Measuring Regional Atmospheric CO2 Concentrations in the Lower Troposphere with a Non-Dispersive Infrared Analyzer Mounted on a UAV, Ogata Village, Akita, Japan
Abstract
:1. Introduction
2. Materials and Methods
2.1. CO2 Measurement Site
2.2. CO2 Measurements Using UAV System
2.3. CO2 Calibration and Measurement Uncertainty
2.4. CO2 Simulation
3. Results
4. Advantages and Disadvantages of UAV/NDIR System and the Other Platforms
5. Features of Monthly CO2 Concentrations Measured by the UAV System
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix
Model Name | LR5042 |
---|---|
Target | DC 1 ch |
Range | −5.000~+5.000 V |
Accuracy | ±0.5% rdg. ±5 dgt. |
Size (W, D, H) | 79 × 57 × 28 mm |
Weight | 1.0 kg |
Character String (Name of Site) | Kunrenjo |
---|---|
Character string (code) | TR36039072601 |
Triangle grade code | Third order triangulation station |
Latitude | 40°01′02″.0511 |
Longitude | 139°57′39″.1204 |
Altitude (m) | −0.95 |
Altitude | 26 February 2018 | 8 March 2018 | 12 April 2018 | 20 April 2018 | 7 May 2018 | 28 May 2018 | 14 June 2018 |
---|---|---|---|---|---|---|---|
500 m | 417.08 ± 0.15 | 414.83 ± 0.10 | 417.35 ± 0.08 | 414.17 ± 0.08 | 420.5 ± 0.46 | 406.58 ± 0.08 | |
400 m | 416.67 ± 0.10 | 414.55 ± 0.10 | 417.31 ± 0.18 | 413.82 ± 0.17 | 416.71 ± 0.38 | 406.26 ± 0.10 | |
300 m | 415.91 ± 0.12 | 412.48 ± 0.18 | 413.73 ± 0.21 | 416.43 ± 0.13 | 414.14 ± 0.31 | 413.07 ± 1.75 | 404.85 ± 0.20 |
200 m | 415.53 ± 0.08 | 412.01 ± 0.23 | 412.41 ± 0.19 | 416.06 ± 0.10 | 413.79 ± 0.24 | 411.13 ± 0.48 | 404.32 ± 0.14 |
100 m | 415.15 ± 0.10 | 411.60 ± 0.28 | 411.71 ± 0.24 | 415.44 ± 0.21 | 412.69 ± 0.21 | 410.89 ± 0.34 | 403.67 ± 0.28 |
10 m | 414.94 ± 0.15 | 411.14 ± 0.15 | 411.01 ± 0.15 | 413.94 ± 0.30 | 410.99 ± 0.50 | 409.4 ± 0.24 | 401.64 ± 0.73 |
Altitude | 11 July 2018 | 24 July 2018 | 10 August 2018 | 29 August 2018 | 20 September 2018 | 12 October 2018 | 2 November 2018 |
500 m | 399.21 ± 0.40 | 392.51 ± 0.16 | 393.80 ± 0.00 | 387.45 ± 0.10 | 398.52 ± 0.15 | 411.09 ± 0.11 | 411.44 ± 0.00 |
400 m | 399.85 ± 0.49 | 392.75 ± 0.17 | 393.39 ± 0.15 | 385.66 ± 0.15 | 397.82 ± 0.10 | 410.75 ± 0.15 | 411.12 ± 0.10 |
300 m | 398.55 ± 0.28 | 390.16 ± 0.48 | 393.60 ± 0.19 | 384.38 ± 0.19 | 397.30 ± 0.10 | 410.17 ± 0.18 | 410.42 ± 0.10 |
200 m | 398.00 ± 0.42 | 389.65 ± 0.21 | 393.78 ± 0.21 | 381.71 ± 0.21 | 396.37 ± 0.14 | 409.08 ± 0.11 | 410.22 ± 0.10 |
100 m | 397.56 ± 0.56 | 389.68 ± 0.29 | 394.05 ± 0.16 | 380.46 ± 0.16 | 396.31 ± 0.14 | 408.61 ± 0.17 | 409.71 ± 0.17 |
10 m | 393.76 ± 1.29 | 387.68 ± 0.72 | 390.70 ± 0.34 | 377.25 ± 0.34 | 395.23 ± 0.71 | 406.94 ± 0.37 | 408.79 ± 0.08 |
Altitude | 16 November 2018 | 18 December 2018 | 21 January 2019 | 31 January 2019 | 25 February 2019 | ||
500 m | 413.81 ± 0.11 | 405.46 ± 0.21 | 416.76 ± 0.25 | 422.37 ± 0.10 | |||
400 m | 413.20 ± 0.11 | 404.90 ± 0.25 | 416.54 ± 0.17 | 421.72 ± 0.11 | |||
300 m | 412.67 ± 0.08 | 404.49 ± 0.21 | 416.15 ± 0.18 | 421.16 ± 0.14 | |||
200 m | 411.42 ± 0.10 | 403.69 ± 0.31 | 420.28 ± 0.39 | 415.70 ± 0.18 | 419.97 ± 0.19 | ||
