Kinetic Measurements of Cl Atom Reactions with C5–C8 Unsaturated Alcohols
Abstract
:1. Introduction
2. Experiments
3. Results
3.1. Kinetic Measurements for (Z)-2-Penten-1-ol
3.2. Kinetic Measurements for (E)-2-Hexen-1-ol, (E)-3-Hexen-1-ol, and (Z)-3-Hexen-1-ol
3.3. Kinetic Measurements for 1-Octen-3-ol
4. Discussion
4.1. Summary of All the Determined Rate Constants and Comparison with Literature Data
4.2. Structure–Activity Relationships
4.2.1. Effect of the Chain Length
4.2.2. Effect of the OH Group
4.3. Atmospheric Implications
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Atkinson, R.; Arey, J. Gas-phase tropospheric chemistry of biogenic volatile organic compounds: A review. Atmos. Environ. 2003, 37, 197–219. [Google Scholar] [CrossRef]
- Hallquist, M.; Wenger, J.C.; Baltensperger, U.; Rudich, Y.; Simpson, D.; Claeys, M.; Dommen, J.; Donahue, N.M.; George, C.; Goldstein, A.H.; et al. The formation, properties and impact of secondary organic aerosol: Current and emerging issues. Atmos. Chem. Phys. 2009, 9, 5155–5236. [Google Scholar] [CrossRef] [Green Version]
- Guenther, A.; Hewitt, C.N.; Erickson, D.; Fall, R.; Geron, C.; Graedel, T.; Harley, P.; Klinger, L.; Lerdau, M.; McKay, W.A.; et al. A global model of natural volatile organic compound emissions. J. Geophys. Res. Atmos. 1995, 100, 8873–8892. [Google Scholar] [CrossRef]
- Peñuelas, J.; Staudt, M. BVOCs and global change. Trends Plant Sci. 2010, 15, 133–144. [Google Scholar] [CrossRef] [PubMed]
- König, G.; Brunda, M.; Puxbaum, H.; Hewitt, C.N.; Duckham, S.C.; Rudolph, J. Relative contribution of oxygenated hydrocarbons to the total biogenic VOC emissions of selected mid-European agricultural and natural plant species. Atmos. Environ. 1995, 29, 861–874. [Google Scholar]
- Loreto, F.; Schnitzler, J.P. Abiotic stresses and induced BVOCs. Trends Plant Sci. 2010, 15, 154–166. [Google Scholar] [CrossRef]
- Kleist, E.; Mentel, T.F.; Andres, S.; Bohne, A.; Folkers, A.; Kindler-Scharr, A.; Rudich, Y.; Springer, M.; Tillmann, R.; Wildt, J. Irreversible impacts of heat on the emissions of monoterpenes, sesquiterpenes, phenolic BVOC and green leaf volatiles from several tree species. Biogeosciences 2012, 9, 5111–5123. [Google Scholar] [CrossRef] [Green Version]
- Arey, J.; Winer, A.M.; Atkinson, R.; Aschmann, S.M.; Long, W.D.; Morrison, C.L. The emission of (Z)-3-hexen-1-ol, (Z)-3-hexenylacetate and other oxygenated hydrocarbons from agricultural plant species. Atmos. Environ. Part A Gen. Top. 1991, 25, 1063–1075. [Google Scholar] [CrossRef]
- Yilmaz, E. The chemistry of fresh tomato flavor. Turk. J. Agric. For. 2001, 25, 149–155. [Google Scholar]
- Lorber, K.; Buettner, A. Structure–odor relationships of (E)-3-alkenoic acids, (E)-3-alken-1-ols, and (E)-3-alkenals. J. Agric. Food Chem. 2015, 63, 6681–6688. [Google Scholar] [CrossRef]
