Rainfall Characteristics in the Mantaro Basin over Tropical Andes from a Vertically Pointed Profile Rain Radar and In-Situ Field Campaign
Abstract
:1. Introduction
- (1)
- How does the diurnal cycle of rainfall and bright band vary over the tropical Andes?
- (2)
- What is the vertical structure of rain (e.g., reflectivity, rain rate, liquid water content and DSD) of tropical Andean precipitation?
2. Data and Methodology
2.1. The Compact Meteorological Ka Band Cloud Radar (MIRA-35c)
2.2. Algorithm Used in the Present Study
2.3. Bright Band Height Detection
2.4. Vertical Structure of Rain (VSR) at Different Rain Rate
2.5. Field Campaign and Reanalysis Data
3. Results
3.1. Diurnal Variation of Rainfall and Bright Band
3.2. Vertical Structure of Rain
3.3. Distribution of DSD Parameters
4. Campaign Periods over Huancayo
4.1. Vertical Profiles of Reflectivity during the Rainy Periods
4.2. Convective and Stratiform Rainfall Activity
5. Conclusions and Limitations
- A bimodal pattern is observed in precipitation and bright band height with local maxima during after-noon and overnight. This is partially attributed to the diurnal cycle of surface temperature in the tropical Andes.
- The average Ze profiles show the gradient near the freezing height due to the melting layer and for the higher near-surface RR, Ze decreases sharply above the freezing height. Rain rate and LWC show the different vertical variations below and above the 6 km altitude. The DSD variation shows the higher concentration of larger sized of drop for higher near-surface rain rate below the ML. Although the dominant mode of drop size is less than 1 mm for most of the near-surface rain rate.
- The rainfall characteristics during campaign periods reveal the convective organization with higher precipitation. However, stratiform precipitation was more common and exist for the longer periods, but with less accumulated surface rainfall.
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Peters, G.; Fischer, B.; Münster, H.; Clemens, M.; Wagner, A. Profiles of raindrop size distributions as retrieved by microrain radars. J. Appl. Meteorol. 2005, 44, 1930–1949. [Google Scholar] [CrossRef]
- Thurai, M.; Iguchi, T.; Kozu, T.; Eastment, J.D.; Wilson, C.L.; Ong, J.T. Radar observations in Singapore and their implications for the TRMM precipitation radar retrieval algorithms. Radio Sci. 2003, 38, 1086. [Google Scholar] [CrossRef]
- Kirstetter, P.E.; Andrieu, H.; Boudevillain, B.; Delrieu, G. A physically based identification of vertical profiles of reflectivity from volume scan radar data. J. Appl. Meteorol. Climatol. 2013, 52, 1645–1663. [Google Scholar] [CrossRef] [Green Version]
- Cluckie, I.D.; Griffith, R.J.; Lane, A.; Tilford, K.A. Radar hydrometeorology using a vertically pointing radar. Hydrol. Earth Syst. Sci. 2000, 4, 565–580. [Google Scholar] [CrossRef]
- Koistinen, J.; Michelson, D.B. BALTEX weather radar-based precipitation products and their accuracies. Boreal Environ. Res. 2002, 7, 253–263. [Google Scholar]
- Bellon, A.; Lee, G.W.; Kilambi, A.; Zawadzki, I. Real-time comparisons of VPR-corrected daily rainfall estimates with a gauge mesonet. J. Appl. Meteorol. Climatol. 2007, 46, 726–741. [Google Scholar] [CrossRef] [Green Version]