100 m | 410.55 ± 0.10 | 402.96 ± 0.17 | 419.72 ± 0.27 | 415.31 ± 0.25 | 419.44 ± 0.24 | ||
10 m | 409.04 ± 0.20 | 402.23 ± 0.31 | 419.19 ± 0.23 | 414.89 ± 0.47 | 418.69 ± 0.17 |
Altitude | 26 February 2018 | 8 March 2018 | 12 April 2018 | 20 April 2018 | 7 May 2018 | 28 May 2018 | 14 June 2018 |
---|---|---|---|---|---|---|---|
500 m | 406.36 ± 0.14 | ||||||
400 m | 404.86 ± 0.28 | ||||||
300 m | 404.56 ± 0.23 | ||||||
200 m | 405.00 ± 0.11 | ||||||
100 m | 404.47 ± 0.17 | ||||||
10 m | 403.06 ± 0.38 | ||||||
Altitude | 11 July 2018 | 24 July 2018 | 10 August 2018 | 29 August 2018 | 20 September 2018 | 12 October 2018 | 2 November 2018 |
500 m | 392.99 ± 0.49 | 394.89 ± 0.24 | 387.23 ± 1.48 | 398.38 ± 0.17 | 411.14 ± 0.19 | 411.14 ± 0.10 | |
400 m | 390.03 ± 0.51 | 394.41 ± 0.11 | 382.80 ± 0.25 | 398.29 ± 0.11 | 410.90 ± 0.11 | 410.89 ± 0.07 | |
300 m | 390.89 ± 0.25 | 394.08 ± 0.31 | 381.76 ± 0.47 | 397.80 ± 0.08 | 410.17 ± 0.24 | 410.23 ± 0.09 | |
200 m | 389.72 ± 0.17 | 393.50 ± 0.31 | 382.92 ± 0.55 | 396.75 ± 0.12 | 409.53 ± 0.22 | 409.80 ± 0.10 | |
100 m | 389.38 ± 0.13 | 392.75 ± 0.62 | 379.07 ± 0.42 | 396.72 ± 0.18 | 409.39 ± 0.18 | 409.47 ± 0.09 | |
10 m | 388.82 ± 0.47 | 390.97 ± 1.07 | 374.29 ± 1.39 | 395.76 ± 0.63 | 407.40 ± 0.41 | 408.67 ± 0.33 | |
Altitude | 16 November 2018 | 18 December 2018 | 21 January 2019 | 31 January 2019 | 25 February 2019 | ||
500 m | 413.74 ± 0.08 | 412.13 ± 0.12 | 417.54 ± 0.24 | 422.58 ± 0.23 | |||
400 m | 413.37 ± 0.24 | 411.74 ± 0.28 | 417.25 ± 0.50 | 421.63 ± 0.22 | |||
300 m | 412.87 ± 0.15 | 411.56 ± 0.16 | 416.86 ± 0.33 | 421.22 ± 0.49 | |||
200 m | 411.19 ± 0.11 | 410.71 ± 0.23 | 418.17 ± 0.40 | 416.34 ± 0.24 | 420.33 ± 0.22 | ||
100 m | 410.89 ± 0.13 | 410.05 ± 0.15 | 417.59 ± 0.29 | 415.83 ± 0.12 | 419.58 ± 0.23 | ||
10 m | 410.58 ± 0.11 | 409.36 ± 0.15 | 417.04 ± 0.24 | 415.70 ± 0.26 | 419.35 ± 0.19 |
Model Name | GANGAN GT5 |
---|---|
Rated Output | DC 14.8 V, 10400 mAh |
Temperature range | 0~+40 °C |
Size (W, H, D) | 156 × 99 × 45 mm |
Weight | 0.95 kg |
Observation Period | 1st Time | 2nd Time |
---|---|---|
During propeller stopping | 385.58 ± 0.31 | 388.16 ± 0.87 |
During propeller rotating | 384.54 ± 0.36 | 387.03 ± 0.87 |
Month | October–November (Previous Year) | March | Early April–Mid April | May | Late June | July | August | Early September | Late September–October | October | October–November |
---|---|---|---|---|---|---|---|---|---|---|---|
Farm works | Tilling rice fields | Preparation for raising seedling | Plowing fields | Rice sowing and planting | Water management in rice fields | Water management in rice fields | Water management in rice fields | Pest control | Rice reaping and threshing | Rice drying, and hulling | Tilling rice fields |
Water management in rice fields | Water management in rice fields | ||||||||||
Life stage of rice | Rice seed | Emergence of seedling | Rice growth stage | Rice growth stage | Rice growth stage | Maturation stage of panicles | |||||
Panicle formation stage | Heading stage | ||||||||||