- Buttery, R.G.; Kamm, J.A. Volatile components of alfalfa: Possible insect host plant attractants. J. Agric. Food Chem. 1980, 28, 978–981. [Google Scholar] [CrossRef]
- Kline, D.L.; Allan, S.A.; Bernier, U.R.; Welch, C.H. Evaluation of the enantiomers of 1-octen-3-ol and 1-octyn-3-ol as attractants for mosquitoes associated with a freshwater swamp in Florida, USA. Med. Vet. Entomol. 2007, 21, 323–331. [Google Scholar] [CrossRef] [PubMed]
- Kaminski, E.; Stawicki, S.; Wasowicz, E. Volatile flavor compounds produced by molds of Aspergillus, Penicillium, and Fungi imperfecti. Appl. Environ. Microbiol. 1974, 27, 1001–1004. [Google Scholar] [CrossRef] [Green Version]
- Buttery, R.G.; Ling, L.C.; Wellso, S.G. Oat leaf volatiles: Possible insect attractants. J. Agric. Food Chem. 1982, 30, 791–792. [Google Scholar] [CrossRef]
- Croft, K.P.; Juttner, F.; Slusarenko, A.J. Volatile products of the lipoxygenase pathway evolved from Phaseolus vulgaris (L.) leaves inoculated with Pseudomonas syringae pv phaseolicola. Plant Physiol. 1993, 101, 13–24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heiden, A.C.; Kobel, K.; Langebartels, C.; Schuh-Thomas, G.; Wildt, J. Emissions of oxygenated volatile organic compounds from plants Part I: Emissions from lipoxygenase activity. J. Atmos. Chem. 2003, 45, 143–172. [Google Scholar] [CrossRef]
- Karl, T.; Fall, R.; Crutzen, P.J.; Jordan, A.; Lindinger, W. High concentrations of reactive biogenic VOCs at a high altitude site in late autumn. Geophys. Res. Lett. 2001, 28, 507–510. [Google Scholar] [CrossRef]
- Calvert, J.; Mellouki, A.; Orlando, J. Mechanisms of Atmospheric Oxidation of the Oxygenates; Oxford University Press: New York, NY, USA, 2011. [Google Scholar]
- Pszenny, A.A.P.; Keene, W.C.; Jacob, D.J.; Fan, S.; Maben, J.R.; Zetwo, M.P.; Springer-Young, M.; Galloway, J.N. Evidence of inorganic chlorine gases other than hydrogen chloride in marine surface air. Geophys. Res. Lett. 1993, 20, 699–702. [Google Scholar] [CrossRef]
- Spicer, C.W.; Chapman, E.G.; Finlayson-Pitts, B.J.; Plastridge, R.A.; Hubbe, J.M.; Fast, J.D.; Berkowitz, C.M. Unexpectedly high concentrations of molecular chlorine in coastal air. Nature 1998, 394, 353. [Google Scholar] [CrossRef]
- Tackett, P.J.; Cavender, A.E.; Keil, A.D.; Shepson, P.B.; Bottenheim, J.W.; Morin, S.; Deary, J.; Steffen, A.; Doerge, C. A study of the vertical scale of halogen chemistry in the Arctic troposphere during Polar Sunrise at Barrow, Alaska. J. Geophys. Res. Atmos. 2007, 112, 7. [Google Scholar] [CrossRef]
- Ezell, M.J.; Wang, W.; Ezell, A.A.; Soskin, G.; Finlayson-Pitts, B.J. Kinetics of reactions of chlorine atoms with a series of alkenes at 1 atm and 298 K: Structure and reactivity. Phys. Chem. Chem. Phys. 2002, 4, 5813–5820. [Google Scholar] [CrossRef] [Green Version]
- Lawrence, M.G.; Jöckel, P.; Kuhlmann, R.V. What does the global mean OH concentration tell us? Atmos. Chem. Phys. 2001, 1, 37–49. [Google Scholar] [CrossRef] [Green Version]
