The Record-Breaking High Temperature over Europe in June of 2019
Abstract
:1. Introduction
2. Data and Method
3. Results
3.1. Observations for the Exceptionally Hot June of 2019 in Europe
3.2. Atmospheric Circulation Anomalies in June of 2019
3.3. Contributions of Atmospheric Teleconnections
4. Summary and Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Wernberg, T.; Smale, D.A.; Tuya, F.; Thomsen, M.S.; Langlois, T.J.; de Bettignies, T.; Bennett, S.; Rousseaux, C.S. An extreme climatic event alters marine ecosystem structure in a global biodiversity hotspot. Nat. Clim. Chang. 2013, 3, 78–82. [Google Scholar] [CrossRef]
- Mitchell, D.; Heaviside, C.; Vardoulakis, S.; Huntingford, C.; Masato, G.; Guillod, B.P.; Frumhoff, P.; Bowery, A.; Wallom, D.; Allen, M. Attributing human mortality during extreme heat waves to anthropogenic climate change. Environ. Res. Lett. 2016, 11, 074006. [Google Scholar] [CrossRef]
- Baumbach, L.; Siegmund, J.F.; Mittermeier, M.; Donner, R.V. Impacts of temperature extremes on European vegetation during the growing season. Biogeosciences 2017, 14, 4891–4903. [Google Scholar] [CrossRef] [Green Version]
- Deng, K.Q.; Yang, S.; Ting, M.F.; Zhao, P.; Wang, Z.Y. Dominant Modes of China Summer Heat Waves Driven by Global Sea Surface Temperature and Atmospheric Internal Variability. J. Clim. 2019, 32, 3761–3775. [Google Scholar] [CrossRef]
- Meehl, G.A.; Tebaldi, C. More intense, more frequent, and longer lasting heat waves in the 21st century. Science 2004, 305, 994–997. [Google Scholar] [CrossRef] [Green Version]
- Trenberth, K.E.; Fasullo, J.T. Climate extremes and climate change: The Russian heat wave and other climate extremes of 2010. J. Geophys. Res. Atmos. 2012, 117, D17103. [Google Scholar] [CrossRef]
- Duchez, A.; Frajka-Williams, E.; Josey, S.A.; Evans, D.G.; Grist, J.P.; Marsh, R.; McCarthy, G.D.; Sinha, B.; Berry, D.I.; Hirschi, J.J.M. Drivers of exceptionally cold North Atlantic Ocean temperatures and their link to the 2015 European heat wave. Environ. Res. Lett. 2016, 11, 074004. [Google Scholar] [CrossRef] [Green Version]
- Deng, K.Q.; Yang, S.; Ting, M.F.; Lin, A.L.; Wang, Z.Q. An Intensified Mode of Variability Modulating the Summer Heat Waves in Eastern Europe and Northern China. Geophys. Res. Lett. 2018, 45, 11361–11369. [Google Scholar] [CrossRef] [Green Version]
- Tomczyk, A.M.; Bednorz, E. Heat waves in Central Europe and tropospheric anomalies of temperature and geopotential heights. Int. J. Climatol. 2019, 39, 4189–4205. [Google Scholar] [CrossRef]
- Black, E.; Blackburn, M.; Harrison, G.; Hoskins, B.; Methven, J. Factors Contributing to the Summer 2003 European Heatwave. Atmosphere 2004, 59, 217–223. [Google Scholar] [CrossRef]
- Fischer, E.M.; Seneviratne, S.I.; Luthi, D.; Schar, C. Contribution of land-atmosphere coupling to recent European summer heat waves. Geophys. Res. Lett. 2007, 34, L06707. [Google Scholar] [CrossRef] [Green Version]
- Porebska, M.; Zdunek, M. Analysis of extreme temperature events in Central Europe related to high pressure blocking situations in 2001–2011. Meteorol. Z. 2013, 22, 533–540. [Google Scholar] [CrossRef] [Green Version]
- Grumm, R.H. The Central European and Russian Heat Event of July-August 2010. Bull Am. Soc. 2011, 92, 1285–1296. [Google Scholar] [CrossRef] [Green Version]
- Tomczyk, A.M. Impact of atmospheric circulation on the occurrence of heat waves in southeastern Europe. Idojaras 2016, 120, 395–414. [Google Scholar]
- Dole, R.; Hoerling, M.; Perlwitz, J.; Eischeid, J.; Pegion, P.; Zhang, T.; Quan, X.W.; Xu, T.Y.; Murray, D. Was there a basis for anticipating the 2010 Russian heat wave? Geophys. Res. Lett. 2011, 38, L06702. [Google Scholar] [CrossRef] [Green Version]
- Deng, K.Q.; Yang, S.; Ting, M.F.; Tan, Y.H.; He, S. Global Monsoon Precipitation: Trends, Leading Modes, and Associated Drought and Heat Wave in the Northern Hemisphere. J. Clim. 2018, 31, 6947–6966. [Google Scholar] [CrossRef]
- Chen, S.F.; Wu, R.G. Interdecadal Changes in the Relationship between Interannual Variations of Spring North Atlantic SST and Eurasian Surface Air Temperature. J. Clim. 2017, 30, 3771–3787. [Google Scholar] [CrossRef]
