Concentration Fluctuations and Odor Dispersion in Lagrangian Models
Abstract
:1. Introduction
2. Lagrangian Stochastic Models
3. Observations and Lagrangian Modeling of Concentration Fluctuation
3.1. Experimental Results
3.2. Two-Particle Model
3.3. Fluctuating Plume Model
3.4. Pdf Micro-Mixing Model
3.5. Volumetric Particle Approach
3.6. Parameterizations
3.7. Virtual Variance Sources
3.8. Variance Dissipation Time Scale
4. Odor Dispersion
4.1. Fluctuating Plume Models
4.2. Lagrangian Stochastic Particle Models
4.3. Hybrid Lagrangian-Eulerian (Enrico)
4.4. Puff Model (Enrico)
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Schauberger, G.; Piringer, M.; Knauder, W.; Petz, E. Odour emissions from a waste treatment plant using an inverse dispersion technique. Atmos. Environ. 2011, 45, 1639–1647. [Google Scholar] [CrossRef]
- Hilderman, T.; Hrudey, S.; Wilson, D. A model for effective toxic load from fluctuating gas concentrations. J. Hazard. Mater. 1999, 64, 115–134. [Google Scholar] [CrossRef]
- Crone, G.C.; Dinar, N.; van Dop, H.; Verver, G.H.L. A Lagrangian approach for modelling turbulent transport and chemistry. Atmosp. Environ. 1999, 33, 4919–4934. [Google Scholar]
- Sawford, B.L.; Pinton, J.-F. A Lagrangian view of turbulent dispersion and mixing. In Ten Chapters in Turbulence; Davidson, P.A., Kaneda, Y., Sreenivasan, K.R., Eds.; Cambridge University Press: Cambridge, UK, 2013; Chapter 4; pp. 131–175. [Google Scholar]
- Thomson, D.J. Criteria for the selection of stochastic models of particle trajectories in turbulent flows. J. Fluid Mech. 1987, 180, 529–556. [Google Scholar] [CrossRef]
- Oettl, D.; Ferrero, E. A simple model to assess odour hours for regulatory purposes. Atmos. Environ. 2017, 155, 162–173. [Google Scholar] [CrossRef]
- Thomson, D.J. A stochastic model for the motion of particle pairs in isotropic high-Reynolds-number turbulence, and its application to the problem of concentration variance. J. Fluid Mech. 1990, 210, 113–153. [Google Scholar] [CrossRef]
- Borgas, M.S.; Sawford, B.L. A family of stochastic models for two-particle dispersion in isotropic homogeneous stationary turbulence. J. Fluid Mech. 1994, 289, 69–99. [Google Scholar] [CrossRef]
- Pope, S.B. PDF methods for turbulent reactive flows. Prog. Energy Combust. Sci. 1985, 11, 119–192. [Google Scholar] [CrossRef]
- Cassiani, M.; Franzese, P.; Giostra, U. A pdf micromixing model of dispersion for atmospheric flow. Part I: Development of the model, application to homogeneous turbulence and to neutral boundary layer. Atmosp. Environ. 2005, 39, 1457–1469. [Google Scholar] [CrossRef]
- Cassiani, M.; Radicchi, A.; Albertson, J.D.; Giostra, U. An efficient algorithm for scalar pdf modelling in incompressible turbulent flow; numerical analysis with evaluation of IEM and IECM micro-mixing models. J. Comp. Phys. 2007, 223, 519–550. [Google Scholar] [CrossRef]
- Leuzzi, G.; Amicarelli, A.; Monti, P.; Thomson, D. A 3D lagrangian micromixing dispersion model LAGFLUM and its validation with a wind tunnel experiment. Atmos. Environ. 2012, 54, 117–126. [Google Scholar] [CrossRef]
