Multifractal Detrended Fluctuation Analysis of Temperature Reanalysis Data over Greece
Abstract
:1. Introduction
2. Area of Study and Data
3. Methods
- In the first part, the multifractal characteristics of reanalysis daily temperature are studied using MF-DFA;
- In the second part, the spatial distribution of the main multifractal spectral characteristics is examined.The MF-DFA is used to study the scaling properties of the temperature time series. A brief description of the method is given below, while a more detailed description is elaborated in [34].
- Initially, the time series are deseasonalized by subtracting the mean value of each calendar day from the corresponding values of the time series. For instance, in a daily temperature time series covering the period 1979–2014, the deseasonalized value of temperature on a specific date is calculated by subtracting the mean value of this day of all years (i.e., the mean from 36 values).
- Subsequently, the ‘profile’ Y(i) of the deseasonalized time series xk of length N is found:
- Y(i) is then divided into Ns = int(N/s) boxes of equal length s (s being the time scale).
- In each box of length s, a least squares line is fitted to the data, which represents the trend in that box; i.e., the local trend. By subtracting the local trends, Y(i) is detrended and thus the variance F2 (v, s) of each segment (box) (v = 1, …, 2Ns) is calculated. In this study, second-order trends were eliminated from the profile Y(i) using quadratic polynomials and, according to [34], linear trends were removed from the original time series.
- In order to find the qth order fluctuation function, the average overall segments are calculated:Equation (2) is valid when q ≠ 0. If q = 0, the value of F0(s) is found using Equation (3):
- This quantity is calculated repeatedly for all time scales to determine the relationship between Fq(s) and s. Typically, Fq(s) is an increasing function of s.
then τ′(q) = α
and f(α) = qα − τ(q) = q[α − h(q)] + 1.
4. Results
4.1. Multifractal Charactesistics
4.2. Multifractal Characteristics Spatial Distribution
5. Discussion
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Mandelbrot, B.B. Fractals: Form, Chance and Dimension; Freeman: San Francisco, CA, USA, 1977. [Google Scholar]
- Mandelbrot, B.B. The Fractal Geometry of Nature; Freeman: San Francisco, CA, USA, 1982. [Google Scholar]
- Feder, J. Fractals; Plenum: New York, NY, USA, 1988. [Google Scholar]
- Barnsley, M.F. Fractals Everywhere; Academic Press: San Diego, CA, USA, 1993. [Google Scholar]
- Mandelbrot, B.B. Multifractals and 1/f Noise: Wild Self-Affinity in Physics; Springer: Berlin, Germany, 1999. [Google Scholar]
- Kandelhardt, J.W. Fractal and Multifractal Time Series. In Mathematics of Complexity and Dynamical Systems; Meyers, R.A., Ed.; Springer: New York, NY, USA, 2011; pp. 463–487. [Google Scholar]
- Peng, C.K.; Buldyrev, S.V.; Havlin, S.; Simons, M.; Stanley, H.E.; Goldberger, A.L. Mosaic organization of DNA nucleotides. Phys. Rev. E 1994, 49, 1685–1689. [Google Scholar] [CrossRef] [Green Version]
