A Study of the Effects of Anthropogenic Gaseous Emissions on the Microphysical Properties of Landfalling Typhoon Nida (2016) over China
Abstract
:1. Introduction
2. Model Description and Experimental Design
3. Results
3.1. Track and Intensity
3.2. Polarimetric Radar Variables
3.3. Surface Precipitation
4. Discussion
4.1. Evolutions of the Inorganic Aerosols
4.2. Evolutions of Cloud Droplets and Raindrops
4.3. Microphysical and Thermodynamic Processes
5. Summary
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Rosenfeld, D.; Lohmann, U.; Raga, G.B.; O’Dowd, C.D.; Kulmala, M.; Fuzzi, S.; Reissell, A.; Andreae, M.O. Flood or drought: How do aerosols affect precipitation? Science 2008, 321, 1309–1313. [Google Scholar] [CrossRef] [Green Version]
- Tao, W.K.; Chen, J.P.; Li, Z.; Wang, C.; Zhang, C. Impact of aerosols on convective clouds and precipitation. Rev. Geophys. 2012, 50, RG2001. [Google Scholar] [CrossRef] [Green Version]
- Storer, R.L.; van den Heever, S.C. Microphysical processes evident in aerosol forcing of tropical deep convective clouds. J. Atmos. Sci. 2013, 70, 430–446. [Google Scholar] [CrossRef]
- Fan, J.; Rosenfeld, D.; Zhang, Y.; Giangrande, S.E.; Li, Z.; Machado, L.A.T.; Martin, S.T.; Yang, Y.; Wang, J.; Artaxo, P.; et al. Substantial convection and precipitation enhancements by ultrafine aerosol particles. Science 2018, 359, 411–418. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pruppacher, H.; Klett, J. Microphysics of Clouds and Precipitation, 2nd ed.; Oxford Press: Oxford, UK, 1997; p. 914. [Google Scholar]
- Andreae, M.O.; Rosenfeld, D.; Artaxo, P.; Costa, A.A.; Frank, G.P.; Longo, K.M.; Silva-Dias, M.A.F. Smoking rain clouds over the Amazon. Science. 2004, 303, 1337–1342. [Google Scholar] [CrossRef] [Green Version]
- Storer, R.L.; Van den Heever, S.C.; L’Ecuyer, T.S. Observations of aerosol-induced convective invigoration in the tropical east Atlantic. J. Geophys. Res. Atmos. 2014, 119, 3963–3975. [Google Scholar] [CrossRef]
- Evan, A.; Kossin, J.; Ramanathan, V. Arabian sea tropical cyclones intensified by emissions of black carbon and other aerosols. Nature 2011, 479, 94–97. [Google Scholar] [CrossRef]
- Rosenfeld, D.; Khain, A.; Lynn, B.; Woodley, W.L. Simulation of hurricane response to suppression of warm rain by sub-micron aerosols. Atmos. Chem. Phys. 2007, 7, 3411–3424. [Google Scholar] [CrossRef] [Green Version]
- Rosenfeld, D.; Woodley, W.; Khain, A.; Cotton, W.; Carrió, G.; Ginis, I.; Golden, J. Aerosol effects on microstructure and intensity of tropical cyclones. Bull. Am. Meteor. Soc. 2012, 93, 987–1001. [Google Scholar] [CrossRef]
- Wang, Y.; Lee, K.; Lin, Y.; Levy, M.; Zhang, R. Distinct effects of anthropogenic aerosols on tropical cyclones. Nat. Clim. Chang. 2014, 4, 368–373. [Google Scholar] [CrossRef]
- Herbener, S.R.; Van den Heever, S.C.; Carrió, G.G.; Saleeby, S.M.; Cotton, W.R. Aerosol indirect effects on idealized tropical cyclone dynamics. J. Atmos. Sci. 2014, 71, 2040–2055. [Google Scholar] [CrossRef] [Green Version]
- Reale, O.; Lau, K.M.; Da Silva, A.; Matsui, T. Impact of assimilated and interactive aerosol on tropical cyclogenesis. Geophys. Res. Lett. 2014, 41, 3282–3288. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiang, B.; Huang, B.; Lin, W.; Xu, S. Investigation of the effects of anthropogenic pollution on typhoon precipitation and microphysical processes using WRF-Chem. J. Atmos. Sci. 2016, 73, 1593–1610. [Google Scholar] [CrossRef]