- Yee, E.; Chan, R.; Kosteniuk, P.R.; Chandler, G.M.; Biltoft, C.A.; Bowers, J.F. Experimental Measurements of Concentration Fluctuations and Scales in a Dispersing Plume in the Atmospheric Surface Layer Obtained Using a Very Fast Response Concentration Detector. J. Appl. Met. 1994, 33, 996–1016. [Google Scholar] [CrossRef]
- Yee, E.; Wilson, D.J. A comparison of the detailed structure in dispersing tracer plumes measured in grid-generated turbulence with a meandering plume model incorporating internal fluctuations. Bound.-Layer Meteorol. 2000, 94, 253–296. [Google Scholar] [CrossRef]
- Luhar, A.; Hibberd, M.; Borgas, M. A skewed meandering-plume model for concentration statistics in the convective boundary layer. Atmos. Environ. 2000, 34, 3599–3616. [Google Scholar] [CrossRef]
- Franzese, P. Lagrangian stochastic modeling of a fluctuating plume in the convective boundary layer. Atmos. Environ. 2003, 37, 1691–1701. [Google Scholar] [CrossRef]
- Mortarini, L.; Franzese, P.; Ferrero, E. A fluctuating plume model for concentration fluctuations in a plant canopy. Atmos. Environ. 2009, 43, 921–927. [Google Scholar] [CrossRef]
- Ferrero, E.; Mortarini, L.; Alessandrini, S.; Lacagnina, C. Application of a Bivariate Gamma Distribution for a Chemically Reacting Plume in the Atmosphere. Bound.-Layer Meteorol. 2013, 147, 123–137. [Google Scholar] [CrossRef]
- Bisignano, A.; Mortarini, L.; Ferrero, E.; Alessandrini, S. Analytical offline approach for concentration fluctuations and higher order concentration moments. Int. J. Environ. Poll. 2014, 55, 58–66. [Google Scholar] [CrossRef]
- Marro, M.; Nironi, C.; Salizzoni, P.; Soulhac, L. Dispersion of a passive scalar from a point source in a turbulent boundary layer. part ii: Analytical modelling. Bound.-Layer Meteorol. 2015, 156, 447–469. [Google Scholar] [CrossRef]
- Manor, A. A stochastic single particle Lagrangian model for the concentration fluctuation in a plume dispersing inside an urban canopy. Bound.-Layer Meteorol. 2014, 150, 327–340. [Google Scholar] [CrossRef]
- Ferrero, E.; Mortarini, L.; Purghè, F. A simple parameterization for the concentration variance dissipation in a Lagrangian single-particle model. Bound.-Layer Meteorol. 2017, 163, 91–101. [Google Scholar] [CrossRef]
- Ferrero, E.; Oettl, D. An evaluation of a Lagrangian stochastic model for the assessment of odours. Atmos. Environ. 2019, 206, 237–246. [Google Scholar]
- Durbin, P.A. A stochastic model of two-particle dispersion and concentration fluctuations in homogeneous turbulence. J. Fluid Mech. 1980, 100, 279–302. [Google Scholar] [CrossRef]
- Cassiani, M.; Giostra, U. A simple and fast model to compute concentration moments in a convective boundary layer. Atmos. Environ. 2002, 36, 4717–4724. [Google Scholar] [CrossRef]
- Ferrero, E.; Mortarini, L.; Alessandrini, S.; Lacagnina, C. A fluctuating plume model for pollutants dispersion with chemical reactions. Int. J. Environ. Poll. 2012, 48, 3–12. [Google Scholar] [CrossRef]
- Pope, S.B. Lagrangian pdf methods for turbulent flows. Ann. Rev. Fluid Mech. 1994, 26, 23–63. [Google Scholar] [CrossRef]
- Pope, S.B. Turbulent Flows; Cambridge University Press: Cambridge, UK, 2000; 806p. [Google Scholar]
- Heinz, S. Statistical Mechanics of Turbulent Flows; Springer: Berlin/Heidelberg, Germany, 2003; 214p. [Google Scholar]