- Kandelhardt, J.W.; Koscielny-Bunde, E.; Rego, H.A.H.; Havlin, S.; Bunde, A. Detecting long-range correlations with detrended fluctuation analysis. Physica A 2001, 295, 441–454. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Cizeau, P.; Meyer, M.; Peng, C.K.; Stanley, H.E. Correlations in economic time series. Physica A 1997, 245, 437–440. [Google Scholar] [CrossRef] [Green Version]
- Di Matteo, T.; Aste, T.; Dacorogna, M.M. Scaling behaviors in differently developed markets. Physica A 2003, 324, 183–188. [Google Scholar] [CrossRef]
- Barbi, M.; Chillemi, S.; Di Garbo, A.; Balocchi, R.; Carpeggiani, C.; Emdin, M.; Michelassi, C.; Santarcangelo, E. Predictability and nonlinearity of the heart rhythm. Chaos Soliton Fract. 1998, 9, 507–515. [Google Scholar] [CrossRef]
- Buldyrev, S.V.; Dokholyan, N.V.; Goldberger, A.L.; Havlin, S.; Peng, C.K.; Stanley, H.E.; Viswanathan, G.M. Analysis of DNA sequences using methods of statistical physics. Physica A 1998, 249, 430–438. [Google Scholar] [CrossRef]
- Gao, J.; Hu, J.; Mao, X.; Perc, M. Culturomics meets random fractal theory: Insights into long-range correlations of social and natural phenomena over the past two centuries. J. Royal Soc. Interface 2012, 9, 1956–1964. [Google Scholar] [CrossRef]
- Varotsos, C.A.; Melnikova, I.; Efstathiou, M.N.; Tzanis, C. 1/f noise in the UV solar spectral irradiance. Theor. Appl. Climatol. 2013, 111, 641–648. [Google Scholar] [CrossRef]
- Chattopadhyay, G.; Chattopadhyay, S. Study on statistical aspects of monthly sunspot number time series and its long-range correlation through detrended fluctuation analysis. Indian J. Phys. 2014, 88, 1135–1140. [Google Scholar] [CrossRef]
- Holton, J.R. An introduction to Dynamic Meteorology, 4th ed.; Elsevier Academic Press: Cambridge, MA, USA, 2004. [Google Scholar]
- Koscielny-Bunde, E.; Bunde, A.; Havlin, S.; Goldreich, Y. Analysis of daily temperature fluctuations. Physica A 1996, 231, 393–396. [Google Scholar] [CrossRef]
- Eichner, J.F.; Koscielny-Bunde, E.; Bunde, A.; Havlin, S.; Schellnhuber, H.J. Power-law persistence and trends in the atmosphere: A detailed study of long temperature records. Phys. Rev. E 2003, 68, 046133. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bartos, I.; Janosi, I.M. Nonlinear correlations of daily temperature records over land. Nonlinear Proc. Geophys. 2006, 13, 571–576. [Google Scholar] [CrossRef] [Green Version]
- Orun, M.; Koçak, K. Application of detrended fluctuation analysis to temperature data from Turkey. Int. J. Climatol. 2009, 29, 2130–2136. [Google Scholar] [CrossRef]
- Yuan, N.; Fu, Z.; Mao, J. Different scaling behaviors in daily temperature records over China. Physica A 2010, 389, 4087–4095. [Google Scholar] [CrossRef]
- Kalamaras, N.; Philipppopoulos, K.; Deligiorgi, D. Scaling Properties of Meteorological Time Series Using Detrended Fluctuation Analysis. In Perspectives on Atmospheric sciences, Proceedings of the 13th International Conference of Meteorology, Climatology and Atmospheric Physics, Thessaloniki, Greece, 19–21 September 2016; Karacostas, T.S., Bais, A.F., Nastos, P.T., Eds.; Springer Atmospheric Physics; Springer International Publishing: Cham, Switzerland, 2016; pp. 545–550. [Google Scholar]