Surface CO2 concentration (ppm) | 415.4 | 416.6 | 415.9 | 405.6 | 404.6 | 398.7 | 402.8 | 408.8 | 413.6 |
References
- Keeling, C.D.; Bacastow, R.B.; Bainbridge, A.E.; Ekdahl, C.A.; Guenther, P.R.; Waterman, L.S.; Chin, J.F.S. Atmospheric carbon dioxide variations at Mauna Loa Observatory, Hawaii. Tellus 1976, 28, 538–551. [Google Scholar] [Green Version]
- Kawamura, K.; Parrenin, K.; Lisiecki, L.; Uemura, R.; Vimeux, F.; Severinghaus, J.P.; Hutterli, M.A.; Nakazawa, T.; Aoki, S.; Jouzel, J.; et al. Northern Hemisphere forcing of climatic cycles in Antarctica over the past 360,000 years. Nature 2007, 448, 912–916. [Google Scholar] [CrossRef] [PubMed]
- WMO. WMO Greenhouse Gas Bulletin, The State of Greenhouse Gases in the Atmosphere Based on Global Observations through 2015, No. 12. World Meteorological Organization, 2016. Available online: http://www.wmo.int/pages/prog/arep/gaw/ghg/ghgbull06_en.html (accessed on 1 March 2019).
- Schlesinger, W.H. Carbon balance in terrestrial detritus. Annu. Rev. Ecol. Syst. 1977, 8, 1–81. [Google Scholar] [CrossRef]
- He, M.; Sun, Y.; Han, B. Green carbon science. Green carbon science: Scientific basis for integrating carbon resource processing, utilization, and recycling. Angew. Chem. Int. Ed. 2013, 52, 9620–9633. [Google Scholar] [CrossRef] [PubMed]
- Crevoisier, C.; Clerbaux, C.; Guidard, V.; Phulpin, T.; Armante, R.; Barret, B.; Camy-Peyret, C.; Chaboureau, J.P.; Coheur, P.F.; Crépeau, L.; et al. Towards IASI-New Generation (IASI-NG): Impact of improved spectral resolution and radiometric noise on the retrieval of thermodynamic, chemistry and climate variables. Atmos. Meas. Tech. 2014, 7, 4367–4385. [Google Scholar] [CrossRef]
- Crevoisier, C.; Heilliette, S.; Chédin, A.; Serrar, S.; Armante, R.; Scott, N.A. Midtropospheric CO2 concentration retrieval from AIRS observations in the tropics. Geophys. Res. Lett. 2004, 31, L17106. [Google Scholar] [CrossRef]
- Kuze, A.; Suto, H.; Nakajima, M.; Hamazaki, T. Thermal and near infrared sensor for carbon observation Fourier-transform spectrometer on the Greenhouse Gases Observing Satellite for greenhouse gases monitoring. Appl. Opt. 2009, 48, 6716–6733. [Google Scholar] [CrossRef] [PubMed]
- Wunch, D.; Wennberg, P.O.; Osterman, G.; Fisher, B.; Naylor, B.; Roehl, C.M.; O’Dell, C.; Mandrake, L.; Viatte, C.; Kiel, M.; et al. Comparisons of the Orbiting Carbon Observatory-2 (OCO-2) XCO2 measurements with TCCON. Atmos. Meas. Tech. 2017, 10, 2209–2238. [Google Scholar] [CrossRef]
- Inoue, H.Y.; Matsueda, H. Measurements of atmospheric CO2 from a meteorological tower in Tsukuba, Japan. Tellus 2001, 53, 205–219. [Google Scholar] [CrossRef]
- Sasakawa, M.; Machida, T.; Tsuda, M.; Arshinov, M.; Davydov, D.; Fofonov, A.; Krasnov, O. Aircraft and tower measurement of CO2 concentration in the planetary boundary layer and the lower free troposphere over southern taiga in West Siberia: Long-term records from 2002 to 2011. J. Geophys. Res. Atmos. 2013, 118, 9489–9498. [Google Scholar] [CrossRef]