- Seo, D.J.; Breidenbach, J.; Fulton, R.; Miller, D.; O’Bannon, T. Real-timeadjustment of range-dependent biases in wsr-88d rainfall estimates due to nonuniform vertical profile of reflectivity. J. Hydrometeorol. 2000, 1, 222–240. [Google Scholar] [CrossRef]
- Zipser, E.J.; Lutz, K.R. The vertical profile of radar reflectivity of convective cells: A strong indicator of storm intensity and lightning probability? Mon. Weather Rev. 1994, 122, 1751–1759. [Google Scholar] [CrossRef] [Green Version]
- Bellon, A.; Lee, G.W.; Zawadzki, I. Error statistics of VPR corrections in stratiform precipitation. J. Appl. Meteorol. 2005, 44, 998–1015. [Google Scholar] [CrossRef] [Green Version]
- Kumar, S.; Silva-Vidal, Y.; Moya-Álvarez, A.S.; Martínez-Castro, D. Effect of the surface wind flow and topography on precipitating cloud systems over the Andes and associated Amazon basin: GPM observations. Atmos. Res. 2019, 225, 193–208. [Google Scholar] [CrossRef]
- Kozu, T.; Reddy, K.K.; Mori, S.; Thurai, M.; Ong, J.T.; Rao, D.N.; Shimomai, T. Seasonal and diurnal variations of raindrop size distribution in Asian monsoon region. J. Meteorol. Soc. Jpn. 2006, 84A, 195–209. [Google Scholar] [CrossRef] [Green Version]
- Rao, T.N.; Radhakrishna, B.; Nakamura, K.; Rao, N.P. Differences in raindrop size distribution from southwest monsoon to northeast monsoon at Gadanki. Q. J. R. Meteorol. Soc. 2009, 135, 1630–1637. [Google Scholar]
- Das, S.; Maitra, A.; Shukla, A.K. Rain attenuation modeling in the 10–100 Ghz frequency using drop size distributions for different climatic zones in tropical India. Progr. Electromagn. Res. B 2010, 25, 211–224. [Google Scholar] [CrossRef] [Green Version]
- Das, S.; Shukla, A.K.; Maitra, A. Investigation of vertical profile of rain microstructure at Ahmedabad in Indian tropical region. Adv. Space Res. 2010, 45, 1235–1243. [Google Scholar] [CrossRef]
- Francou, B.; Vuille, M.; Wagnon, P.; Mendoza, J.; Sicart, J.-E. Tropical climate change recorded by a glacier in the central Andes during the last decades of the twentieth century: Chacaltaya, Bolivia, 168S. J. Geophys. Res. 2003, 108, 4154. [Google Scholar] [CrossRef]
- Salzmann, N.; Huggel, C.; Rohrer, M.; Silverio, W.; Mark, B.G.; Burns, P.; Portocarrero, C. Glacier changes and climate trends derived from multiple sources in the data scarce Cordillera Vilcanota region, southern Peruvian Andes. Cryosphere 2013, 7, 103–118. [Google Scholar] [CrossRef] [Green Version]
- Perry, L.B.; Seimon, A.; Kelly, G.M. Precipitation delivery in the tropical high Andes of southern Peru: New findings and paleoclimatic implications. Int. J. Climatol. 2014, 34, 197–215. [Google Scholar] [CrossRef]
- Endries, J.L.; Perry, L.B.; Yuter, S.E.; Seimon, A.; Andrade-Flores, M.; Winkelmann, R.; Arias, S. Radar-observed characteristics of precipitation in the tropical high Andes of southern Peru and Bolivia. J. Appl. Meteorol. Climatol. 2018, 57, 1441–1458. [Google Scholar] [CrossRef]
- Rojas, J.L.F.; Alvarez, A.S.M.; Kumar, S.; Castro, D.M.; Puma, E.V.; Vidal, F.Y.S. Analysis of Possible Triggering Mechanisms of Severe Thunderstorms in the Tropical Central Andes of Peru, Mantaro Valley. Atmosphere 2019, 10, 301. [Google Scholar]
- Flores-Rojas, J.L.; Cuxart, J.; Piñas-Laura, M.; Callañaupa, S.; Suárez-Salas, L.; Kumar, S.; Moya-Alvarez, A.S.; Silva-Vidal, Y. Seasonal and Diurnal Cycles of Surface Boundary Layer and Energy Balance in the Central Andes of Perú, Mantaro Valley. Atmosphere 2019, 10, 779. [Google Scholar] [CrossRef] [Green Version]
