman, L.I.; Daum, P.H.; Lee, Y.-N.; Nunnermacker, L.J.; Springston, S.R.; Weinstein-Lloyd, J.; Rudolph, J. Sensitivity of ozone production rate to ozone precursors. Geophys. Res. Lett. 2001, 28, 2903–2906. [Google Scholar] [CrossRef] [Green Version]
- Sillman, S. The use of NOy, H2O2, and HNO3 as indicators for ozone-NOx-hydrocarbon sensitivity in urban locations. J. Geophys. Res. 1995, 100, 14175–14188. [Google Scholar] [CrossRef]
- Sillman, S.; He, D.; Cardelino, C.; Imhoff, R.E. The Use of Photochemical Indicators to Evaluate Ozone-NOx-Hydrocarbon Sensitivity: Case Studies from Atlanta, New York, and Los Angeles. J. Air Waste Manag. Assoc. 1997, 47, 1030–1040. [Google Scholar] [CrossRef]
- Whaley, C.H.; Strong, K.; Jones, D.B.A.; Walker, T.W.; Jiang, Z.; Henze, D.K.; Cooke, M.A.; McLinden, C.A.; Mittermeier, R.L.; Pommier, M.; et al. Toronto area ozone: Long-term measurements and modeled sources of poor air quality events. J. Geophys. Res. 2015, 120, 11368–11390. [Google Scholar] [CrossRef]
- Vukovich, J.; Pierce, T.E. U.S. EPA. 2002. Available online: https://www.epa.gov/air-emissions-modeling/beis-references (accessed on 10 September 2018).
- Pierce, T.E.; Kinnee, E.; Geron, C. Development of a 1-km vegetation database for modeling biogenic fluxes of hydrocarbons and nitric oxide. In Proceedings of the Sixth International Conference on Air-Sea Exchange of Gases and Particles, Edinburgh, UK, 3–7 July 2000; Available online: http://www.epa.gov/asmdnerl/images/beld3_web.gif (accessed on 25 September 2017).
- Guenther, A.B.; Jiang, X.; Heald, C.L.; Sakulyanontvittaya, T.; Duhl, T.; Emmons, L.K.; Wang, X. The model of emissions of gases and aerosols from nature version 2.1 (MEGAN2.1): An extended and updated framework for modeling biogenic emissions. Geosci. Model Dev. 2012, 5, 1471–1492. [Google Scholar] [CrossRef] [Green Version]
Numerical Model Option | Option Description |
---|---|
Grid Spacing | 2.5-km × 2.5-km |
Meteorology Data Assimilation | Ensemble variational (EnVAR) method [39] |
Cloud Microphysics | Milbrandt and Yau two-moment bulk [40] |
Longwave Radiation | Li-Barker correlated-k distribution |
Boundary Layer Scheme | TKE with statistical representation of sub-grid clouds (MoisTKE) |
Cloud Convection | Kain-Fritch scheme, important for summertime convection [50] |
Land Surface Scheme | ISBA and Town Energy Balance |
Surface Data Assimilation | CALDAS with ensemble Kalman filtering, hourly for temperature and moisture assimilation; 2-km NEMO model for lake with 10-km analysis |
Gas-Phase Chemistry | ADOM-II mechanism [51] |
Gas-to-Particle Equilibrium | HETV (Heterogeneous Chemistry Vectorized) |
Gaseous Deposition | Resistance model using Henry’s Law and Oxidation Potential |
Photolysis Rates | Look-up table and modulation based on cloud fraction |
Physics Time Step | 120 s |
Chemistry Time Step | 240 s |
Model Domain and Configuration | Metric | Observed Mean ± Standard Deviation (ppbv) | Model Mean (ppbv) | NMB (%) | Correlation Coefficient, R | RMSE (ppbv) |
---|---|---|---|---|---|---|
2.5-km GEM-MACH-TEB | O3 | 31.6 ± 7.5 | 33.3 | +5.4 | 0.62 | 7.5 |
10-km GEM-MACH | 32.6 | +3.2 | 0.60 | 8.1 | ||