- Tanaka, P.L.; Riemer, D.D.; Chang, S.; Yarwood, G.; McDonald-Butler, E.C.; Apel, E.C.; Orlando, J.J.; Silva, P.J.; Jimenez, J.L.; Canagaratna, M.R.; et al. Direct evidence for chlorine-enhanced urban ozone formation in Houston, Texas. Atmos. Environ. 2003, 37, 1393–1400. [Google Scholar] [CrossRef] [Green Version]
- Bannan, T.J.; Anwar, M.; Khan, H.; Le Breton, M.; Priestley, M.; Worrall, S.D.; Bacak, A.; Marsden, N.A.; Lowe, D.; Pitt, J.; et al. A large source of atomic chlorine from ClNO2 photolysis at a U.K. landfill site. Geophys. Res. Lett. 2019, 46, 8508–8516. [Google Scholar] [CrossRef] [Green Version]
- Young, C.J.; Washenfelder, R.A.; Edwards, P.M.; Parrish, D.D.; Gilman, J.B.; Kuster, W.C.; Mielke, L.H.; Osthoff, H.D.; Tsai, C.; Pikelnaya, O.; et al. Chlorine as a primary radical: Evaluation of methods to understand its role in initiation of oxidative cycles. Atmos. Chem. Phys. 2014, 14, 3427–3440. [Google Scholar] [CrossRef] [Green Version]
- Lee, B.H.; Lopez-Hilfiker, F.D.; Schroder, J.C.; Campuzano-Jost, P.; Jimenez, J.L.; McDuffie, E.E.; Fibiger, D.L.; Veres, P.R.; Brown, S.S.; Campos, T.L.; et al. Airborne observations of reactive inorganic chlorine and bromine species in the exhaust of coal-fired power plants. J. Geophys. Res. Atmos. 2018, 123, 11–225. [Google Scholar] [CrossRef] [PubMed]
- Osthoff, H.D.; Roberts, J.M.; Ravishankara, A.R.; Williams, E.J.; Lerner, B.M.; Sommariva, R.; Bates, T.S.; Coffman, D.; Quinn, P.K.; Dibb, J.E.; et al. High levels of nitryl chloride in the polluted subtropical marine boundary layer. Nat. Geosci. 2008, 1, 324–328. [Google Scholar] [CrossRef]
- Thornton, J.A.; Kercher, J.P.; Riedel, T.P.; Wagner, N.L.; Cozic, J.; Holloway, J.S.; Dubé, W.P.; Wolfe, G.M.; Quinn, P.K.; Middlebrook, A.M.; et al. A large atomic chlorine source inferred from mid-continental reactive nitrogen chemistry. Nature 2010, 464, 271–274. [Google Scholar] [CrossRef]
- Crisp, T.A.; Lerner, B.M.; Williams, E.J.; Quinn, P.K.; Bates, T.S.; Bertram, T.H. Observations of gas phase hydrochloric acid in the polluted marine boundary layer. J. Geophys. Res. Atmos. 2014, 119, 6897–6915. [Google Scholar] [CrossRef]
- Oum, K.W.; Lakin, M.J.; DeHaan, D.O.; Brauers, T.; Finlayson-Pitts, B.J. Formation of molecular chlorine from the photolysis of ozone and aqueous sea-salt particles. Science 1998, 279, 74–76. [Google Scholar] [CrossRef]
- Vogt, R.; Crutzen, P.J.; Sander, R. A mechanism for halogen release from sea-salt aerosol in the remote marine boundary layer. Nature 1996, 383, 327–330. [Google Scholar] [CrossRef]
- Knipping, E.M.; Dabdub, D. Impact of chlorine emissions from sea-salt aerosol on coastal urban ozone. Environ. Technol. 2003, 37, 275–284. [Google Scholar] [CrossRef] [PubMed]
- Sahu, L.K. Reactive halogens and their measurements in the troposphere. Indian J. Geo Mar. Sci. 2014, 43, 1615–1622. [Google Scholar]
