Indoor Air Quality Improvement by Simple Ventilated Practice and Sansevieria Trifasciata
Abstract
:1. Introduction
2. Experiments
2.1. Studied Site
2.2. Measurement of IAQ Parameters
2.3. Simple Ventilation Practices for Improving IAQ
2.4. Sansevieria Trifasciata for IAQ Improvement
2.5. Numerical Study
2.6. Estimation of Mitigation of Electricity Use and GHG Emissions
3. Results and Discussion
3.1. Results of Monthly Monitoring Data
3.2. Results of Simple Ventilated Practices for The Improvement of IAQ
3.3. Results of Using Sansevieria trifasciata for IAQ Improvement
3.4. Results of The Simulation
3.5. Mitigation of GHG Emissions
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- NOAA. Global Climate Station Summary: Annual Mean Temperature 2010–2015. 2020. Available online: https://gis.ncdc.noaa.gov/maps/ncei/summaries/global (accessed on 13 February 2020).
- Thai Meteorological Department: Meteorological Development Bureau, The Climate of Thailand. 2015. Available online: https://www.tmd.go.th/en/archive/thailand_climate.pdf (accessed on 13 February 2020).
- Canha, N.; Lage, J.; Candeias, S.; Alves, C.; Almeida, S.M. Indoor air quality during sleep under different ventilation patterns. Atmos. Pollut. Res. 2017, 8, 1132–1142. [Google Scholar] [CrossRef]
- Persily, A.K. Indoor carbon dioxide concentrations in ventilation and indoor air quality standards. In Proceedings of the 36th Air Infiltration and Ventilation Centre Conference, Madrid, Spain, 23–24 September 2015. [Google Scholar]
- EERE. Common Air Conditioner Problems. Energy Saver, Office of Energy Efficiency & Renewable Energy, 2017. Available online: https://energy.gov/energysaver/common-air-conditioner-problems (accessed on 17 October 2018).
- Boonyayothin, V.; Hirnlabh, J.; Khummongkol, P.; Teekasap, S.; Shin, U.; Khedari, J. Ventilation Control Approach for Acceptable Indoor Air Quality and Enhancing Energy Saving in Thailand. Int. J. Vent. 2016, 9, 315–326. [Google Scholar] [CrossRef]
- Spiru, P.; Simona, P.L. A review on interactions between energy performance of the buildings, outdoor air pollution and the indoor air quality. Energy Procedia. 2017, 128, 179–186. [Google Scholar] [CrossRef]
- EPA. An Office Building Occupants Guide to Indoor Air Quality. United States Environmental Protection Agency, 2017. Available online: https://www.epa.gov/indoor-air-quality-iaq/office-building-occupants-guide-indoor-air-quality (accessed on 19 October 2019).
- NASA. The Consequences of Climate Change. National Aeronautics and Space Administration, 2017. Available online: https://climate.nasa.gov/effects/ (accessed on 10 November 2019).
- Junaid, M.; Syed, J.H.; Abbasi, N.A.; Hashmi, M.Z.; Malik, R.N.; Pei, D.S. Status of indoor air pollution (IAP) through particulate matter (PM) emissions and associated health concerns in South Asia. Chemosphere 2017, 191, 651–663. [Google Scholar] [CrossRef] [PubMed]
- Jung, C.C.; Su, H.J.; Liang, H.H. Association between indoor air pollutant exposure and blood pressure and heart rate in subjects according to body mass index. Sci. Total Environ. 2016, 539, 271–276. [Google Scholar] [CrossRef] [PubMed]
- Ramalho, O.; Wyart, G.; Mandin, C.; Blondeau, P.; Cabanes, P.-A.; Leclerc, N.; Mullot, J.-U.; Boulanger, G.; Redaelli, M. Association of carbon dioxide with indoor air pollutants and exceedance of health guideline values. Build. Environ. 2015, 93, 115–124. [Google Scholar] [CrossRef]