- Podobnik, B.; Ivanov, P.C.; Jazbinsek, V.; Trontelj, Z.; Stanley, H.E.; Grosse, I. Power-law correlated processes with asymmetric distributions. Phys. Rev. E 2005, 71, 025104. [Google Scholar] [CrossRef] [PubMed]
- Lin, G.; Chen, X.; Fu, Z. Temporal–spatial diversities of long-range correlation for relative humidity over China. Physica A 2007, 383, 585–594. [Google Scholar] [CrossRef]
- Jiang, L.; Zhao, L.; Zhao, Z. On the Difference of Scaling Properties for Temperature and Precipitation over China. Adv. Meteorol. Hindawi 2017, 2017. [Google Scholar] [CrossRef]
- He, W.; Zhao, S.; Liu, Q.; Jiang, Y.; Deng, B. Long-range correlation in the drought and flood index from 1470 to 2000 in eastern China. Int. J. Climatol. 2016, 36, 1676–1685. [Google Scholar] [CrossRef]
- Varotsos, C.A.; Tzanis, C. A new tool for the study of the ozone hole dynamics over Antarctica. Atmos. Environ. 2012, 47, 428–434. [Google Scholar] [CrossRef]
- Varotsos, C.A.; Milinevsky, G.; Grytsai, A.; Efstathiou, M.; Tzanis, C. Scaling effect in planetary waves over Antarctica. Int. J. Remote Sens. 2008, 29, 2697–2704. [Google Scholar] [CrossRef]
- Varotsos, C.; Efstathiou, M.; Tzanis, C.; Deligiorgi, D. On the limits of the air pollution predictability: the case of the surface ozone at Athens, Greece. Environ. Sci. Pollut. Res. 2012, 19, 295–300. [Google Scholar] [CrossRef] [PubMed]
- Varotsos, C.; Tzanis, C.; Efstathiou, M.; Deligiorgi, D. Tempting long-memory in the historic surface ozone concentrations at Athens, Greece. Atmos. Pollut. Res. 2015, 6, 1055–1057. [Google Scholar] [CrossRef]
- Varotsos, C.A.; Lovejoy, S.; Sarlis, N.V.; Tzanis, C.G.; Efstathiou, M.N. On the scaling of the solar incident flux. Atmos. Chem. Phys. 2015, 15, 7301–7306. [Google Scholar] [CrossRef] [Green Version]
- Lovejoy, S. A voyage through scales, a missing quadrillion and why the climate is not what you expect. Clim. Dyn. 2015, 44, 3187–3210. [Google Scholar] [CrossRef]
- Caldeira, R.; Fernandez, I.; Pacheco, J.M. On NAO’s predictability through the DFA method. Meteorol. Atmos. Phys. 2007, 96, 221–227. [Google Scholar] [CrossRef]
- Kandelhardt, J.W.; Zschiegner, S.A.; Koscielny-Bunde, E.; Havlin, S.; Bunde, A.; Stanley, H.E. Multifractal detrended fluctuation analysis of nonstationary time series. Physica A 2002, 316, 87–114. [Google Scholar] [CrossRef] [Green Version]
- Lovejoy, S.; Schertzer, D. The Weather and Climate Emergent Laws and Multifractal Cascades; Cambridge University Press: New York, NY, USA, 2013. [Google Scholar]
- Kalamaras, N.; Philippopoulos, K.; Deligiorgi, D.; Tzanis, C.G.; Karvounis, G. Multifractal scaling properties of daily air temperature time series. Chaos Solitons Fractals. 2017, 98, 38–43. [Google Scholar] [CrossRef]
- Svensson, C.; Olsson, J.; Berndtsson, R. Multifractal properties of daily rainfall in two different climates. Water Resour. Res. 1996, 332, 2463–2472. [Google Scholar] [CrossRef]
- Du, H.; Wu, Z.; Zong, S.; Meng, X.; Wang, L. Assessing the characteristics of extreme precipitation over northeast China using the multifractal detrended fluctuation analysis. J. Geophys. Res. Atmos 2013, 118, 6165–6174. [Google Scholar] [CrossRef]