- Martínez-Castro, D.; Kumar, S.; Flores Rojas, J.L.; Moya-Álvarez, A.; Valdivia-Prado, J.M.; Villalobos-Puma, E.; Castillo-Velarde, C.D.; Silva-Vidal, Y. The Impact of Microphysics Parameterization in the Simulation of Two Convective Rainfall Events over the Central Andes of Peru Using WRF-ARW. Atmosphere 2019, 10, 442. [Google Scholar] [CrossRef] [Green Version]
- Moya-Álvarez, A.; Gálvez, J.; Holguín, A.; Estevan, R.; Kumar, S.; Villalobos, E.; Martínez-Castro, D.; Silva, Y. Extreme Rainfall Forecast with the WRF-ARW Model in the Central Andes of Peru. Atmosphere 2018, 9, 362. [Google Scholar] [CrossRef] [Green Version]
- Moya-Álvarez, A.S.; Martínez-Castro, D.; Kumar, S.; Estevan, R.; Silva, Y. Response of the WRF model to different resolutions in the rainfall forecast over the complex Peruvian orography. Theor. Appl. Climatol. 2019, 137, 2993–3007. [Google Scholar] [CrossRef]
- Moya-Álvarez, A.S.; Estevan, R.; Kumar, S.; Rojas, J.L.F.; Ticse, J.J.; Martínez-Castro, D.; Vidal, Y.S. Influence of PBL parameterization schemes in WRF_ARW model on short-range precipitation’s forecasts in the complex orography of Peruvian Central Andes. Atmos. Res. 2019, 233, 104708. [Google Scholar] [CrossRef]
- Giovannettone, J.P.; Barros, A.P. Probing regional orographic controls of precipitation and cloudiness in the central Andes using satellite data. J. Hydrometeorol. 2009, 10, 167–182. [Google Scholar] [CrossRef]
- de Angelis, C.F.; McGregor, G.R.; Kidd, C.A. 3 year climatology of rainfall characteristics over tropical and subtropical SouthAmerica based on tropical rainfall measuring mission precipitation radar data. Int. J. Climatol. 2004, 24, 385–399. [Google Scholar] [CrossRef]
- Bendix, J.; Rollenbeck, R.; Reudenbach, C. Diurnal patterns of rainfall in a tropical Andean valley of southern Ecuador as seen by a vertically pointing K-band Doppler radar. Int. J. Climatol. A J. R. Meteorol. Soc. 2006, 26, 829–846. [Google Scholar] [CrossRef]
- Rasmussen, K.L.; Houze, R.A., Jr. Orogenic convection in subtropical South America as seen by the TRMM satellite. Mon. Wea. Rev. 2011, 139, 2399–2420. [Google Scholar] [CrossRef]
- Mohr, K.I.; Slayback, D.; Yager, K. Characteristics of precipitation features and annual rainfall during the TRMM era in the central Andes. J. Clim. 2014, 27, 3982–4001. [Google Scholar] [CrossRef] [Green Version]
- Villalobos, E.E.; Martinez-Castro, D.; Kumar, S.; Silva, Y.; Fashe, O. Estudio de tormentas convectivas sobre los Andes Centrales del Perú usando los radares PR-TRMM y KuPR-GPM. Revista Cubana de Meteorología 2019, 25, 59–75. [Google Scholar]
- Weischet, W. Climatological principles of the vertical distribution of rainfall in tropical mountains. Die Erde 1969, 100, 287–306. [Google Scholar]
- Johnson, A.M. The climate of Peru, Bolivia, and Ecuador. In World Survey of Climatology; Schwerdtfeger, W., Ed.; Elsevier: New York, NY, USA, 1976; pp. 147–218. [Google Scholar]
- Aceituno, P. Climate elements of the South American Altiplano. Revista Geofisica 1997, 44, 37–55. [Google Scholar]
- Garreaud, R.; Vuille, M.; Clement, A.C. The climate of the Altiplano: Observed current conditions and mechanisms of past changes. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2003, 194, 5–22. [Google Scholar] [CrossRef] [Green Version]