- World Health Organization. Regional Office for Europe. In WHO Guidelines for Indoor Air Quality: Selected Pollutant; World Health Organization, Regional Office for Europe: Copenhagen, Denmark, 2010; ISBN 9789289002134. [Google Scholar]
- Risuleo, R.S.; Molinari, M.; Bottegal, G.; Hjalmarsson, H.; Johansson, K.H. A benchmark for data-based office modeling: Challenges related to CO2 dynamics. IFAC-PapersOnLine. 2015, 48, 1256–1261. [Google Scholar] [CrossRef]
- Mandin, C.; Trantallidi, M.; Cattaneo, A.; Canha, N.; Mihucz, V.G.; Szigeti, T.; Mabilia, R.; Perreca, E.; Spinazzè, A.; Fossati, S.; et al. Assessment of indoor air quality in office buildings across Europe—The OFFICAIR study. Sci. Total Environ. 2017, 579, 169–178. [Google Scholar] [CrossRef] [Green Version]
- Ye, W.; Zhang, X.; Gao, J.; Cao, G.; Zhou, X.; Su, X. Indoor air pollutants, ventilation rate determinants and potential control strategies in Chinese dwellings: A literature review. Sci. Total Environ. 2017, 586, 696–729. [Google Scholar] [CrossRef]
- Arar, S.; Al-Hunaiti, A.; Masad, M.H.; Maragkidou, A.; Wraith, D.; Hussein, T. Elemental Contamination in Indoor Floor Dust and Its Correlation with PAHs, Fungi, and Gram+/− Bacteria. Int. J. Environ. Res. Public Health 2019, 16, 3552. [Google Scholar] [CrossRef] [Green Version]
- Norhidayah, A.; Kuang, L.C.; Azhar, M.K.; Nurulwahida, S. Indoor air quality and sick building syndrome in three selected buildings. Procedia Eng. 2013, 53, 93–98. [Google Scholar] [CrossRef] [Green Version]
- ASHRAE. Indoor air quality guide. In Best Practices for Design, Construction, and Commissioning; American Society of Heating, Refrigerating and Air-conditioning Engineers (ASHRAE): Atlanta, GA, USA, 2009; ISBN 9781933742595. [Google Scholar]
- Jin, L.; Zhang, Y.; Zhang, Z. Human responses to high humidity in elevated temperatures for people in hot-humid climates. Build. Environ. 2017, 114, 257–266. [Google Scholar] [CrossRef]
- Liu, W.; Zhong, W.; Wargocki, P. Performance, acute health symptoms and physiological responses during exposure to high air temperature and carbon dioxide concentration. Build. Environ. 2017, 114, 96–105. [Google Scholar] [CrossRef] [Green Version]
- RFA. Carbon Dioxide (CO2) Safety Program; Renewable Fuels Association: Vancouver, WA, USA, 2015. [Google Scholar]
- Sohn, C.H.; Huh, J.W.; Seo, D.W.; Oh, B.J.; Lim, K.S.; Kim, W.Y. Aspiration pneumonia in carbon monoxide poisoning patients with loss of consciousness: Prevalence, outcomes, and risk factors. Am. J. Med. 2017, 130, 1465.e21–1465.e26. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wolverton, B.C.; Johnson, A.; Bounds, K. Interior Landscape Plants for Indoor Air Pollution Abatement; NASA: Washington, DC, USA, 1989; p. 22.
- Ongwandee, M.; Moonrinta, R.; Panyametheekul, S.; Tangbanluekal, C.; Morrison, G. Investigation of volatile organic compounds in office buildings in Bangkok, Thailand: Concentrations, sources, and occupant symptoms. Build. Environ. 2011, 46, 1512–1522. [Google Scholar] [CrossRef]
- Sun, S.; Zheng, X.; Villalba-Díez, J.; Ordieres-Meré, J. Indoor Air-Quality Data-Monitoring System: Long-Term Monitoring Benefits. Sensor 2019, 19, 4157. [Google Scholar] [CrossRef] [Green Version]
- ASHRAE. Standards & Guidelines. American Society of Heating, Refrigerating and Air-Conditioning Engineers, 2017. Available online: https://www.ashrae.org/standards-research--technology/standards--guidelines (accessed on 30 September 2019).
- Fluke Corporation. Fluke 975 Air MeterTM, 2019. Available online: http://www.fluke.com/fluke/then/HVAC-IAQ-Tools/Air-Testers/Fluke-975.htm?PID=56156 (accessed on 3 August 2019).