- Machida, T.; Kita, K.; Kondo, Y.; Blake, D.; Kawakami, S.; Inoue, G.; Ogawa, T. Vertical and meridional distributions of the atmospheric CO2 mixing ratio between northern midlatitudes and southern subtropics. J. Geophys. Res. 2002, 108. [Google Scholar] [CrossRef]
- Machida, T.; Matsueda, H.; Sawa, Y.; Nakagawa, Y.; Hirotani, K.; Kondo, N.; Goto, K.; Nakazawa, T.; Ishikawa, K.; Ogawa, T. Worldwide measurements of atmospheric CO2 and other trace gas species using commercial airlines. J. Atmos. Ocean. Technol. 2008, 25, 1744–1754. [Google Scholar] [CrossRef]
- Inoue, M.; Morino, I.; Uchino, O.; Miyamoto, Y.; Yoshida, Y.; Yokota, T.; Machida, T.; Sawa, Y.; Matsueda, H. Validation of XCO2 derived from SWIR spectra of GOSAT TANSO-FTS with aircraft measurement data. Atmos. Chem. Phys. 2013, 13, 9771–9788. [Google Scholar] [CrossRef]
- Nakazawa, T.; Machida, T.; Sugawara, S.; Murayama, S.; Hashida, G.; Morimoto, S.; Honda, H.; Itoh, T. Measurements of the Stratospheric Carbon Dioxide Concentration over Japan Using a Balloon-Borne Cryogenic Sampler. Geophys. Res. Lett. 1995, 22, 1229–1232. [Google Scholar] [CrossRef]
- Inai, Y.; Aoki, S.; Honda, H.; Furutani, H.; Matsumi, Y.; Ouchi, M.; Sugawara, S.; Hasebe, F.; Uematsu, M.; Fujiwara, M. Balloon-borne tropospheric CO2 observations over the equatorial eastern and western Pacific. Atmos. Environ. 2018, 184, 24–36. [Google Scholar] [CrossRef]
- Jat, P.; Serre, M.L. Bayesian Maximum Entropy space/time estimation of surface water chloride in Maryland using river distances. Environ. Pollut. 2016, 219, 1148–1155. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jat, P.; Serre, M.L. A novel geostatistical approach combining Euclidean and gradual-flow covariance models to estimate fecal coliform along the Haw and Deep rivers in North Carolina. Stoch. Environ. Res. Risk Assess. 2018, 32, 1–13. [Google Scholar] [CrossRef]
- Karion, A.; Sweeney, C.; Tans, P.; Newberger, T. AirCore an innovative atmospheric sampling system. J. Atmos. Ocean. Technol. 2010, 27, 1839–1853. [Google Scholar] [CrossRef]
- Villa, T.F.; Jayaratne, E.R.; Gonzalez, L.F.; Morawska, L. Determination of the vertical profile of particle number concentration adjacent to a motorway using an unmanned aerial vehicle. Environ. Pollut. 2017, 230, 134–142. [Google Scholar] [CrossRef] [Green Version]
- Andersen, T.; Scheeren, B.; Peters, W.; Chen, H. A UAV-Based Active AirCore System for Measurements of Greenhouse Gases. Atmos. Meas. Tech. 2018, 11, 2683–2699. [Google Scholar] [CrossRef]
- Chang, C.C.; Chang, C.Y.; Wang, J.L.; Lin, M.R.; OuYang, C.F.; Pan, H.H.; Chen, Y.C. A study of atmospheric mixing of trace gases by aerial sampling with a multi-rotor drone. Atmos. Environ. 2018, 184, 254–261. [Google Scholar] [CrossRef]
- Villa, T.F.; Brown, R.A.; Jayaratne, E.R.; Gonzalez, L.F.; Morawska, L.; Ristovski, Z.D. Characterization of the particle emission from a ship operating at sea using an unmanned aerial vehicle. Atmos. Meas. Tech. 2019, 12, 691–702. [Google Scholar] [CrossRef]
- Schuyler, T.J.; Guzman, M.I. Unmanned Aerial Systems for Monitoring Trace Tropospheric Gases. Atmosphere 2017, 8, 206. [Google Scholar] [CrossRef]