- Kernstein, A.L. Linear-eddy modelling of turbulent transport. Part. 6 Microstructure of diffusive scalar mixing fields. J. Fluid. Mech. 1991, 231, 361–394. [Google Scholar] [CrossRef]
- Monin, A.S.; Yaglom, A.M. Statistical Fluid Mechanics: Mechanics of Turbulence; MIT Press: Cambridge, MA, USA, 1975; Volume 2, 874p. [Google Scholar]
- Gardiner, C.W. Handbook of Stochastic Methods; Springer: Berlin, Germany, 1990. [Google Scholar]
- Hinze, J.O. Turbulence; Mc Graw Hill: New York, NY, USA, 1975; 790p. [Google Scholar]
- Sawford, B.L.; Guest, F.M. Uniqueness and universality of Lagrangian stochastic models of turbulent dispersion. In Proceedings of the 8th Symposium on Turbulence and Diffusion, San Diego, CA, USA, 25–29 April 1988; pp. 96–99. [Google Scholar]
- Sawford, B.L. Reynolds number effects in Lagrangian stochastic models of turbulent dispersion. Phys. Fluids 1991, A3, 1577–1586. [Google Scholar] [CrossRef]
- Sawford, B.L. Recent developments in the Lagrangian stochastic theory of turbulent dispersion. Bound.-Layer Meteorol. 1993, 62, 197–215. [Google Scholar] [CrossRef]
- Hanna, S.R. Concentration fluctuations in a smoke plume. Atmos. Environ. 1984, 18, 1091–1106. [Google Scholar] [CrossRef]
- Ramsdell, J.V.; Hinds, W.T. Concentration fluctuations and peak-to-mean concentration ratios in plumes from a ground-level continuous point source. Atmos. Environ. 1971, 5, 483–495. [Google Scholar] [CrossRef]
- Jones, C.D. Statistics of concentration fluctuations in short range atmospheric diffusion. In Mathematical Modeling of Turbulent Diffusion in the Environment; Academic Press: New York, NY, USA, 1981; pp. 277–300. [Google Scholar]
- Mole, N.; Jones, C.D. Concentration fluctuation data from dispersion experiments carried out in stable and unstable conditions. Bound.-Layer Meteorol. 1994, 67, 41–74. [Google Scholar] [CrossRef]
- Lewellen, W.S.; Sykes, R.I. Analysis of concentration fluctuations from Lidar observations of atmospheric plumes. J. Appl. Meteorol. Clim. 1986, 25, 1145–1154. [Google Scholar] [CrossRef] [Green Version]
- Mylne, K.R.; Mason, P.J. Concentration fluctuation measurements in a dispersing plume at a range of up to 1000m. Q. J. R. Meteorol. Soc. 1991, 117, 177–206. [Google Scholar] [CrossRef]
- Mylne, K.R. Concentration fluctuation measurements in a plume dispersing in a stable surface layer. Bound.-Layer Meteorol. 1992, 60, 15–48. [Google Scholar] [CrossRef]
- Lung, T.; Müller, H.J.; Gläser, M.; Möller, B. Measurements and Modelling of Full-Scale Concentration Fluctuations. Agrartech. Forsch. 2002, 8, E5–E15. [Google Scholar]
- Finn, D.; Clawson, K.L.; Carter, R.G.; Rich, J.D.; Biltoft, C.; Leach, M. Analysis of Urban Atmosphere Plume Concentration Fluctuations. Bound.-Layer Meteorol. 2010, 136, 431–456. [Google Scholar] [CrossRef] [Green Version]
- Finn, D.; Clawson, K.L.; Eckman, R.M.; Carter, R.G.; Rich, J.D.; Strong, T.W.; Beard, S.A.; Reese, B.R.; Davis, D.; Liu, H.; et al. Project Sagebrush Phase 1. NOAA Technical Memorandum OAR ARL-268; 2015; 362p. Available online: https://www.arl.noaa.gov/documents/reports/ARL-TM-268.pdf (accessed on 8 July 2015).