- Khain, A.; Lynn, B.; Dudhia, J. Aerosol effects on intensity of landfalling hurricanes as seen from simulations with the WRF model with spectral bin microphysics. J. Atmos. Sci. 2010, 67, 365–384. [Google Scholar] [CrossRef] [Green Version]
- Khain, A.; Lynn, B.; Shpund, J. High resolution WRF simulations of Hurricane Irene: Sensitivity to aerosols and choice of microphysical schemes. Atmos. Res. 2016, 167, 129–145. [Google Scholar] [CrossRef] [Green Version]
- Krall, G.; Cotton, W.R. Potential indirect effects of aerosol on tropical cyclone intensity: Convective fluxes and cold-pool activity. Atmos. Chem. Phys. Discuss 2012, 12, 351–385. [Google Scholar] [CrossRef]
- Qu, Y.; Chen, B.; Ming, J.; Lynn, B.H.; Yang, M.J. Aerosol impacts on the structure, intensity, and precipitation of the landfalling Typhoon Saomai (2006). J. Geophys. Res. Atmos. 2017, 122, 11825–11842. [Google Scholar] [CrossRef]
- Nowottnick, E.P.; Colarco, P.R.; Braun, S.A.; Barahona, D.O.; Da Silva, A.; Hlavka, D.L.; McGill, M.J.; Spackman, J.R. Dust Impacts on the 2012 Hurricane Nadine track during the NASA HS3 Field Campaign. J. Atmos. Sci. 2018, 75, 2473–2489. [Google Scholar] [CrossRef]
- Yang, X.; Zhou, L.; Zhao, C.; Yang, J. Impact of aerosols on tropical cyclone-induced precipitation over the mainland of China. Clim. Chang. 2018, 148, 173–185. [Google Scholar] [CrossRef]
- Zhao, C.; Lin, Y.; Wu, F.; Wang, Y.; Li, Z.; Rosenfeld, D.; Wang, Y. Enlarging rainfall area of tropical cyclones by atmospheric aerosols. Geophys. Res. Lett. 2018, 45, 8604–8611. [Google Scholar] [CrossRef] [Green Version]
- Luo, H.; Jiang, B.; Li, F.; Lin, W. Simulation of the effects of sea-salt aerosols on the structure and precipitation of a developed tropical cyclone. Atmos. Res. 2019, 217, 120–127. [Google Scholar] [CrossRef]
- Hazra, A.; Mukhopadhyay, P.; Taraphdar, S.; Chen, J.; Cotton, W. Impact of aerosols on tropical cyclones: An investigation using convection-permitting model simulation. J. Geophys. Res. Atmos. 2013, 118, 7157–7168. [Google Scholar] [CrossRef]
- Xu, S.; Lin, W.; Sui, C. The separation of convective and stratiform precipitation regions of simulated Typhoon Chanchu and its sensitivity to the number concentration of cloud droplets. Atmos. Res. 2013, 122, 229–236. [Google Scholar] [CrossRef]
- Jiang, B.; Lin, W.; Li, F.; Chen, J. Sea-salt aerosol effects on the simulated microphysics and precipitation in a tropical cyclone. J. Meteorol. Res. 2019, 33, 115–125. [Google Scholar] [CrossRef]
- Carrio, G.G.; Cotton, W.R. Investigations of aerosol impacts on hurricanes: Virtual seeding flights. Atmos. Chem. Phys. 2011, 11, 2557–2567. [Google Scholar] [CrossRef] [Green Version]
- Cotton, W.R.; Zhang, H.; McFarquhar, G.M.; Saleeby, S.M. Should we consider polluting hurricanes to reduce their intensity? J. Weather. Modif. 2007, 39, 70–73. [Google Scholar]
- Hoarau, T.; Barthe, C.; Tulet, P.; Claeys, M.; Pinty, J.P.; Bousquet, O.; Delanoë, J.; Vié, B. Impact of the generation and activation of sea salt aerosols on the evolution of tropical cyclone Dumile. J. Geophys. Res. Atmos. 2018, 123, 8813–8831. [Google Scholar] [CrossRef]