- Mamali, D.; Marinou, E.; Sciare, J.; Pikridas, M.; Kokkalis, P.; Kottas, M.; Binietoglou, I.; Tsekeri, A.; Keleshis, C.; Engelmann, R.; et al. Vertical profiles of aerosol mass concentration derived by unmanned airborne in situ and remote sensing instruments during dust events. Atmos. Meas. Tech. 2018, 11, 2897–2910. [Google Scholar] [CrossRef] [Green Version]
- Schuyler, T.J.; Gohari, S.M.I.; Pundsack, G.; Berchoff, D.; Guzman, M.I. Using a Balloon-Launched Unmanned Glider to Validate Real-Time WRF Modeling. Sensors 2019, 19, 1914. [Google Scholar] [CrossRef] [PubMed]
- Barbieri, L.; Kral, S.T.; Bailey, S.C.C.; Frazier, A.E.; Jacob, J.D.; Reuder, J.; Brus, D.; Chilson, P.B.; Crick, C.; Detweiler, C.; et al. Intercomparison of Small Unmanned Aircraft System (sUAS) Measurements for Atmospheric Science during the LAPSE-RATE Campaign. Sensors 2019, 19, 2179. [Google Scholar] [CrossRef] [PubMed]
- Madokoro, H.; Inoue, M.; Nagayoshi, T.; Chiba, T.; Haga, Y.; Kiguchi, O.; Sato, K. Prototype development of drone system used for in-situ measurement of CO2 vertical profile and its preliminary flight test. Trans. Soc. Instrum. Control Eng. (In Japanese with English abstract) (submitted).
- Inoue, M.; Haga, Y.; Nagayoshi, T.; Madokoro, H.; Takakai, F.; Kiguchi, O.; Morino, I. Measurement of atmospheric carbon dioxide using unmanned aerial vehicle for profiling vertical distribution over Akita. In Proceedings of the 14th iCACGP Quadrennial Symposium/15th IGAC Science Conference, Takamatsu, Japan, 26 September 2018; Available online: http://icacgp-igac2018.colorado.edu/melamed/Abstracts/2.060_Inoue.pdf (accessed on 30 July 2019).
- Nomura, K.; Madokoro, H.; Chiba, T.; Inoue, M.; Nagayoshi, T.; Kiguchi, O.; Woo, H.; Sato, K. Operation and Maintenance of In-Situ CO2 Measurement System Using Unmanned Aerial Vehicles. In Proceedings of the 19th International Conference on Control, Automation and Systems, Jeju, Korea, 30 October 2019. [Google Scholar]
- Li, Y.; Deng, J.; Mua, C.; Xing, Z.; Dub, K. Vertical distribution of CO2 in the atmospheric boundary layer: Characteristics and impact of meteorological variables. Atmos. Environ. 2014, 91, 110–117. [Google Scholar] [CrossRef]
- Japan Meteorological Agency. AMeDAS. 2018–2019. Available online: http://www.jma.go.jp/jp/amedas/000.html (accessed on 31 January 2019).
- Japan Meteorological Agency. CO2 Concentration Secular Changes by Locations (Longitude/Latitude). 2019. Available online: http://ds.data.jma.go.jp/ghg/kanshi/co2timeser/co2timeser.html (accessed on 30 April 2019).
- Nakamura, T.; Maki, T.; Machida, T.; Matsueda, H.; Sawa, Y.; Niwa, Y. Improvement of Atmospheric CO2 Inversion Analysis at JMA, A31B-0033. In Proceedings of the AGU Fall Meeting, San Francisco, CA, USA, 14–18 December 2015. [Google Scholar]
- Geospatial Information Authority of Japan. Digital Map (Elevation). Available online: http://maps.gsi.go.jp/#13/39.982513/140.003071/&base=ort&ls=ort%7Crelief_free%7Cslopemap&blend=10&disp=111&lcd=slopemap&vs=c1j0h0k0l0u0t0z0r0s0f1&d=vl 2019. (accessed on 31 January 2019).