- Shao, Z.-G.; Ditlevsen, P. Contrasting scaling properties of interglacial and glacial climates. Nat. Commun. 2016, 7, 10951. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Zhang, G.; Qiu, L.; Zhang, B.; Sun, Y.; Gui, Z.; Zhang, Q. A Modified Multifractal Detrended Fluctuation Analysis (MFDFA) Approach for Multifractal Analysis of Precipitation in Dongting Lake Basin, China. Water 2019, 11, 891. [Google Scholar] [CrossRef]
- Kavasseri, R.G.; Nagarajan, R. A multifractal description of wind speed records. Chaos Soliton Fract. 2005, 24, 165–173. [Google Scholar] [CrossRef]
- Feng, T.; Fu, Z.; Deng, X.; Mao, J. A brief description to different multi-fractal behaviors of daily wind speed records over China. Phys. Lett. A 2009, 373, 4134–4141. [Google Scholar] [CrossRef]
- Laib, M.; Telesca, L.; Kanevski, M. Long-range fluctuations and multifractality in connectivity density time series of a wind speed monitoring network. Chaos 2018, 28, 033108. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pedron, I.T. Correlation and multifractality in climatological time series. J. Phys. Conf. Ser. 2010, 246, 012034. [Google Scholar] [CrossRef]
- Baranowski, P.; Krzyszczak, J.; Slawinski, C.; Hoffmann, H.; Kozyra, J.; Nieróbca, A.; Siwek, K.; Gluza, A. Multifractal analysis of meteorological time series to assess climate impacts. Clim. Res. 2015, 65, 39–52. [Google Scholar] [CrossRef]
- Hoffmann, H.; Baranowski, P.; Krzyszczak, J.; Zubik, M.; Sławiński, C.; Gaiser, T.; Ewert, F. Temporal properties of spatially aggregated meteorological time series. Agric. Forest Meteorol. 2017, 234–235, 247–257. [Google Scholar]
- Krzyszczak, J.; Baranowski, P.; Zubik, M.; Hoffmann, H. Temporal scale influence on multifractal properties of agro-meteorological time series. Agric. Forest Meteorol. 2017, 239, 223–235. [Google Scholar] [CrossRef]
- Xue, Y.; Pan, W.; Lu, W.; He, H. Multifractal nature of particulate matters (PMs) in Hong Kong urban air. Sci. Total Environ. 2015, 532, 744–751. [Google Scholar] [CrossRef]
- Kalamaras, N.; Tzanis, C.G.; Deligiorgi, D.; Philippopoulos, K.; Koutsogiannis, I. Distribution of air temperature multifractal characteristics over Greece. Atmosphere 2019, 10, 45. [Google Scholar] [CrossRef]
- Mariolopoulos, E.G. The Climate of Greece; A.A. Papaspyrou Press: Athens, Greece, 1938. (In Greek) [Google Scholar]
- Karras, G. Climatic Classification of Greece According to Thornthwaite. Ph.D. Thesis, National and Kapodistrian University of Athens, Athens, Greece, 1973. (In Greek). [Google Scholar]
- Feidas, H.; Makrogiannis, T.; Bora-Senta, E. Trend analysis of air temperature time series in Greece and their relationship with circulation using surface and satellite data: 1955–2001. Theor. Appl. Climatol. 2004, 79, 185–208. [Google Scholar] [CrossRef]
- Dee, D.P.; Uppala, S.M.; Simmons, A.J.; Berrisford, P.; Poli, P.; Kobayashi, S.; Andrae, U.; Balmaseda, M.A.; Balsamo, G.; Bauer, P.; et al. The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Q. J. Royal Meteorol. Soc. 2011, 137, 553–597. [Google Scholar] [CrossRef]