- Dunion, J.; Velden, C. The impact of the Saharan air layer on Atlantic tropical cyclone activity. Bull. Am. Meteorol. Soc. 2014, 85, 353–365. [Google Scholar] [CrossRef] [Green Version]
- Skamarock, W.C.; Klemp, J.B.; Dudhia, J.; Gill, D.O.; Barker, D.M.; Duda, M.G.; Huang, X.; Wang, W.; Powers, J.G. A Description of the Advanced Research WRF Version 3 (No. NCAR/TN-475+STR); University Corporation for Atmospheric Research: Boulder, CO, USA, June 2008; p. 113. [Google Scholar]
- Ancell, B.C.; Bogusz, A.; Lauridsen, M.J.; Nauert, C.J. Seeding Chaos: The Dire Consequences of Numerical Noise in NWP Perturbation Experiments. Bull. Am. Meteorol. Soc. 2018, 99, 615–628. [Google Scholar] [CrossRef] [Green Version]
- Brown, B.R.; Bell, M.M.; Frambach, A.J. Validation of simulated hurricane drop size distributions using polarimetric radar. Geophys. Res. Lett. 2016, 43, 910–917. [Google Scholar] [CrossRef]
- Wu, D.; Zhao, K.; Kumjian, M.R.; Chen, X.; Huang, H.; Wang, M.; Didlake, A.C.; Duan, Y.; Zhang, F. Kinematics and microphysics of convection in the outer rainband of Typhoon Nida (2016) revealed by polarimetric radar. Mon. Weather Rev. 2018, 146, 2147–2159. [Google Scholar] [CrossRef]
- Deng, L.; Gao, W.; Duan, Y. A modeling study of the effects of vertical wind shear on the raindrop size distribution in Typhoon Nida (2016). J. Geophys. Res. Atmos. 2019, 124, 6501–6517. [Google Scholar] [CrossRef]
- Morrison, H.; Thompson, G.; Tatarskii, V. Impact of cloud microphysics on the development of trailing stratiform precipitation in a simulated squall line: Comparison of one- and two-moment schemes. Mon. Weather Rev. 2009, 137, 991–1007. [Google Scholar] [CrossRef] [Green Version]
- Martin, G.M.; Johnson, D.W.; Spice, A. The measurement and parameterization of effective Radius of droplets in warm stratocumulus clouds. J. Atmos. Sci. 1994, 51, 1823–1842. [Google Scholar] [CrossRef]
- Grell, G.A.; Freitas, S. A scale and aerosol aware stochastic convective parameterization for weather and air quality modeling. Atmos. Chem. Phys. Discuss. 2013, 13, 23845–23893. [Google Scholar] [CrossRef]
- Iacono, M.J.; Delamere, J.S.; Mlawer, E.J.; Shephard, M.W.; Clough, S.A.; Collins, W.D. Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models. J. Geophys. Res. 2008, 113, D13103. [Google Scholar] [CrossRef]
- Chen, F.; Dudhia, J. Coupling an advanced land-surface/hydrology model with the Penn State/NCAR MM5 modeling system. Part I: Model description and implementation. Mon. Weather Rev. 2001, 129, 569–585. [Google Scholar] [CrossRef] [Green Version]
- Hong, S.Y.; Noh, Y.; Dudhia, J. A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Weather Rev. 2006, 134, 2318–2341. [Google Scholar] [CrossRef] [Green Version]
- Stockwell, W.R.; Middleton, P.; Chang, J.S.; Tang, X. The second generation regional acid deposition model chemical mechanism for regional air quality modeling. J. Geophys. Res. 1990, 95, 16343–16367. [Google Scholar] [CrossRef]
- Ackermann, I.J.; Hass, H.; Memmesheimer, M.; Ebel, A.; Binkowski, F.S.; Shankar, U. Modal aerosol dynamics model for Europe: Development and first applications. Atmos. Environ. 1998, 32, 2981–2999. [Google Scholar] [CrossRef]
- Schell, B.; Ackermann, I.; Hass, H.; Binkowski, F.; Ebel, A. Modeling the formation of secondary organic aerosol within a comprehensive air quality model system. J. Geophys. Res. 2001, 106, 28275–28293. [Google Scholar] [CrossRef]