- Ogura, Y. General Meteorology, 2nd ed.; University of Tokyo Press: Toyo, Japan, 2016; 320p. [Google Scholar]
- Tanaka, M.; Nakazawa, T.; Aoki, S. High Quality Measurements of the Concentration of Atmospheric Carbon Dioxide. J. Meteorol. Soc. Jpn. 1983, 61, 678–685. [Google Scholar] [CrossRef] [Green Version]
- Tanaka, T.; Miyamoto, Y.; Morino, I.; Machida, T.; Nagahama, T.; Sawa, Y.; Matsueda, H.; Wunch, D.; Kawakami, S.; Uchino, O. Aircraft measurements of carbon dioxide and methane for the calibration of ground-based high-resolution Fourier Transform Spectrometers and a comparison to GOSAT data measured over Tsukuba and Moshiri. Atmos. Meas. Tech. 2012, 5, 2003–2012. [Google Scholar] [CrossRef] [Green Version]
- Hupp, J.R. The Importance of Water Vapor Measurements and Corrections. LI-COR, Inc. Appl. Note 2011, 129, 1–8. [Google Scholar]
- Sasaki, T.; Maki, T.; Oohashi, S.; Akagi, K. Optimal sampling network and availability of data acquired at inland sites. Glob. Atmos. Watch Rep. 2003, 148, 77–79. [Google Scholar]
- Maki, T.; Ikegami, M.; Fujita, T.; Hirahara, T.; Yamada, K.; Mori, K.; Takeuchi, A.; Tsutsumi, Y.; Suda, K.; Conway, T.J. New technique to analyse global distributions of CO2 concentrations and fluxes from non-processed observational data. Tellus 2010, 62B, 797–809. [Google Scholar] [CrossRef]
- Ouchi, M.; Matsumi, Y.; Nakayama, T.; Shimizu, K.; Sawada, T.; Machida, T.; Matsueda, H.; Sawa, Y.; Morino, I.; Uchino, O.; et al. Development of a balloon-borne instrument for CO2 vertical profile observations in the troposphere. Atmos. Meas. Tech. Discuss. 2019. [Google Scholar] [CrossRef]
- Tans, P.P.; Fung, I.Y.; Takahashi, T. Observational Constrains on the Global Atmospheric CO2 Budget. Science 1990, 247, 1431–1438. [Google Scholar] [CrossRef] [PubMed]
- Randerson, J.T.; Field, C.B.; Fung, I.Y.; Tans, P.P. Increases in early season ecosystem uptake explain recent changes in the seasonal cycle of atmospheric CO2 at high northern latitudes. Geophys. Res. Lett. 1999, 26, 2765–2768. [Google Scholar] [CrossRef]
- Holton, J.R. An Introduction to Dynamic Meteorology, 4th ed.; Academic Press: New York, NY, USA, 2004; 535p. [Google Scholar]
- Witte, B.M.; Singler, R.F.; Bailey, S.C.C. Development of an Unmanned Aerial Vehicle for the Measurement of Turbulence in the Atmospheric Boundary Layer. Atmosphere 2017, 8, 195. [Google Scholar] [CrossRef]
- Rautenberg, A.; Graf, M.S.; Wildmann, N.; Platis, A.; Bange, J. Reviewing Wind Measurement Approaches for Fixed-Wing Unmanned Aircraft. Atmosphere 2018, 9, 422. [Google Scholar] [CrossRef]
- Akita Komachi Net. Akita Komachi Net HP. Available online: http://shop.akitakomachi.net/?mode=f7 2018 (accessed on 31 January 2019).
- Ogata agricultural cooperative association. Agricultural Data (Eino-shiryo); Ogata Agricultural Cooperative Association: Ogata Village, Japan, 2018; 89p. [Google Scholar]
- Saito, M.; Miyata, A.; Nagai, H.; Yamada, T. Seasonal variation of carbon dioxide exchange in rice paddy field in Japan. Agric. For. Meteorol. 2005, 135, 93–109. [Google Scholar] [CrossRef]
- Geospatial Information Authority of Japan. Control Point Survey and Geodetic Observation Results. Available online: https://sokuseikagis1.gsi.go.jp/index.aspx#14/40.014271/139.961228/&base=std&ls=std&disp=1&vs=c1f0 (accessed on 31 January 2019).