- Barrera, J.A.; Garavagno, M.D.L.A.; Dalmasso, P.R.; Taccone, R.A. Atmospheric chemistry of 3-methoxy-1-propanol and 3-methoxy-1-butanol: Kinetics with OH radicals and Cl atoms, identification of the end-products in the presence of NO, mechanisms and atmospheric implications. Atmos. Environ. 2019, 202, 28–40. [Google Scholar] [CrossRef]
- Tajuelo, M.; Bravo, I.; Rodríguez, A.; Aranda, A.; Díaz-de-Mera, Y.; Rodríguez, D. Atmospheric sink of styrene, α-methylstyrene, trans-β-methylstyrene and indene: Rate constants and mechanisms of Cl atom-initiated degradation. Atmos. Environ. 2019, 200, 78–89. [Google Scholar] [CrossRef]
- Dhulipala, S.V.; Bhandari, S.; Ruiz, L.H. Formation of oxidized organic compounds from Cl-initiated oxidation of toluene. Atmos. Environ. 2019, 199, 265–273. [Google Scholar] [CrossRef]
- Rodríguez, A.; Rodríguez, D.; Garzón, A.; Soto, A.; Aranda, A.; Notario, A. Kinetics and mechanism of the atmospheric reactions of atomic chlorine with 1-penten-3-ol and (Z)-2-penten-1-ol: An experimental and theoretical study. Phys. Chem. Chem. Phys. 2010, 12, 12245–12258. [Google Scholar]
- Gibilisco, R.G.; Bejan, I.; Barnes, I.; Wiesen, P.; Teruel, M.A. Rate coefficients at 298 K and 1 atm for the tropospheric degradation of a series of C6, C7 and C8 biogenic unsaturated alcohols initiated by Cl atoms. Atmos. Environ. 2014, 94, 564–572. [Google Scholar] [CrossRef]
- Osseiran, N.; Romanias, M.N.; Gaudion, V.; Angelaki, M.; Papadimitriou, V.C.; Tomas, A.; Coddeville, P.; Thevenet, F. Development and validation of a THermALly regulated AtMOSpheric simulation chamber (THALAMOS). A versatile tool to simulate atmospheric processes. J. Environ. Sci. 2020. (accepted). [Google Scholar]
- Selby, K.; Waddington, D.J. Reactions of oxygenated radicals in the gas phase. Part 5. Reactions of methylperoxyl radicals and alkenes. J. Chem. Soc. Perkin Trans. II 1980, 65–67. [Google Scholar] [CrossRef]
- Adams, N.G.; Smith, D. The selected ion flow tube (SIFT); a technique for studying ion-neutral reactions. Int. J. Mass Spectrom. Ion. Phys. 1976, 21, 349–359. [Google Scholar] [CrossRef]
- Španěl, P.; Smith, D. Selected ion flow tube studies of the reactions of H3O+, NO+, and O2+ with several aromatic and aliphatic hydrocarbons. Int. J. Mass Spectrom. 1998, 181, 1–10. [Google Scholar] [CrossRef]
- Diskin, A.M.; Wang, T.; Smith, D.; Španěl, P. A selected ion flow tube (SIFT), study of the reactions of H3O+, NO+ and O2+ ions with a series of alkenes; in support of SIFT-MS. Int. J. Mass. Spectrom. 2002, 218, 87–101. [Google Scholar] [CrossRef]
- Wang, T.; Španěl, P.; Smith, D. Selected ion flow tube, SIFT, studies of the reactions of H3O+, NO+ and O2+ with eleven C10H16 monoterpenes. Int. J. Mass Spectrom. 2003, 228, 117–126. [Google Scholar] [CrossRef]