- Park, R.J.; Jacob, D.J.; Field, B.D.; Yantosca, R.M.; Chin, M. Natural and transboundary pollution influenceson sulfate-nitrate-ammonium aerosols in the United States: Implications for policy. J. Geophys. Res. 2004, 109, D15204. [Google Scholar] [CrossRef]
- Baker, K.; Scheff, P. Photochemical model performance for PM2.5 sulfate, nitrate, ammonium, and precursor species SO2, HNO3, and NH3 at background monitor locations in the central and eastern United States. Atmos. Environ. 2007, 41, 6185–6195. [Google Scholar] [CrossRef]
- Wang, G.; Zhang, R.; Gomez, M.E.; Yang, L.; Zamora, M.L.; Hu, M.; Lin, Y.; Peng, J.; Guo, S.; Meng, J.; et al. Persistent sulfate formation from London Fog to Chinese haze. Proc. Natl. Acad. Sci. USA 2016, 113, 13630–13635. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abdul-Razzak, H.; Ghan, S.J. A parameterization of aerosol activation. 3. Sectional representation. J. Geophys. Res. 2002, 107, 4026. [Google Scholar] [CrossRef]
- Li, M.; Zhang, Y.; Kurokawa, J.-I.; Woo, J.-H.; He, K.; Lu, Z.; Ohara, T.; Song, Y.; Streets, D.G.; Carmichael, G.R.; et al. MIX: A mosaic Asian anthropogenic emission inventory under the international collaboration framework of the MICS-Asia and HTAP. Atmos. Chem. Phys. 2017, 17, 935–963. [Google Scholar] [CrossRef] [Green Version]
- Guo, L.; Highwood, E.J.; Shaffrey, L.C.; Turner, A.G. The effect of regional changes in anthropogenic aerosols on rainfall of the East Asian Summer Monsoon. Atmos. Chem. Phys. 2013, 13, 1521–1534. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Liang, X.-Z.; Jiang, W.; Tao, Z.; Wang, J.X.; Liu, H.; Han, Z.; Liu, S.; Zhang, Y.; Grell, G.A. WRF-Chem simulation of East Asian air quality: Sensitivity to temporal and vertical emissions distributions. Atmos. Environ. 2010, 44, 660–669. [Google Scholar] [CrossRef]
- Griffin, S.M.; Otkin, J.A.; Thompson, G.; Frediani, M.; Berner, J.; Kong, F. Assessing the Impact of Stochastic Perturbations in Cloud Microphysics using GOES-16 Infrared Brightness Temperatures. Mon. Weather Rev. 2020, 148, 3111–3137. [Google Scholar] [CrossRef]
- Ying, M.; Zhang, W.; Yu, H.; Lu, X.; Feng, J.; Fan, Y.; Zhu, Y.; Chen, D. An overview of the China Meteorological Administration tropical cyclone database. J. Atmos. Ocean. Technol. 2014, 31, 287–301. [Google Scholar] [CrossRef] [Green Version]
- Wu, C.; Liu, L.P.; Wei, M.; Xi, B.Z.; Yu, M.H. Statistics-based optimization of the polarimetric radar hydrometeor classification algorithm and its application for a squall line in South China. Adv. Atmos. Sci. 2018, 35, 296–316. [Google Scholar] [CrossRef]
- Jung, Y.; Xue, M.; Zhang, G. Simulations of polarimetric radar signatures of a supercell storm using a two-moment bulk microphysics scheme. J. Appl. Meteorol. Climatol. 2010, 49, 146–163. [Google Scholar] [CrossRef]
- Dawson, D.T.; Mansell, E.R.; Jung, Y.; Wicker, L.J.; Kumjian, M.R.; Xue, M. Low-level ZDR signatures in supercell forward flanks: The role of size sorting and melting of hail. J. Atmos. Sci. 2014, 71, 276–299. [Google Scholar] [CrossRef]
- Pan, Y.; Shen, Y.; Yu, J.; Xiong, A. An experiment of high-resolution gauge-radar-satellite combined precipitation retrieval based on the Bayesian merging method. Acta Meteorol. Sin. 2015, 73, 177–186. (In Chinese) [Google Scholar]