- Vuille, M.; Keimig, F. Interannual variability of summertime convective cloudiness and precipitation in the central Andes derived from ISCCP-B3 data. J. Clim. 2004, 17, 3334–3348. [Google Scholar] [CrossRef] [Green Version]
- Biasutti, M.; Yuter, S.E.; Burleyson, C.D.; Sobel, A.H. Very high resolution rainfall patterns measured by TRMM precipitation radar: Seasonal and diurnal cycles. Clim. Dyn. 2012, 39, 239–258. [Google Scholar] [CrossRef]
- Perry, L.B.; Seimon, A.; Andrade-Flores, M.F.; Endries, J.L.; Yuter, S.E.; Velarde, F.; Arias, S.; Bonshoms, M.; Burton, E.J.; Winkelmann, I.R.; et al. Characteristics of precipitating storms in glacierized tropical Andean cordilleras of Peru and Bolivia. Ann. Am. Assoc. Geogr. 2017, 107, 309–322. [Google Scholar] [CrossRef]
- Das, S.; Maitra, A. Vertical profile of rain: Ka band radar observations at tropical locations. J. Hydrol. 2016, 534, 31–41. [Google Scholar] [CrossRef]
- Kumar, S.; Silva, Y. Vertical characteristics of radar reflectivity and DSD parameters in intense convective clouds over South East South Asia during the Indian Summer monsoon: GPM observations. Int. J. Remote Sens. 2019, 40, 9604–9628. [Google Scholar] [CrossRef]
- Kumar, S.; Silva, Y. Distribution of hydrometeors in monsoonal clouds over the South American continent during the austral summer monsoon: GPM observations. Int. J. Remote Sens. 2020, 41, 3677–3707. [Google Scholar] [CrossRef]
- Houze, R.A. Orographic effects on precipitating clouds. Rev. Geophys. 2012, 50. [Google Scholar] [CrossRef]
- Vuille, M. Atmospheric circulation over the Bolivian Altiplano during dry and wet periods and extreme phases of the Southern Oscillation. Int. J. Climatol. 1999, 19, 1579–1600. [Google Scholar] [CrossRef] [Green Version]
- Oke, T.R. Boundary Layer Climates, 2d ed.; Routledge: Abingdon-on-Thames, UK, 1987; 435p. [Google Scholar]
- Sulca, J.; Vuille, M.; Silva, Y.; Takahashi, K. Teleconnections between the Peruvian central Andes and northeast Brazil during extreme rainfall events in austral summer. J. Hydrometeor. 2016, 17, 499–515. [Google Scholar] [CrossRef]
- Junquas, C.; Li, L.; Vera, C.S.; Le Treut, H.; Takahashi, K. Influence of South America orography on summertime precipitation in Southeastern South America. Clim. Dyn. 2016. [Google Scholar] [CrossRef]
- Junquas, C.; Takahashi, K.; Condom, T.; Espinoza, J.C.; Chavez, S.; Sicart, J.E.; Lebel, T. Understanding the influence of orography on the precipitation diurnal cycle and the associated atmospheric processes in the central Andes. Clim. Dyn. 2018. [Google Scholar] [CrossRef]
- Kumar, S.; Silva, Y.; Moya-Álvarez, A.S.; Martínez-Castro, D. Seasonal and Regional Differences in Extreme Rainfall Events and Their Contribution to the World’s Precipitation: GPM Observations. Adv. Meteorol. 2019, 2019, 4631609. [Google Scholar] [CrossRef]
- Silva, Y.; Takahashi, K.; Cruz, N.; Trasmonte, G.; Mosquera, K.; Nickl, E.; Chavez, R.; Segura, B.; Lagos, P. Variability and climate change in the Mantaro river basin, Central Peruvian Andes. In Proceedings of the International Conference on Southern Hemisphere Meteorology and Oceanography (ICSHMO), Foz do Iguaçu, Brazil, 24–28 April 2006; Volume 8, pp. 407–419. [Google Scholar]