- Smith, D.; Španěl, P.; Dryahina, K. H3O+, NO+ and O2+ reactions with saturated and unsaturated monoketones and diones; focus on hydration of product ions. Int. J. Mass Spectrom. 2019, 435, 173–180. [Google Scholar] [CrossRef]
- Schoon, N.; Amelynck, C.; Debie, E.; Bultinck, P.; Arijs, E. A selected ion flow tube study of the reactions of H3O+, NO+ and O2+ with a series of C5, C6 and C8 unsaturated biogenic alcohols. Int. J. Mass Spectrom. 2007, 263, 127–136. [Google Scholar] [CrossRef]
- Finlayson-Pitts, B.J.; Pitts, J.N., Jr. Chemistry of the Upper and Lower Atmosphere: Theory, Experiments, and Applications, 1st ed.; Elsevier: Amsterdam, The Netherlands, 1999. [Google Scholar]
- Rodríguez, A.; Rodríguez, D.; Soto, A.; Notario, A.; Aranda, A.; Díaz-de-Mera, Y.; Bravo, I. Relative rate measurements of reactions of unsaturated alcohols with atomic chlorine as a function of temperature. Atmos. Environ. 2007, 41, 4693–4702. [Google Scholar]
- Rodriguez, D.; Rodriguez, A.; Soto, A.; Aranda, A.; Diaz-de-Mera, Y.; Notario, A. Kinetics of the reactions of Cl atoms with 2-buten-1-ol, 2-methyl-2-propen-1-ol, and 3-methyl-2-buten-1-ol as a function of temperature. J. Atmos. Chem. 2008, 59, 187–197. [Google Scholar] [CrossRef]
- Giri, B.R.; Roscoe, J.M. Kinetics of the reactions of Cl atoms with several ethers. J. Phys. Chem. A 2014, 114, 8369–8375. [Google Scholar] [CrossRef]
- Alwe, H.D.; Walawalkar, M.; Sharma, A.; Pushpa, K.K.; Dhanya, S.; Naik, P.D. Rate Coefficients for the Gas-Phase Reactions of Chlorine Atoms with Cyclic Ethers at 298 K. Int. J. Chem. Kinet. 2013, 45, 295–305. [Google Scholar] [CrossRef]
- Andersen, C.; Nielsen, O.J.; Østerstrøm, F.F.; Ausmeel, S.; Nilsson, E.J.; Sulbaek Andersen, M.P. Atmospheric Chemistry of Tetrahydrofuran, 2-Methyltetrahydrofuran, and 2, 5-Dimethyltetrahydrofuran: Kinetics of Reactions with Chlorine Atoms, OD Radicals, and Ozone. J. Phys. Chem. A 2016, 120, 7320–7326. [Google Scholar] [CrossRef] [PubMed]
- Atkinson, R.; Baulch, D.L.; Cox, R.A.; Crowley, J.N.; Hampson, R.F.; Hynes, R.G.; Jenkin, M.E.; Rossi, M.J.; Troe, J. IUPAC Subcommittee, Evaluated kinetic and photochemical data for atmospheric chemistry: Volume II – gas phase reactions of organic species. Atmos. Chem. Phys. 2006, 6, 3625–4055. [Google Scholar] [CrossRef] [Green Version]
- Aschmann, S.M.; Atkinson, R. Rate constants for the gas-phase reactions of alkanes with Cl atoms at 296±2 K. Int. J. Chem. Kinet. 1995, 27, 613–622. [Google Scholar] [CrossRef]
- Hooshiyar, P.A.; Niki, H. Rate constants for the gas-phase reactions of Cl-atoms with C2 - C8 alkanes at T= 296±2 K. Int. J. Chem. Kinet. 1995, 27, 1197–1206. [Google Scholar] [CrossRef]
- Iannone, R.; Anderson, R.S.; Vogel, A.; Eby, P.S.; Whiticar, M.J.; Rudolph, J. The hydrogen kinetic isotope effects of the reactions of n-alkanes with chlorine atoms in the gas phase. J. Atmos. Chem. 2005, 50, 121–138. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Pirasteh, A. Kinetic study of the reactions of atomic chlorine with several volatile organic compounds at 240–340 K. Int. J. Chem. Kinet. 2006, 38, 386–398. [Google Scholar] [CrossRef]