- Finn, D.; Carter, R.G.; Eckman, R.M.; Rich, J.D.; Gao, Z.; Liu, H. Plume Dispersion in Low-Wind-Speed Conditions During Project Sagebrusch Phase 2, with Emphasis on Concentration Variability. Bound.-Layer Meteorol. 2018, 169, 67–91. [Google Scholar] [CrossRef]
- Sawford, B.L. Turbulent relative dispersion. Ann. Rev. Fluid Mech. 2001, 33, 289–317. [Google Scholar] [CrossRef]
- Gifford, F.A. Horizontal diffusion in the atmosphere: A Lagrangian-dynamical theory. Atmosp. Environ. 1982, 16, 505–512. [Google Scholar] [CrossRef]
- Stapountzis, H.; Sawford, B.L.; Hunt, J.C.R.; Britter, R.E. Structure of the temperature field downwind of a line source in grid turbulence. J. Fluid Mech. 1986, 165, 401–424. [Google Scholar] [CrossRef]
- Kaplan, H.; Dinar, N. A three-dimensional model for calculating the concentration distribution in inhomogeneous turbulence. Bound.-Layer Meteorol. 1993, 62, 217–245. [Google Scholar] [CrossRef]
- Richardson, L.F. Atmospheric diffusion shown on a distance neighbour graph. Proc. Roy. Soc. 1926, 110, 709–737. [Google Scholar] [CrossRef] [Green Version]
- Gifford, F. Statistical properties of a fluctuating plume dispersion model. Adv. Geophys. 1959, 6, 117–137. [Google Scholar]
- Pope, S.B. Turbulent Flows; Cambridge University Press: Cambridge, UK, 2001. [Google Scholar]
- Sawford, B.L. Micro-mixing modelling of scalar fluctuations for plumes in homogeneous turbulence. Flowturb. Comb. 2004, 72, 133–160. [Google Scholar] [CrossRef]
- Dopazo, C.; Valiño, L.; Fueyo, N. Statistical description of the turbulent mixing of scalar fields. Int. J. Mod. Phys. B 1997, 11, 2975–3014. [Google Scholar] [CrossRef]
- Dixon, N.S.; Tomlin, A.S. A Lagrangian stochastic model for predicting concentration fluctuations in urban areas. Atmosp. Environ. 2007, 41, 8114–8127. [Google Scholar] [CrossRef]
- Postma, J.V.; Wilson, J.D.; Yee, E. Comparing two implementations of a micromixing model. Part I: Wall shear-layer flow. Bound.-Layer Meteorol. 2011, 140, 207–224. [Google Scholar] [CrossRef]
- Cassiani, M. The volumetric particle approach for concentration fluctuations and chemical reactions in Lagrangian particle and particle-grid models. Bound.-Layer Meteorol. 2013, 146, 207–233. [Google Scholar] [CrossRef]
- Kaplan, H. An estimation of a passive scalar variances using a one-particle Lagrangian transport and diffusion model. Phys. A Stat. Mech. Its Appl. 2014, 393, 1–9. [Google Scholar] [CrossRef]
- Kaplan, H.; Olry, C.; Moussafir, J.; Oldrini, O.; Mahe, F.; Albergel, A. Chemical reactions at street scale using a Lagrangian particle dispersion model. Int. J. Environ. Poll. 2014, 55, 1–4. [Google Scholar]
- Villermaux, E.; Duplat, J. Mixing as an aggregation process. Phys. Rev. Lett. 2003, 91, 184501. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yee, E.; Wang, B.C.; Lien, F.S. Probabilistic model for concentration fluctuations in compact-source plumes in an urban environment. Bound.-Layer Meteorol. 2009, 130, 169–208. [Google Scholar] [CrossRef]
- Marro, M.; Salizzoni, P.; Soulhac, L.; Cassiani, M. Dispersion of a Passive Scalar Fluctuating Plume in a Turbulent Boundary Layer. Part III: Stochastic Modelling. Bound.-Layer Meteorol. 2018, 167, 349–369. [Google Scholar] [CrossRef] [Green Version]
- Garmory, A.; Richardson, E.S.; Mastorakos, E. Micromixing effects in a reacting plume by the stochastic fields method. Atmos. Environ. 2006, 40, 1078–1091. [Google Scholar] [CrossRef]