- METEK. MRR Physical Basics: Version 5.2.0.1; METEK Tech. Manual: Elmshorn, Germany, 2009; 20p. [Google Scholar]
- Atlas, D.; Srivastava, R.; Sekhon, R. Doppler radar characteristics of precipitation at vertical incidence. Rev. Geophys. Space Phys. 1973, 11, 1–35. [Google Scholar] [CrossRef]
- Gunn, R.; Kinzer, G.D. The terminal velocity of fall for water droplets in stagnant air. J. Meteorol. 1949, 6, 243–248. [Google Scholar] [CrossRef] [Green Version]
- Foote, G.B.; Du Toit, P.S. Terminal velocity of raindrops aloft. J. Appl. Meteorol. 1969, 8, 253. [Google Scholar] [CrossRef] [Green Version]
- Kunz, M. Niederschlagsmessungen mit einem vertikal ausgerichteten K-Band FM-CW-Dopplerradar. Ph.D. Thesis, Institut für Meteorologieund Klimaforschung, Universität Karlsruhe, Karlsruhe, Germany, 1998. [Google Scholar]
- Berenguer, M.; Zawadzki, I. A study of the error covariance matrix of radar rainfall estimates in stratiform rain. Weather Forecast 2008, 23, 1085–1101. [Google Scholar] [CrossRef] [Green Version]
- Berenguer, M.; Zawadzki, I. A study of the error covariance matrix of radar rainfall estimates in stratiform rain. Part II: Scale dependence. Weather Forecast 2009, 24, 800–811. [Google Scholar] [CrossRef] [Green Version]
- Kitchen, M.; Jackson, P.M. Weather radar performance at long range: Simulated and observed. J. Appl. Meteorol. 1993, 32, 975–985. [Google Scholar] [CrossRef] [Green Version]
- Li, W.; Schumacher, C. Thick anvils as viewed by the TRMM precipitation radar. J. Clim. 2011, 24, 1718–1735. [Google Scholar] [CrossRef]
- Houze, R.A. Stratiform precipitation in regions of convection: A meteorological paradox? Bull. Am. Meteorol. Soc. 1997, 78, 2179–2196. [Google Scholar] [CrossRef]
- Austin, P.M.; Bernis, A.C. A quantitative study of the ‘‘bright band’’ in radar precipitation echoes. J. Meteor. 1950, 7, 145–151. [Google Scholar] [CrossRef] [Green Version]
- Cha, J.W.; Chang, K.H.; Yum, S.S.; Choi, Y.J. Comparison of the bright band characteristics measured by Micro Rain Radar (MRR) at a mountain and a coastal site in South Korea. Adv. Atmos. Sci. 2009, 26, 211–221. [Google Scholar] [CrossRef]
- White, A.B.; Gottas, D.J.; Strem, E.T.; Ralph, F.M.; Neiman, P.J. An automated bright band height detection algorithm for use with Doppler radar spectral moment. J. Atmos. Oceanic Technol. 2002, 19, 687–697. [Google Scholar] [CrossRef] [Green Version]
- Das, S.; Talukdar, S.; Bhattacharya, A.; Adhikari, A.; Maitra, A. Vertical profile of Z-R relationship and its seasonal variation at a tropical location. In Proceedings of the Applied Electromagnetics Conference (AEMC), Kolkata, India, 18–22 December 2011. [Google Scholar]
- Das, S.; Maitra, A.; Shukla, A.K. Melting layer characteristics at different climatic conditions in the Indian region: Ground based measurements and satellite observations. Atmos. Res. 2011, 101, 78–83. [Google Scholar] [CrossRef]
- Tokay, A.; Hartmann, P.; Battaglia, A.; Gage, K.S.; Clark, W.L.; Williams, C.R. A field study of reflectivity and Z-R relations using vertically pointing radars and disdrometers. J. Atmos. Oceanic Technol. 2009, 26, 1120–1134. [Google Scholar] [CrossRef]
- Rao, T.N.; Rao, D.N.; Mohan, K.; Raghavan, S. Classification of tropical precipitating systems and associated Z-R relationships. J. Geophys. Res. 2001, 106, 17699–17711. [Google Scholar] [CrossRef]