- Anderson, R.S.; Huang, L.; Iannone, R.; Rudolph, J. Measurements of the 12C/13C kinetic isotope effects in the gas-phase reactions of light alkanes with chlorine atoms. J. Phys. Chem. A 2007, 111, 495–504. [Google Scholar] [CrossRef]
- Wayne, R.P.; Barnes, I.; Biggs, P.; Burrows, J.P.; Canosa-Mas, C.E.; Hjorth, J.; Le Bras, G.; Moortgat, G.K.; Perner, D.; Poulet, G.; et al. The nitrate radical: Physics, chemistry, and the atmosphere. Atmos. Environ. Part A Gen. Top. 1991, 25, 1–203. [Google Scholar] [CrossRef]
- Barbosa, T.S.; Barrera, J.A.; Toro, R.J.; Bauerfeldt, G.F.; Arbilla, G.; Lane, S.I. Rate Coefficient for the Reaction of Cl Atoms with cis-3-Hexene at 296±2 K. J. Braz. Chem. Soc. 2017, 28, 2267–2274. [Google Scholar] [CrossRef]
- Liang, P.; Mu, Y.J.; Daële, V.; Mellouki, A. Kinetic studies of Cl reactions with 3-buten-1-ol and 2-buten-1-ol over the temperature range 298–363 K. Chem. Phys. Lett. 2011, 502, 154–158. [Google Scholar] [CrossRef]
- Nelson, L.; Rattigan, O.; Neavyn, R.; Sidebottom, H.; Treacy, J.; Nielsen, O.J. Absolute and relative rate constants for the reactions of hydroxyl radicals and chlorine atoms with a series of aliphatic alcohols and ethers at 298 K. Int. J. Chem. Kinet. 1990, 22, 1111–1126. [Google Scholar] [CrossRef]
- Atkinson, R.; Aschmann, S.M. Kinetics of the gas phase reaction of Cl atoms with a series of organics at 296±2 K and atmospheric pressure. Int. J. Chem. Kinet. 1985, 17, 33–41. [Google Scholar] [CrossRef]
- Coquet, S.; Ariya, P.A. Kinetics of the gas-phase reactions of Cl atom with selected C2–C5 unsaturated hydrocarbons at 283 < T < 323 K. Int. J. Chem. Kinet. 2000, 32, 478–484. [Google Scholar]
- Walavalkar, M.; Sharma, A.; Alwe, H.D.; Pushpa, K.K.; Dhanya, S.; Naik, P.D.; Bajaj, P.N. Cl atom initiated oxidation of 1-alkenes under atmospheric conditions. Atmos. Environ. 2013, 67, 93–100. [Google Scholar] [CrossRef]
- Kaiser, E.W.; Wallington, T.J. Pressure dependence of the reaction Cl + C3H6. J. Phys. Chem. 1996, 100, 9788–9793. [Google Scholar] [CrossRef]
- Papagni, C.; Arey, J.; Atkinson, R. Rate constants for the gas-phase reactions of OH radicals with a series of unsaturated alcohols. Int. J. Chem. Kinet. 2001, 33, 142–147. [Google Scholar] [CrossRef]
- Wingenter, O.W.; Kubo, M.K.; Blake, N.J.; Smith, T., Jr.; Blake, D.R.; Rowland, F.S. Hydrocarbon and halocarbon measurements as photochemical and dynamical indicators of atmospheric hydroxyl, atomic chlorine, and vertical mixing obtained during Lagrangian flights. J. Geophys. Res. Atmos. 1996, 101, 4331–4340. [Google Scholar] [CrossRef]