- Alessandrini, S.; Ferrero, E. A hybrid lagrangian–eulerian particle model for reacting pollutant dispersion in non-homogeneous non-isotropic turbulence. Phys. A 2009, 388, 1375–1387. [Google Scholar] [CrossRef]
- Alessandrini, S.; Ferrero, E. An application of a Lagrangian particle model with chemical reactions to power plant pollution dispersion in complex terrain. In Air Pollution Modeling and its Application XX; Steyn, D.G., Rao, S.T., Eds.; Springer: New York, NY, USA, 2010; pp. 361–366. [Google Scholar]
- Alessandrini, S.; Ferrero, E. A Lagrangian particle model with chemical reactions: Application in real atmosphere. Int. J. Environ. Poll. 2011, 47, 97–107. [Google Scholar] [CrossRef] [Green Version]
- Alessandrini, S.; Balanzino, A.; Ferrero, E.; Riva, M. Lagrangian modelling evaluation of the NOx pollution reduction due to electric vehicles introduction. Int. J. Environ. Poll. 2012, 50, 200–208. [Google Scholar] [CrossRef]
- Brown, R.J.; Bilger, R.W. Experiments on a reacting plume–1. Conventional concentration statistics. Atmos. Environ. 1998, 32, 611–628. [Google Scholar] [CrossRef]
- Aguirre, C.; Vinkovic, I.; Simoens, S. A subgrid Lagrangian model for turbulent passive and reactive scalar dispersion. Int. J. Heat Fluid Flow 2006, 27, 627–635. [Google Scholar] [CrossRef]
- Vilá-Guerau de Arellano, J.; Dosio, A.; Vinuesa, J.-F.; Holtslag, A.A.M.; Galmarini, S. The dispersion of chemically reactive species in the atmospheric boundary layer. Meteor. Atmos. Phys. 2004, 87, 23–38. [Google Scholar] [CrossRef]
- Lewellen, W.S. Use of invariant modelling. In Handbook of Turbulence; Plenum Press: New York, NY, USA, 1977; Volume 180. [Google Scholar]
- Sykes, R.I.; Lewellen, W.S.; Parker, S.E. A turbulent-transport model for concentration fluctuations and fluxes. J. Fluid Mech. 1984, 139, 193–218. [Google Scholar] [CrossRef]
- Fackrell, J.E.; Robins, A.G. Concentration fluctuations and fluxes in plumes from point sources in a turbulent boundary. J. Fluid Mech. 1982, 117, 1–26. [Google Scholar] [CrossRef]
- Sawford, B.L. Comparison of some different approximations in the statistical theory of relative dispersion. Q. J. R. Meteorol. Soc. 1982, 108, 191–208. [Google Scholar] [CrossRef]
- Galperin, B. A modified turbulence energy model for diffusion from elevated and ground point sources in neutral boundary layer. Bound.-Layer Meteorol. 1986, 37, 245–262. [Google Scholar] [CrossRef]
- Bèguier, C.; Dekeyser, I. Launder BE Ratio of scalar and velocity dissipation time scales in shear flow turbulence. Phys. Fluids 1978, 21, 307–310. [Google Scholar] [CrossRef]
- Warhaft, Z.; Lumley, J.L. An experimental study of the decay of temperature fluctuations in grid-generated turbulence. J. Fluid Mech. 1978, 88, 659–684. [Google Scholar] [CrossRef]
- Andronopoulos, S.; Grigoriadis, D.; Robins, A.; Venetsanos, A.; Rafailidis, S.; Bartzis, J.G. Three-dimensional modeling of concentration fluctuations in complicated geometry. Environ. Fluid Mech. 2002, 1, 415–440. [Google Scholar] [CrossRef]
- Milliez, M.; Carissimo, B. Computational fluid dynamical modeling of concentration fluctuations in an idealized urban area. Bound.-Layer Meteorol. 2008, 127, 241–259. [Google Scholar] [CrossRef]