- Kumar, S. Three dimensional characteristics of precipitating cloud systems observed during Indian summer monsoon. Adv. Space Res. 2016, 58, 1017–1032. [Google Scholar] [CrossRef]
- Bhat, G.S.; Kumar, S. Vertical structure of cumulonimbus towers and intense convective clouds over the South Asian region during the summer monsoon season. J. Geophys. Res. Atmos. 2015, 120, 1710–1722. [Google Scholar] [CrossRef]
- Kumar, S.; Bhat, G.S. Vertical profiles of radar reflectivity factor in intense convective clouds in the tropics. J. Appl. Meteoro. Climatol. 2016, 55, 1277–1286. [Google Scholar] [CrossRef]
- Kumar, S. Vertical characteristics of reflectivity in intense convective clouds using TRMM PR data. Environ. Nat. Resour. Res. 2017, 7, 58. [Google Scholar] [CrossRef] [Green Version]
- Kumar, S. A 10-year climatology of vertical properties of most active convective clouds over the Indian regions using TRMM PR. Theor. Appl. Climatol. 2017, 127, 429–440. [Google Scholar] [CrossRef] [Green Version]
- Kumar, S.; Bhat, G.S. Frequency of a state of cloud systems over tropical warm ocean. Environ. Res. Commun. 2019, 1, 061003. [Google Scholar] [CrossRef]
- Kumar, S.; Bhat, G.S. Vertical structure of orographic precipitating clouds observed over south Asia during summer monsoon season. J. Earth Syst. Sci. 2017, 126, 114. [Google Scholar] [CrossRef] [Green Version]
- Prat, O.P.; Barros, A.P. Ground observations to characterize the spatial gradients and vertical structure of orographic precipitation—Experiments in the inner region of the Great Smoky Mountains. J. Hydrol. 2010, 391, 141–156. [Google Scholar] [CrossRef]
- Gatlin, P.; Petersen, W.; Knupp, K.; Carey, L. Observed Response of the Raindrop Size Distribution to Changes in the Melting Layer. Atmosphere 2018, 9, 319. [Google Scholar] [CrossRef] [Green Version]
- Sumesh, R.K.; Resmi, E.A.; Unnikrishnan, C.K.; Jash, D.; Sreekanth, T.S.; Resmi, M.M.; Rajeevan, K.; Nita, S.; Ramachandran, K.K. Microphysical aspects of tropical rainfall during Bright Band events at mid and high-altitude regions over Southern Western Ghats, India. Atmos. Res. 2019, 227, 178–197. [Google Scholar] [CrossRef]
- Pruppacher, H.R.; Klett, J.D. Microstructure of atmospheric clouds and precipitation. In Microphysics of Clouds and Precipitation; Springer: Dordrecht, The Netherlands, 2010; pp. 10–73. [Google Scholar]
- Lasher-Trapp, S.; Kumar, S.; Moser, D.H.; Blyth, A.M.; French, J.R.; Jackson, R.C.; Leon, D.C.; Plummer, D.M. On different microphysical pathways to convective rainfall. J. Appl. Meteorol. Climatol. 2018, 57, 2399–2417. [Google Scholar] [CrossRef]
- Krois, J.; Schulte, A.; Vigo, E.P.; Moreno, C.C. Temporal and spatial characteristics of rainfall patterns in the northern Sierra of Peru—A case study for La Niña to El Niño transitions from 2005 to 2010. Espacio Desarrollo 2013, 25, 23–48. [Google Scholar]
- Yuter, S.E.; Kingsmill, D.E.; Nance, L.B.; Löffler-Mang, M. Observations of precipitation size and fall speed characteristics within coexisting rain and wet snow. J. Appl. Meteor. Climatol. 2006, 45, 1450–1464. [Google Scholar] [CrossRef] [Green Version]