- Riedel, T.P.; Wagner, N.L.; Dubé, W.P.; Middlebrook, A.M.; Young, C.J.; Öztürk, F.; Bahreini, R.; VandenBoer, T.C.; Wolfe, D.E.; Williams, E.J.; et al. Chlorine activation within urban or power plant plumes: Vertically resolved ClNO2 and Cl2 measurements from a tall tower in a polluted continental setting. J. Geophys. Res. Atmos. 2013, 118, 8702–8715. [Google Scholar] [CrossRef]
- Logan, J.A. Tropospheric ozone: Seasonal behavior, trends, and anthropogenic influence. J. Geophys. Res. Atmos. 1985, 90, 10463–10482. [Google Scholar] [CrossRef]
- Shu, Y.; Atkinson, R. Atmospheric lifetimes and fates of a series of sesquiterpenes. J. Geophys. Res. Atmos. 1995, 100, 7275–7281. [Google Scholar] [CrossRef]
- Hein, R.; Crutzen, P.J.; Heimann, M. An inverse modeling approach to investigate the global atmospheric methane cycle. Glob. Biogeochem. Cycles 1997, 11, 43–76. [Google Scholar] [CrossRef]
- Pfrang, C.; Martin, R.S.; Canosa-Mas, C.E.; Wayne, R.P. Gas-phase reactions of NO3 and N2O5 with (Z)-hex-4-en-1-ol, (Z)-hex-3-en-1-ol (‘leaf alcohol’), (E)-hex-3-en-1-ol, (Z)-hex-2-en-1-ol and (E)-hex-2-en-1-ol. Phys. Chem. Chem. Phys. 2006, 8, 354–363. [Google Scholar] [CrossRef] [PubMed]
- Gibilisco, R.G.; Santiago, A.N.; Teruel, M.A. OH-initiated degradation of a series of hexenols in the troposphere. Rate coefficients at 298 K and 1 atm. Atmos. Environ. 2013, 77, 358–364. [Google Scholar] [CrossRef]
- Gibilisco, R.G.; Blanco, M.B.; Bejan, I.; Barnes, I.; Wiesen, P.; Teruel, M.A. Atmospheric sink of (E)-3-hexen-1-ol, (Z)-3-hepten-1-ol, and (Z)-3-octen-1-ol: Rate coefficients and mechanisms of the OH-radical initiated degradation. Environ. Sci. Technol. 2015, 49, 7717–7725. [Google Scholar] [CrossRef] [PubMed]
- Peirone, S.A.; Barrera, J.A.; Taccone, R.A.; Cometto, P.M.; Lane, S.I. Relative rate coefficient measurements of OH radical reactions with (Z)-2-hexen-1-ol and (E)-3-hexen-1-ol under simulated atmospheric conditions. Atmos. Environ. 2014, 85, 92–98. [Google Scholar] [CrossRef]
- Atkinson, R.; Arey, J.; Aschmann, S.M.; Corchnoy, S.B.; Shu, Y. Rate constants for the gas-phase reactions of cis-3-hexen-1-ol, cis-3-hexenylacetate, trans-2-hexenal, and linalool with OH and NO3 radicals and O3 at 296±2 K, and OH radical formation yields from the O3 reactions. Int. J. Chem. Kinet. 1995, 27, 941–955. [Google Scholar] [CrossRef]
- Jimenez, E.; Lanza, B.; Antinolo, M.; Albaladejo, J. Photooxidation of leaf-wound oxygenated compounds, 1-penten-3-ol,(Z)-3-hexen-1-ol, and 1-penten-3-one, initiated by OH radicals and sunlight. Environ. Sci. Technol. 2009, 43, 1831–1837. [Google Scholar] [CrossRef]
- Davis, M.E.; Burkholder, J.B. Rate coefficients for the gas-phase reaction of OH with (Z)-3-hexen-1-ol, 1-penten-3-ol, (E)-2-penten-1-ol, and (E)-2-hexen-1-ol between 243 and 404 K. Atmos. Chem. Phys. 2011, 11, 3347. [Google Scholar]
- Faxon, C.B.; Allen, D.T. Chlorine chemistry in urban atmospheres: A review. Environ. Chem. 2013, 10, 221–233. [Google Scholar] [CrossRef] [Green Version]