- Chen, S.F.; Wu, R.G.; Liu, Y. Dominant Modes of Interannual Variability in Eurasian Surface Air Temperature during Boreal Spring. J. Clim. 2016, 29, 1109–1125. [Google Scholar] [CrossRef]
- Fragkoulidis, G.; Wirth, V.; Bossmann, P.; Fink, A.H. Linking Northern Hemisphere temperature extremes to Rossby wave packets. Q. J. R. Meteorol. Soc. 2018, 144, 553–566. [Google Scholar] [CrossRef]
- Lau, W.K.M.; Kim, K.M. The 2010 Pakistan Flood and Russian Heat Wave: Teleconnection of Hydrometeorological Extremes. J. Hydrometeorol. 2012, 13, 392–403. [Google Scholar] [CrossRef] [Green Version]
- Miralles, D.G.; Teuling, A.J.; van Heerwaarden, C.C.; de Arellano, J.V.G. Mega-heatwave temperatures due to combined soil desiccation and atmospheric heat accumulation. Nat. Geosci. 2014, 7, 345–349. [Google Scholar] [CrossRef]
- Hirsch, A.L.; Evans, J.P.; Di Virgilio, G.; Perkins-Kirkpatrick, S.E.; Argueso, D.; Pitman, A.J.; Carouge, C.C.; Kala, J.; Andrys, J.; Petrelli, P.; et al. Amplification of Australian Heatwaves via Local Land-Atmosphere Coupling. J. Geophys. Res. Atmos. 2019, 124, 13625–13647. [Google Scholar] [CrossRef]
- Rahmstorf, S.; Coumou, D. Increase of extreme events in a warming world. Proc. Natl. Acad. Sci. USA 2011, 108, 17905–17909. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beniston, M. Entering into the “greenhouse century”: Recent record temperatures in Switzerland are comparable to the upper temperature quantiles in a greenhouse climate. Geophys. Res. Lett. 2007, 34, L16710. [Google Scholar] [CrossRef] [Green Version]
- Uhe, P.; Otto, F.E.L.; Haustein, K.; van Oldenborgh, G.J.; King, A.D.; Wallom, D.C.H.; Allen, M.R.; Cullen, H. Comparison of methods: Attributing the 2014 record European temperatures to human influences. Geophys. Res. Lett. 2016, 43, 8685–8693. [Google Scholar] [CrossRef] [Green Version]
- Stott, P.A.; Stone, D.A.; Allen, M.R. Human contribution to the European heatwave of 2003. Nature 2004, 432, 610–614. [Google Scholar] [CrossRef]
- Van Oldenborgh, G.J.; Drijfhout, S.; van Ulden, A.; Haarsma, R.; Sterl, A.; Severijns, C.; Hazeleger, W.; Dijkstra, H. Western Europe is warming much faster than expected. Clim. Past. 2009, 5, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Chen, Y.; Tett, S.; Yan, Z.W.; Zhai, P.M.; Feng, J.M.; Xia, J.J. Anthropogenically-driven increases in the risks of summertime compound hot extremes. Nat. Commun. 2020, 11, 528. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Christidis, N.; Jones, G.S.; Stott, P.A. Dramatically increasing chance of extremely hot summers since the 2003 European heatwave. Nat. Clim. Chang. 2015, 5, 46–50. [Google Scholar] [CrossRef]
- Van Oldenborgh, G.J.; Vautard, R.; Boucher, O.; Otto, F.; Haustein, K.; Soubeyroux, J.M.; Seneviratne, S.I.; Vogel, M.M.; Aalst, M.; Stott, P. Human Contribution to the Record-Breaking June 2019 Heat Wave in France. Available online: https://www.worldweatherattribution.org/human-contribution-to-record-breaking-june-2019-heatwave-in-france/ (accessed on 1 March 2020).
- Li, J.P.; Ruan, C.Q. The North Atlantic-Eurasian teleconnection in summer and its effects on Eurasian climates. Environ. Res. Lett. 2018, 13, 024007. [Google Scholar] [CrossRef] [Green Version]
- Kalnay, E.; Kanamitsu, M.; Kistler, R.; Collins, W.; Deaven, D.; Gandin, L.; Iredell, M.; Saha, S.; White, G.; Woollen, J.; et al. The NCEP/NCAR 40-year reanalysis project. Bull Am. Soc. 1996, 77, 437–471. [Google Scholar] [CrossRef] [Green Version]
- Greatbatch, R.J.; Rong, P.P. Discrepancies between different Northern Hemisphere summer atmospheric data products. J. Clim. 2006, 19, 1261–1273. [Google Scholar] [CrossRef]
- Inoue, T.; Matsumoto, J. A comparison of summer sea level pressure over East Eurasia between NCEP-NCAR reanalysis and ERA-40 for the period 1960–1999. J. Meteorol. Soc. Jpn. 2004, 82, 951–958. [Google Scholar] [CrossRef] [Green Version]
- Copernicus Climate Change Service (C3S). ERA5: Fifth Generation of ECMWF Atmospheric Reanalyses of the Global Climate. Copernicus Climate Change Service Climate Data Store (CDS). Available online: https://cds.climate.copernicus.eu/cdsapp#!/home (accessed on 1 January 2020).