- Chavez, S.P.; Takahashi, K. Orographic rainfall hot spots in the Andes-Amazon transition according to the TRMM precipitation radar and in situ data. J. Geophys. Res. Atmos. 2017, 122, 5870–5882. [Google Scholar] [CrossRef]
- Houze, R.A., Jr. Cloud Dynamics; Academic: San Diego, CA, USA, 1993. [Google Scholar]
MIRA35c Specifications | ||||
---|---|---|---|---|
Frequency | Peak Power | Receiver | Operation Mode | Beam Width |
34.85 | 2.5 kW | Single Polarization | Pulsed | 0.60 |
Antenna type | Range resolution | Temporal resolution | Number of range gates | Number of spectral bins |
Cassegrain | 31 m | 5.6 s | 415 | 128 |
Source | Variable | Temporal Scale |
---|---|---|
VPRR, Huancayo | Radar reflectivity, echo top height, DSD parameters bright band height, Rain rate (2015–2018) | 1 min |
Rain gauge | Precipitation (1981–2019) | 1 min |
Radiosonde | Temperature and humidity (February–March 2019) | Instantaneous |
Midnight | Afternoon | Overnight | ||||
---|---|---|---|---|---|---|
13:00–18:00 UTC 8:00–11:00 LT | 19:00-00:00 UTC 14:00-19:00 LT | 01:00–06:00 UTC 20:00–01:00 LT | ||||
DJFM | SON | DJFM | SON | DJFM | SON | |
Number of Profiles | (11,976) | (1523) | (11,976) | (1523) | (11,976) | (1523) |
Max | 6.44 | 6.41 | 6.38 | 6.41 | 6.47 | 6.47 |
Min | 4.01 | 4.10 | 4.01 | 4.04 | 4.01 | 4.01 |
Median | 4.47 | 4.32 | 4.41 | 4.38 | 4.57 | 4.50 |
Mean | 4.52 | 4.43 | 4.44 | 4.66 | 4.62 | 4.32 |
Standard deviation | 0.306 | 0.426 | 0.255 | 0.281 | 0.339 | 0.49 |
Convective Activity | |||
---|---|---|---|
Date | Time | Total Amount of Rainfall (mm) | Median Bright Band Height |
7 March 2019 | 19:00–20:00 UTC,14:00–15:00 LT | 7.3660 | No |
10 March 2019 | 23:00–0:30 UTC, 18:00 LT-19:30 LT | 2.0320 | No |
Stratiform Rainfall Activity | |||
7 March 2019 | 00:00–10:00 UTC | 3.5560 | 4.56 km |
10 March 2019 | 00:00–07:30 UTC | 1.0160 | 4.70 km |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kumar, S.; Castillo-Velarde, C.D.; Valdivia Prado, J.M.; Flores Rojas, J.L.; Callañaupa Gutierrez, S.M.; Moya Alvarez, A.S.; Martine-Castro, D.; Silva, Y. Rainfall Characteristics in the Mantaro Basin over Tropical Andes from a Vertically Pointed Profile Rain Radar and In-Situ Field Campaign. Atmosphere 2020, 11, 248. https://doi.org/10.3390/atmos11030248
Kumar S, Castillo-Velarde CD, Valdivia Prado JM, Flores Rojas JL, Callañaupa Gutierrez SM, Moya Alvarez AS, Martine-Castro D, Silva Y. Rainfall Characteristics in the Mantaro Basin over Tropical Andes from a Vertically Pointed Profile Rain Radar and In-Situ Field Campaign. Atmosphere. 2020; 11(3):248. https://doi.org/10.3390/atmos11030248
Chicago/Turabian StyleKumar, Shailendra, Carlos Del Castillo-Velarde, Jairo M. Valdivia Prado, José Luis Flores Rojas, Stephany M. Callañaupa Gutierrez, Aldo S. Moya Alvarez, Daniel Martine-Castro, and Yamina Silva. 2020. "Rainfall Characteristics in the Mantaro Basin over Tropical Andes from a Vertically Pointed Profile Rain Radar and In-Situ Field Campaign" Atmosphere 11, no. 3: 248. https://doi.org/10.3390/atmos11030248
APA StyleKumar, S., Castillo-Velarde, C. D., Valdivia Prado, J. M., Flores Rojas, J. L., Callañaupa Gutierrez, S. M., Moya Alvarez, A. S., Martine-Castro, D., & Silva, Y. (2020). Rainfall Characteristics in the Mantaro Basin over Tropical Andes from a Vertically Pointed Profile Rain Radar and In-Situ Field Campaign. Atmosphere, 11(3), 248. https://doi.org/10.3390/atmos11030248