2.5-km GEM-MACH-TEB | NO2 | 6.2 ± 2.4 | 7.4 | +18.8 | 0.77 | 3.8 |
10-km GEM-MACH | 8.3 | +34.5 | 0.85 | 4.4 | ||
2.5-km GEM-MACH-TEB | NOx | 10.0 ± 4.4 | 10.5 | +5.4 | 0.64 | 7.0 |
10-km GEM-MACH | 11.7 | +16.6 | 0.74 | 7.5 | ||
2.5-km GEM-MACH-TEB | Ox | 37.7 ± 7.8 | 37.6 | −0.34 | 0.80 | 6.8 |
10-km GEM-MACH | 37.7 | −0.18 | 0.81 | 7.3 |
Chemical Sensitivity Analysis | North Toronto 20Z, Surface | North Toronto 20Z, 1.3 km | North Toronto 20Z, 2 km | Uptown Toronto 20Z, 2 km | North Toronto 18Z, Surface | Down-Town 18Z, Surface |
---|---|---|---|---|---|---|
NOx (ppbv) | 5.4 | 3.9 | 2.2 | 0.56 | 12 | 12 |
Ln/Q and Sensitivity | 0.84 VOC | 0.59 VOC | 0.36 NOx | 0.059 NOx | 0.88 VOC | 0.96 VOC |
dln(PO3)/dln(NO) | −0.45 | 0.16 | 0.56 | 0.94 | −0.57 | −0.85 |
dln(PO3)/dln(VOC) | 0.72 | 0.42 | 0.22 | 0.030 | 0.79 | 0.92 |
OH Loss by NOx as Ratio of Total Loss | 0.15 | 0.11 | 0.077 | 0.033 | 0.21 | 0.23 |
H2O2/HNO3 ratio, by mass, Sensitivity | 0.253 VOC | 0.246 VOC | 0.301 Transition | 0.702 NOx | 0.348 Transition | 0.356 Transition |
Location | Latitude, Longitude | Distance from Lake Ontario AXYZ Buoy (km) | Observed Time of Lake Breeze Passage (UTC) | Modelled Time of Lake Breeze Passage (UTC) |
---|---|---|---|---|
Downsview Park, L1E | 43.75, 79.48 | 18 | 17 | 17 |
York University | 43.78, 79.49 | 23 | 18 | 17 |
Concord Station L1F | 43.82, 79.52 | 28 | 20 | 18 |
Vaughan Station A2T | 43.86, 79.54 | 33 | 21 | 18 |
Newmarket | 44.04, 79.48 | 51 | 22 | 19 |
Location | Time (UTC) | Model State (°C) | Observed State (°C) |
---|---|---|---|
Watchkeeper Buoy Station AXYZ | 15:00 17:00 | T water 18.1 T water 18.1 | T water 19.9 T water 19.7 |
West Lake Buoy | 15:00 17:00 19:00 | T air 20.1 T air 20.0 T air 21.0 | T air 22.8 T air 22.7 T air 23.1 |
West Lake Boat | 13:00 | T air 19.5 | T air 21.0 |
Toronto Island Station YTZ | 15:00 17:00 | T air 20.6 T air 21.7 | T air 20.9 T air 22.7 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stroud, C.A.; Ren, S.; Zhang, J.; Moran, M.D.; Akingunola, A.; Makar, P.A.; Munoz-Alpizar, R.; Leroyer, S.; Bélair, S.; Sills, D.; et al. Chemical Analysis of Surface-Level Ozone Exceedances during the 2015 Pan American Games. Atmosphere 2020, 11, 572. https://doi.org/10.3390/atmos11060572
Stroud CA, Ren S, Zhang J, Moran MD, Akingunola A, Makar PA, Munoz-Alpizar R, Leroyer S, Bélair S, Sills D, et al. Chemical Analysis of Surface-Level Ozone Exceedances during the 2015 Pan American Games. Atmosphere. 2020; 11(6):572. https://doi.org/10.3390/atmos11060572
Chicago/Turabian StyleStroud, Craig A., Shuzhan Ren, Junhua Zhang, Michael D. Moran, Ayodeji Akingunola, Paul A. Makar, Rodrigo Munoz-Alpizar, Sylvie Leroyer, Stéphane Bélair, David Sills, and et al. 2020. "Chemical Analysis of Surface-Level Ozone Exceedances during the 2015 Pan American Games" Atmosphere 11, no. 6: 572. https://doi.org/10.3390/atmos11060572
APA StyleStroud, C. A., Ren, S., Zhang, J., Moran, M. D., Akingunola, A., Makar, P. A., Munoz-Alpizar, R., Leroyer, S., Bélair, S., Sills, D., & Brook, J. R. (2020). Chemical Analysis of Surface-Level Ozone Exceedances during the 2015 Pan American Games. Atmosphere, 11(6), 572. https://doi.org/10.3390/atmos11060572