- Almeida, R.M.S.F.; de Freitas, V.P.; Delgado, J.M.P.Q. School Buildings Rehablilitation: Indoor Environmental Quality and Enclosure Optimization; Springer International Publishing: Basel, Switzerland, 2015; pp. 35–83, ISSN 2191-530X; ISBN 978-3-319-15359-9. [Google Scholar] [CrossRef]
- Gubb, C.; Blanusa, T.; Griffiths, A.; Pfrang, C. Can houseplants improve indoor air quality by removing CO2 and increasing relative humidity? Air Qual. Atmos. Health 2018, 11, 1191–1201. [Google Scholar] [CrossRef] [Green Version]
- Alonso, M.J.; Andreson, T.; Frydenlund, F.; Widell, K.N. Improvement of air flow distribution in a freezing tunnel using Airpak. Procedia Food Sci. 2011, 1, 1231–1238. [Google Scholar] [CrossRef] [Green Version]
- Li, G.; She, C.; Wu, N.; Li, Z.; Wang, L. The solution and simulation of the condensation problem of the capillary network system in the children’s hospital in Shenyang in Summer. Procedia Eng. 2015, 121, 1215–1221. [Google Scholar] [CrossRef] [Green Version]
- Prueksakorn, K.; Piao, C.X.; Ha, H.; Kim, T. Computational and experimental investigation for an optimal design of industrial windows to allow natural ventilation during wind-driven rain. Sustainability 2015, 7, 10499–10520. [Google Scholar] [CrossRef] [Green Version]
- Habchi, C.; Ghali, K.; Ghaddar, N. Coupling CFD and analytical modeling for investigation of monolayer particle suspension by transient flows. Build. Environ. 2016, 105, 1–12. [Google Scholar] [CrossRef]
- Buratti, C.; Mariani, R.; Moretti, E. Mean age of air in a naturally ventilated office: Experimental data and simulations. Energy Build. 2011, 43, 2021–2027. [Google Scholar] [CrossRef]
- ASHRAE. ANSI/ASHRAE Standard 62.1-2016, Ventilation for Acceptable Indoor Air Quality; American Society of Heating, Refrigerating and Air-conditioning Engineers, the American National Standards Institute: Atlanta, GA, USA, 2016; ISSN 10412336. [Google Scholar]
- ASHRAE. ANSI/ASHRAE Standard 55-2017, Thermal Environmental Conditions for Human Occupancy; American Society of Heating, Refrigerating and Air-conditioning Engineers, the American National Standards Institute: Atlanta, GA, USA, 2017; ISSN 10412336. [Google Scholar]
- Boonyou, S.; Jitkhajornwanich, K. Enhancement of natural ventilation in office buildings in Bangkok. In Architecture, City, Environment: Proceedings of the PLEA 2000, Cambridge, UK, 2-5 July 2000; James & James (Science Publishers) Ltd.: London, UK, 2000. [Google Scholar]
- Busch, J.F. A tale of two populations: Thermal comfort in air-conditioned and naturally ventilated offices in Thailand. Energy Build. 1992, 18, 3–4. [Google Scholar] [CrossRef]
- Thai Meteorological Department: Meteorological Development Bureau, Summary of the Climate in Thailand 2017. 2018. Available online: https://www.tmd.go.th/programs/uploads/yearlySummary/สรุปสภาวะอากาศปี%202561.pdf (accessed on 13 February 2020). (In Thai).
- Klinmalee, A.; Srimongkol, K.; Kim Oanh, N.T. Indoor air pollution levels in public buildings in Thailand and exposure assessment. Environ. Monit. Assess. 2009, 156, 581–594. [Google Scholar] [CrossRef]
- Baklanov, A.; Molina, L.T.; Gauss, M. Megacities, Air quality and Climate. Atmos. Environ. 2016, 126, 235–249. [Google Scholar] [CrossRef]
- Thailand Greenhouse Gas Management Organization. Carbon Label and Carbon Footprint for Organization: Emission Factor. 2020. Available online: http://thaicarbonlabel.tgo.or.th/products_emission/products_emission.pnc (accessed on 28 February 2020). (In Thai).
- Cetin, M.; Sevik, H. Measuring the impact of selected plants on indoor CO2 concentration. Pol. J. Environ. Stud. 2016, 25, 973–979. [Google Scholar] [CrossRef]
- Parhizkar, H.; Khoraskani, R.A.; Tahbaz, M. Double skin façade with Azolla; ventilation, Indoor Air Quality and Thermal Performance Assessment. J. Clean. Prod. 2020, 249, 119313. [Google Scholar] [CrossRef]
- IPCC. Guidelines for National Greenhouse Gas Inventories. Intergovernmental Panel on Climate Change, 2006. Available online: http://www.ipcc-nggip.iges.or.jp/public/2006gl/ (accessed on 19 September 2019).
- TGO. Emission Factor Collected from Secondary Data for Carbon Footprint for Organization. Thailand Greenhouse Gas Management Organisation, 2017. Available online: http://thaicarbonlabel.tgo.or.th/admin/uploadfiles/emission/ts_11335ee08a.pdf (accessed on 1 October 2019).