- Takaya, K.; Nakamura, H. A formulation of a wave-activity flux for stationary Rossby waves on a zonally varying basic flow. Geophys. Res. Lett. 1997, 24, 2985–2988. [Google Scholar] [CrossRef]
- Takaya, K.; Nakamura, H. A formulation of a phase-independent wave-activity flux for stationary and migratory quasigeostrophic eddies on a zonally varying basic flow. J. Atmos. Sci. 2001, 58, 608–627. [Google Scholar] [CrossRef]
- Sillmann, J.; Kharin, V.V.; Zhang, X.; Zwiers, F.W.; Bronaugh, D. Climate extremes indices in the CMIP5 multimodel ensemble: Part 1. Model evaluation in the present climate. J. Geophys. Res. Atmos. 2013, 118, 1716–1733. [Google Scholar] [CrossRef]
- Climate Prediction Center. Available online: https://www.cpc.ncep.noaa.gov/data (accessed on 1 March 2020).
- Ding, Q.H.; Wang, B. Circumglobal teleconnection in the Northern Hemisphere summer. J. Clim. 2005, 18, 3483–3505. [Google Scholar] [CrossRef]
- Otto, F.E.L.; Massey, N.; van Oldenborgh, G.J.; Jones, R.G.; Allen, M.R. Reconciling two approaches to attribution of the 2010 Russian heat wave. Geophys. Res. Lett. 2012, 39, L04702. [Google Scholar] [CrossRef] [Green Version]
- Vautard, R.; van Oldenborgh, G.J.; Otto, F.E.L.; Vogel, M.M.; Soubeyroux, J.M.; Kreienkamp, F.; Stott, P.; van Aalst, M. Human Contribution to the Record-Breaking July 2019 Heat Wave in Western Europe. Available online: https://www.worldweatherattribution.org/human-contribution-to-the-record-breaking-july-2019-heat-wave-in-western-europe/ (accessed on 1 March 2020).
- Barnston, G.A.; Livezey, E.R. Classification, seasonality and persistence of low-frequency atmospheric circulation patterns. Mon. Weather Rev. 1987, 115, 1083–1126. [Google Scholar] [CrossRef]
- Lau, N.C.; Nath, M.J. Variability of the baroclinic and barotropic transient eddy forcing associated with monthly changes. J. Atmos. Sci. 1991, 48, 2589–2613. [Google Scholar] [CrossRef] [Green Version]
- Chen, S.F.; Wu, R.; Chen, W.; Hu, K.M.; Yu, B. Structure and dynamics of a springtime atmospheric wave train over the North Atlantic and Eurasia. Clim. Dyn. 2020. [Google Scholar] [CrossRef]
- Chen, S.F.; Wu, R.; Chen, W.; Yao, S.L.; Yu, B. Coherent interannual variations of springtime surface temperature and temperature extremes between central-northern Europe and Northeast Asia. J. Geophys. Res. Atmos. 2020. [Google Scholar] [CrossRef]
- Zhao, W.; Chen, S.F.; Chen, W.; Yao, S.; Nath, D.; Yu, B. Interannual variations of the rainy season withdrawal of the monsoon transitional zone in China. Clim. Dyn. 2019, 53, 2031–2046. [Google Scholar] [CrossRef]
- Chen, S.F.; Guo, J.P.; Song, L.Y.; Li, J.; Liu, L.; Cohen, J. Interannual variation of the spring haze pollution over the North China Plain: Roles of atmospheric circulation and sea surface temperature. Int. J. Climatol. 2019, 39, 783–798. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, W.; Zhou, N.; Chen, S. The Record-Breaking High Temperature over Europe in June of 2019. Atmosphere 2020, 11, 524. https://doi.org/10.3390/atmos11050524
Zhao W, Zhou N, Chen S. The Record-Breaking High Temperature over Europe in June of 2019. Atmosphere. 2020; 11(5):524. https://doi.org/10.3390/atmos11050524
Chicago/Turabian StyleZhao, Wei, Ningfang Zhou, and Shangfeng Chen. 2020. "The Record-Breaking High Temperature over Europe in June of 2019" Atmosphere 11, no. 5: 524. https://doi.org/10.3390/atmos11050524
APA StyleZhao, W., Zhou, N., & Chen, S. (2020). The Record-Breaking High Temperature over Europe in June of 2019. Atmosphere, 11(5), 524. https://doi.org/10.3390/atmos11050524