- Breton, M.L.; Hallquist, Å.M.; Pathak, R.K.; Simpson, D.; Wang, Y.; Johansson, J.; Zheng, J.; Yang, Y.; Shang, D.; Wang, H.; et al. Chlorine oxidation of VOCs at a semi-rural site in Beijing: Significant chlorine liberation from ClNO2 and subsequent gas-and particle-phase Cl–VOC production. Atmos. Chem. Phys. 2018, 18, 13013–13030. [Google Scholar] [CrossRef] [Green Version]
Compound | Reference Compound | Average kAverage | Literature | |||||
---|---|---|---|---|---|---|---|---|
THF | Propan-1-ol | Octane | ||||||
kAlc+Cl | kAlc+Cl | kAlc+Cl | ||||||
(Z)-2-Penten-1-ol | 1.27 ± 0.01 | 3.04 ± 0.75 | 1.90 ± 0.02 | 3.04 ± 0.17 | 0.74 ± 0.01 | 2.89 ± 0.51 | 2.99 ± 0.53 | 3.00 ± 0.49 [38] |
(E)-2-Hexen-1-ol | 1.65 ± 0.01 | 3.94 ± 0.96 | 1.97 ± 0.01 | 3.15 ± 0.15 | 0.80 ± 0.01 | 3.13 ± 0.54 | 3.41 ± 0.65 | 3.49 ± 0.82 [39] |
(E)-3-Hexen-1-ol | 1.35 ± 0.01 | 3.23 ± 0.79 | 1.75 ± 0.01 | 2.80 ± 0.14 | 0.80 ± 0.01 | 3.13 ± 0.62 | 3.05 ± 0.59 | 3.42 ± 0.79 [39] |
(Z)-3-Hexen-1-ol | 1.46 ± 0.01 | 3.49 ± 0.86 | 1.86 ± 0.01 | 2.98 ± 0.15 | 0.76 ± 0.01 | 2.97 ± 0.52 | 3.15 ± 0.58 | 2.94 ± 0.72 [39] |
1-Octen-3-ol | 2.00 ± 0.01 | 4.78 ± 1.16 | 2.24 ± 0.01 | 3.58 ± 0.17 | 0.95 ± 0.01 | 3.71 ± 0.64 | 4.03 ± 0.77 | (*) |
Alkenol | (h) Cl-Low | (h) Cl-High | (h) | (h) | (h) |
---|---|---|---|---|---|
(Z)-2-Penten-1-ol | 93 (a) | 9.3 (a) | 2.35 (b) | 3.56 (b) | 1.31 (b) |
(E)-2-Hexen-1-ol | 81 (c) | 8.1 (c) | (*) | 4.27 (d) | 1.39 (e) |
(E)-3-Hexen-1-ol | 86 (c) | 8.6 (c) | (*) | 1.25 (d) | 1.32 (f) |
(Z)-3-Hexen-1-ol | 91 (c) | 9.1 (c) | 4.70 (b) | 2.06 (g) | 1.24 (h) |
1-Octen-3-ol | 69 (i) | 6.9 (i) | (*) | (*) | (*) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grira, A.; Amarandei, C.; Romanias, M.N.; El Dib, G.; Canosa, A.; Arsene, C.; Bejan, I.G.; Olariu, R.I.; Coddeville, P.; Tomas, A. Kinetic Measurements of Cl Atom Reactions with C5–C8 Unsaturated Alcohols. Atmosphere 2020, 11, 256. https://doi.org/10.3390/atmos11030256
Grira A, Amarandei C, Romanias MN, El Dib G, Canosa A, Arsene C, Bejan IG, Olariu RI, Coddeville P, Tomas A. Kinetic Measurements of Cl Atom Reactions with C5–C8 Unsaturated Alcohols. Atmosphere. 2020; 11(3):256. https://doi.org/10.3390/atmos11030256
Chicago/Turabian StyleGrira, Asma, Cornelia Amarandei, Manolis N. Romanias, Gisèle El Dib, André Canosa, Cecilia Arsene, Iustinian Gabriel Bejan, Romeo Iulian Olariu, Patrice Coddeville, and Alexandre Tomas. 2020. "Kinetic Measurements of Cl Atom Reactions with C5–C8 Unsaturated Alcohols" Atmosphere 11, no. 3: 256. https://doi.org/10.3390/atmos11030256
APA StyleGrira, A., Amarandei, C., Romanias, M. N., El Dib, G., Canosa, A., Arsene, C., Bejan, I. G., Olariu, R. I., Coddeville, P., & Tomas, A. (2020). Kinetic Measurements of Cl Atom Reactions with C5–C8 Unsaturated Alcohols. Atmosphere, 11(3), 256. https://doi.org/10.3390/atmos11030256