- Dourado, H.; Santos, J.M.; Reis Junior, N.C.; Mavroidis, I. Development of a fluctuating plume model for odour dispersion around buildings. Atmos. Environ. 2014, 89, 148–157. [Google Scholar] [CrossRef]
- Mussio, P.; Gnyp, A.W.; Henshaw, P.F. A fluctuating plume dispersion model for the prediction of odour-impact frequencies from continuous stationary sources. Atmos. Environ. 2001, 35, 2955–2962. [Google Scholar] [CrossRef]
- Piringer, M.; Knauder, W.; Petz, E.; Schauberger, G. Factors influencing separation distances against odour annoyance calculated by Gaussian and Lagrangian dispersion models. Atmos. Environ. 2016, 140, 69–83. [Google Scholar] [CrossRef]
- Piringer, M.; Knauder, W.; Petz, E.; Schauberger, G. Use of ultrasonic anemometer data to derive local odour related peak-to-mean concentration ratios. Chem. Eng. Trans. 2014, 40, 103–108. [Google Scholar]
- Smith, M.E. Recommended Guide for the Prediction of the Dispersion of Airborne Effluents; ASME: New York, NY, USA, 1973. [Google Scholar]
- Janicke, L.; Janicke, U.; Ahrens, D.; Hartmann, U.; Müller, W.J. Development of the odour dispersion model AUSTAL2000G in Germany. Environ. Odour Manag. Vdi-Ber. 2004, 1850, 411–417. [Google Scholar]
- VDI 3788-1, Environmental meteorology—Dispersion of odorants in the atmosphere—Fundamentals. Available online: https://www.vdi.de/richtlinien/details/vdi-3788-blatt-1-umweltmeteorologie-ausbreitung-von-geruchsstoffen-in-der-atmosphaere-grundlagen (accessed on 29 November 2019).
- Oettl, D.; Kropsch, M.; Mandl, M. Odour assessment in the vicinity of a pig-fatting farm using field inspections (EN 16841-1) and dispersion modelling. Atmos. Environ. 2018, 181, 54–60. [Google Scholar] [CrossRef]
- Scire, J.; Strimaitis, D.; Yamartino, R. A User’s Guide for the CALPUFF Dispersion Model; Earth Tech. Inc.: Concord, MA, USA, 2000; pp. 1–521. [Google Scholar]
- Murguia, W.; Pagans, E.; Barclay, J.; Scire, J. Case study: A comparison of predicted odour exposure levels in Barcelona using CALPUFF lite, CALPUFF NoObs and CALPUFF hybrid model. Chem. Eng. Trans. 2014, 40, 31–36. [Google Scholar]
- De Melo, A.M.; Santos, J.M.; Mavroidis, I.; Reis, N.C., Jr. Modelling of odour dispersion around a pig farm building complex using AERMOD and CALPUFF. Comparison with wind tunnel results. Build. Environ. 2012, 56, 8–20. [Google Scholar] [CrossRef]
- Ranzato, L.; Barausse, A.; Mantovani, A.; Pittarello, A.; Benzo, M.; Palmeri, L. A comparison of methods for the assessment of odor impacts on air quality: Field inspection (VDI 3940) and the air dispersion model CALPUFF. Atmos. Environ. 2012, 61, 570–579. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ferrero, E.; Manor, A.; Mortarini, L.; Oettl, D. Concentration Fluctuations and Odor Dispersion in Lagrangian Models. Atmosphere 2020, 11, 27. https://doi.org/10.3390/atmos11010027
Ferrero E, Manor A, Mortarini L, Oettl D. Concentration Fluctuations and Odor Dispersion in Lagrangian Models. Atmosphere. 2020; 11(1):27. https://doi.org/10.3390/atmos11010027
Chicago/Turabian StyleFerrero, Enrico, Alon Manor, Luca Mortarini, and Dietmar Oettl. 2020. "Concentration Fluctuations and Odor Dispersion in Lagrangian Models" Atmosphere 11, no. 1: 27. https://doi.org/10.3390/atmos11010027
APA StyleFerrero, E., Manor, A., Mortarini, L., & Oettl, D. (2020). Concentration Fluctuations and Odor Dispersion in Lagrangian Models. Atmosphere, 11(1), 27. https://doi.org/10.3390/atmos11010027