Appliances | Unit | Power (watt) | Working Time (hour) | ||
---|---|---|---|---|---|
Case A | Case B | Case C | |||
Computer | 6 a | 450 | 8 | 8 | 7 b |
Printer c | 1 | 10 | 1 | 1 | 1 |
Printer (standby) | 1 | 2.1 | 7 | 0 d | 0 d |
Refrigerator | 1 | 90 | 24 | 8 e | 8 e |
AC | 1 | 1000 | 8 | 7 f | 4 g |
Fan | 1 | 39 | 0 | 1 h | 4 h |
Water dispenser | 1 | 100 | 8 | 8 | 8 |
Light | 3 | 28 | 8 | 7 i | 7 i |
Parameters | Case 1 (Normal) | Case 2 (AC Turned off 12:00–13:00) | Case 3 (AC Turned off 9:00–13:00) | Case 4 (AC Turned off 9:00–17:00) |
---|---|---|---|---|
Maximum CO2 concentration (ppm) | 1167.09 | 934.56 | 904.21 | 488.07 |
Average CO2 (± SD) concentration (ppm) | 785.05 (67.94) | 759.30 (111.66) | 700.75 (164.60) | 472.10 (10.02) |
Minimum CO2 concentration (ppm) | 556.13 | 565.06 | 526.60 | 457.17 |
T (°C) Average Standard = 23–26 °C [38] | 25.3 | 26.1 | 27.9 | 33.8 |
RH (%) Average Standard = 65% [30] | 68.7 | 71.7 | 71.6 | 69.4 |
CO (ppm) Average Standard = 9 ppm [36] | 1.81 | 1.92 | 4.61 | 5.83 |
Number of Plants | 0 Plants | 2 Plants | 3 Plants | 4 Plants | 5 Plants | 6 Plants | |
---|---|---|---|---|---|---|---|
CO2 (ppm) | Min | 491.15 | 468.55 | 470.87 | 475.83 | 467.92 | 465.08 |
Avg | 681.32 ± 136.59 | 549.91 ± 52.46 | 531.52 ± 58.40 | 583.48 ± 103.08 | 588.22 ± 115.67 | 609.98 ± 60.81 | |
Max | 1133.30 | 1029.27 | 770.12 | 902.67 | 1072.43 | 1037.10 | |
CO (ppm) | Min | 0.97 | 0.98 | 0.98 | 0.98 | 0.95 | 0.90 |
Avg | 1.05 ± 0.06 | 1.20 ± 0.16 | 1.17 ± 0.13 | 1.14 ± 0.14 | 1.01 ± 0.03 | 1.00 ± 0.02 | |
Max | 1.30 | 1.90 | 1.92 | 1.57 | 1.25 | 1.17 | |
RH (%) | Min | 52.00 | 46.00 | 62.00 | 57.00 | 64.00 | 63.00 |
Avg | 64.23 ± 2.98 | 140.53 ± 2.21 | 66.00 ± 1.23 | 67.29 ± 1.67 | 69.11 ± 0.92 | 68.07 ± 1.75 | |
Max | 72.00 | 72.00 | 71.00 | 70.00 | 76.00 | 73.00 | |
T (°C) | Min | 24.38 | 24.55 | 24.61 | 24.17 | 24.65 | 24.58 |
Avg | 26.61 ± 1.72 | 27.55 ± 1.72 | 28.02 ± 1.49 | 27.39 ± 1.98 | 27.20 ± 1.82 | 26.79 ± 1.73 | |
Max | 28.67 | 29.72 | 29.62 | 29.64 | 29.50 | 29.64 |
Appliances | Case A | Case B | Case C | ||
---|---|---|---|---|---|
Electricity | costa | GHGsb | % | % | |
PC | 5356.8 | 604.4 | 3118.2 | 0.0 | −8.1 |
Printer | 5.0 | 0.6 | 2.9 | 0.0 | 0.0 |
Printer (standby) | 3.1 | 0.4 | 1.8 | 0.0 | 0.0 |
Refrigerator | 535.7 | 60.4 | 311.8 | −4.3 | −4.3 |
AC | 1984.0 | 223.8 | 1154.9 | −3.0 | −12.0 |
Fan | 0.0 | 0.0 | 0.0 | 0.1 | 0.5 |
Water dispenser | 198.4 | 22.4 | 115.5 | 0.0 | 0.0 |
Light | 166.7 | 18.8 | 97.0 | −0.3 | −0.3 |
Total | 8249.6 | 930.7 | 4802.1 | −7.5 | −24.3 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pamonpol, K.; Areerob, T.; Prueksakorn, K. Indoor Air Quality Improvement by Simple Ventilated Practice and Sansevieria Trifasciata. Atmosphere 2020, 11, 271. https://doi.org/10.3390/atmos11030271
Pamonpol K, Areerob T, Prueksakorn K. Indoor Air Quality Improvement by Simple Ventilated Practice and Sansevieria Trifasciata. Atmosphere. 2020; 11(3):271. https://doi.org/10.3390/atmos11030271
Chicago/Turabian StylePamonpol, Kanittha, Thanita Areerob, and Kritana Prueksakorn. 2020. "Indoor Air Quality Improvement by Simple Ventilated Practice and Sansevieria Trifasciata" Atmosphere 11, no. 3: 271. https://doi.org/10.3390/atmos11030271
APA StylePamonpol, K., Areerob, T., & Prueksakorn, K. (2020). Indoor Air Quality Improvement by Simple Ventilated Practice and Sansevieria Trifasciata. Atmosphere, 11(3), 271. https://doi.org/10.3390/atmos11030271