Model Name | LI-840A |
---|---|
Measurement range | 0–20,000 ppm |
Input voltage DC | 12–30 V |
Power consumption | 3.6 W |
Temperature range | −20~+45 °C |
Size (W, D, H) | 222 × 152 × 76 mm |
Weight | 1.0 kg |
Model Name | Matrice600 |
---|---|
Body size (W, D, H) | 1668 × 1518 × 759 mm |
Weight | 9.1 kg (When TB47S batteries using) |
Payload | 6.0 kg (max) |
Rising speed | 5.0 m/s (max) |
Dropping speed | 3.0 m/s (max) |
Horizontal flight speed | 18.0 m/s (max) |
Signal transmission range | 3.5 km (max) |
Date | Weather | Surface Temperature (°C) | Surface Wind Direction | Surface Wind Speed (m/s) | Surface Sunshine Duration (h/h) |
---|---|---|---|---|---|
26 February 2018 | Cloudy | 0.9 | NW | 2.3 | 0.2 |
8 March 2018 | Cloudy | 8.5 | SE | 8.0 | 0.1 |
12 April 2018 | Sunny | 11.7 | WNW | 3.9 | 1.0 |
20 April 2018 | Sunny | 14.2 | SSW | 4.8 | 0.6 |
7 May 2018 | Sunny | 16.4 | WNW | 3.2 | 0.3 |
28 May 2018 | Sunny | 16.5 | NW | 2.9 | 1.0 |
14 June 2018 | Cloudy | 16.2 | NW | 2.7 | 0.4 |
11 July 2018 | Cloudy | 22.0 | NW | 3.0 | 0.1 |
24 July 2018 | Sunny | 27.2 | NNW | 2.5 | 1.0 |
10 August 2018 | Cloudy | 28.7 | WNW | 2.1 | 0.7 |
29 August 2018 | Cloudy | 25.7 | ESE | 1.1 | 0.0 |
20 September 2018 | Cloudy | 22.8 | S | 0.7 | 0.1 |
12 October 2018 | Sunny | 18.7 | NW | 5.4 | 0.8 |
2 November 2018 | Sunny | 15.1 | NW | 2.0 | 0.4 |
16 November 2018 | Cloudy | 11.7 | SSE | 2.6 | 0.3 |
18 December 2018 | Sunny | 5.7 | WNW | 5.6 | 0.5 |
21 January 2019 | Cloudy | -0.6 | WNW | 7.8 | 0.1 |
31 January 2019 | Cloudy | 0.9 | WNW | 4.7 | 0.0 |
25 February 2019 | Sunny | 8.4 | WNW | 5.2 | 0.6 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chiba, T.; Haga, Y.; Inoue, M.; Kiguchi, O.; Nagayoshi, T.; Madokoro, H.; Morino, I. Measuring Regional Atmospheric CO2 Concentrations in the Lower Troposphere with a Non-Dispersive Infrared Analyzer Mounted on a UAV, Ogata Village, Akita, Japan. Atmosphere 2019, 10, 487. https://doi.org/10.3390/atmos10090487
Chiba T, Haga Y, Inoue M, Kiguchi O, Nagayoshi T, Madokoro H, Morino I. Measuring Regional Atmospheric CO2 Concentrations in the Lower Troposphere with a Non-Dispersive Infrared Analyzer Mounted on a UAV, Ogata Village, Akita, Japan. Atmosphere. 2019; 10(9):487. https://doi.org/10.3390/atmos10090487
Chicago/Turabian StyleChiba, Takashi, Yumi Haga, Makoto Inoue, Osamu Kiguchi, Takeshi Nagayoshi, Hirokazu Madokoro, and Isamu Morino. 2019. "Measuring Regional Atmospheric CO2 Concentrations in the Lower Troposphere with a Non-Dispersive Infrared Analyzer Mounted on a UAV, Ogata Village, Akita, Japan" Atmosphere 10, no. 9: 487. https://doi.org/10.3390/atmos10090487
APA StyleChiba, T., Haga, Y., Inoue, M., Kiguchi, O., Nagayoshi, T., Madokoro, H., & Morino, I. (2019). Measuring Regional Atmospheric CO2 Concentrations in the Lower Troposphere with a Non-Dispersive Infrared Analyzer Mounted on a UAV, Ogata Village, Akita, Japan. Atmosphere, 10(9), 487. https://doi.org/10.3390/atmos10090487