- Seifert, A.; Köhler, C.; Beheng, K.D. Aerosol-cloud-precipitation effects over Germany as simulated by a convective scale numerical weather prediction model. Atmos. Chem. Phys. 2012, 12, 709–725. [Google Scholar] [CrossRef] [Green Version]
- Thompson, G.; Eidhammer, T. A study of aerosol impacts on clouds and precipitation development in a large winter cyclone. J. Atmos. Sci. 2014, 71, 3636–3658. [Google Scholar] [CrossRef]
- Kumjian, M.R.; Ryzhkov, A.V. The impact of size sorting on the polarimetric radar variables. J. Atmos. Sci. 2012, 69, 2042–2060. [Google Scholar] [CrossRef]
Items | Model Configuration | References |
---|---|---|
Simulation time | 0000 UTC 1 August to 1200 UTC 2 August 2016, saving at 1-h interval | |
Time step | 60 s | |
Vertical levels | 50, top at 10 hPa | |
Horizontal resolution | 36, 12, and 4 km | |
Nesting | Fixed nests | |
Land surface model (LSM) | Noah LSM | Chen and Dudhia, [39] |
Planetary boundary layer (PBL) | Yonsei University PBL | Hong et al. [40] |
Longwave and shortwave radiation | Rapid Radiative Transfer Model for GCMs RRTMG | Iacono et al. [38] |
Microphysics | Morrison two-moment scheme | Morrison et al. [35] |
Cumulus | new Grell cumulus scheme | Grell et al. [37] |
Chemistry | RADM2 MADE/SORGAM | Stockwell et al. [41]; Ackermann et al. [42] Schell et al. [43] |
Emission | Multi-resolution Emission Inventory for China | Li et al. [48] |
Sensitivity experiments | ||
Name | Description | |
CTRL | Base-level emission intensity from MEIC | |
RUN0x_CTRL | Ten-member ensemble experiments by introducing white noise perturbation into the potential temperature beneath 800m in the initial field. | |
SO2_C | As in the CTRL, but with one-tenth the emission intensity of | |
NH3_C | As in the CTRL, but with one-tenth the emission intensity of |
Raindrop Parameters/Source (Sink) Terms | Dr (mm) | ||||||
---|---|---|---|---|---|---|---|
CTRL | 1.571 × 105 | 0.287 | 1.495 × 10−7 | −4.590 × 10−8 | 6.363 × 10−8 | 9.257 × 10−8 | −5.342 × 10−8/−2.021 × 10−8 |
SO2_C | 1.600 × 105 | 0.283 | 1.501 × 10−7 | −4.903 × 10−8 | 6.714 × 10−8 | 8.961 × 10−8 | −5.514 × 10−8/−1.925 × 10−8 |
NH3_C | 1.579 × 105 | 0.293 | 1.529 × 10−7 | −4.689 × 10−8 | 6.590 × 10−8 | 9.403 × 10−8 | −5.831 × 10−8/−2.118 × 10−8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Deng, L.; Gao, W.; Duan, Y.; Wu, C. A Study of the Effects of Anthropogenic Gaseous Emissions on the Microphysical Properties of Landfalling Typhoon Nida (2016) over China. Atmosphere 2020, 11, 1322. https://doi.org/10.3390/atmos11121322
Deng L, Gao W, Duan Y, Wu C. A Study of the Effects of Anthropogenic Gaseous Emissions on the Microphysical Properties of Landfalling Typhoon Nida (2016) over China. Atmosphere. 2020; 11(12):1322. https://doi.org/10.3390/atmos11121322
Chicago/Turabian StyleDeng, Lin, Wenhua Gao, Yihong Duan, and Chong Wu. 2020. "A Study of the Effects of Anthropogenic Gaseous Emissions on the Microphysical Properties of Landfalling Typhoon Nida (2016) over China" Atmosphere 11, no. 12: 1322. https://doi.org/10.3390/atmos11121322
APA StyleDeng, L., Gao, W., Duan, Y., & Wu, C. (2020). A Study of the Effects of Anthropogenic Gaseous Emissions on the Microphysical Properties of Landfalling Typhoon Nida (2016) over China. Atmosphere, 11(12), 1322. https://doi.org/10.3390/atmos11121322