- Berrisford, P.; Dee, D.; Poli, P.; Brugge, R.; Fielding, K.; Fuentes, M.; Kallberg, P.; Kobayashi, S.; Uppala, S.; Simmons, A. The ERA-Interim Archive, version 2.0; ERA Report Series; ECMWF Publications: Reading, UK, 2011. [Google Scholar]
- Bishop, S.M.; Yarham, S.I.; Navapurkar, V.U.; Menon, D.K.; Ercole, A. Multifractal analysis of hemodynamic behavior: Intraoperative instability and its pharmacological manipulation. Anesthesilogy 2012, 117, 810–821. [Google Scholar] [CrossRef] [PubMed]
- Ihlen, E.A.F. Introduction to multifractal detrended fluctuation analysis in Matlab. Front. Physiol. 2012, 3, 141. [Google Scholar] [CrossRef] [PubMed]
- Shimizu, Y.; Thurner, K.; Ehrenberger, K. Multifractal spectra as a measure of complexity in human posture. Fractals 2002, 10, 103–116. [Google Scholar] [CrossRef]
- Burgueno, A.; Lana, X.; Serra, C.; Martinez, M.D. Daily extreme temperature multifractals in Catalonia (NE Spain). Phys. Lett. A 2014, 378, 874–885. [Google Scholar] [CrossRef]
- Bountas, N.; Boboti, N.; Feloni, E.; Zeikos, L.; Markonis, Y.; Tegos, A.; Mamassis, N.; Koutsoyiannis, D. Temperature variability over Greece: Links between space and time. In Proceedings of the 5th EGU Leonardo Conference, Kos Island, Greece, 17–19 October 2013. [Google Scholar]
- Stathopoulos, V.; Fotiadi, A.; Houssos, E.E.; Hatzianastassiou, N.; Vardavas, I. Day to Day Variability of Air Temperature over Greece for the Period 1957–2002. In Advances in Meteorology, Climatology and Atmospheric Physics; Springer Atmospheric Sciences; Springer: erlin/Heidelberg, Germany, 2012; pp. 737–742. [Google Scholar]
- Metaxas, D.A. The interannual variability of the Etesian frequency as a response of atmospheric circulation anomalies. Bull Hell Meteorol. Soc. 1977, 2, 30–40. [Google Scholar]
Station | Nearest Point | α0 | Spectral Width | Asymmetry Parameter | |||
---|---|---|---|---|---|---|---|
Obs | ERA | Obs | ERA | Obs | ERA | ||
Alexandroupoli | 40.50° N, 26.25° E | 0.685 | 0.714 | 0.545 | 0.600 | 0.180 | 0.177 |
Andravida | 38.25° N, 21.00° E | 0.720 | 0.719 | 0.664 | 0.502 | 0.496 | 0.291 |
Elefsina | 38.25° N, 23.25° E | 0.708 | 0.705 | 0.629 | 0.441 | 0.416 | 0.086 |
Hellinikon | 38.25° N, 24.00° E | 0.719 | 0.725 | 0.659 | 0.532 | 0.399 | 0.344 |
Herakleio | 35.25° N, 25.50° E | 0.712 | 0.744 | 0.458 | 0.484 | 0.375 | 0.362 |
Kastoria | 40.50° N, 21.00° E | 0.713 | 0.675 | 0.479 | 0.421 | 0.038 | 0.252 |
Kerkira | 39.75° N, 20.25° E | 0.712 | 0.690 | 0.447 | 0.442 | 0.224 | 0.272 |
Kithira | 36.00° N, 23.25° E | 0.688 | 0.741 | 0.388 | 0.498 | 0.497 | 0.384 |
Kos | 36.75° N, 27.00° E | 0.747 | 0.737 | 0.511 | 0.549 | 0.037 | 0.270 |
Lamia | 39.00° N, 22.50° E | 0.718 | 0.689 | 0.500 | 0.446 | 0.478 | 0.066 |
Larisa | 39.75° N, 22.50° E | 0.684 | 0.693 | 0.659 | 0.466 | 0.685 | 0.105 |
Limnos | 39.75° N, 25.50° E | 0.725 | 0.724 | 0.566 | 0.620 | 0.255 | 0.218 |
Methoni | 36.75° N, 21.75° E | 0.734 | 0.737 | 0.548 | 0.497 | 0.396 | 0.283 |
Milos | 36.75° N, 24.75° E | 0.696 | 0.744 | 0.470 | 0.536 | 0.214 | 0.340 |
Mitilini | 39.00° N, 26.25° E | 0.715 | 0.717 | 0.532 | 0.580 | 0.269 | 0.259 |
Naxos | 36.75° N, 25.50° E | 0.775 | 0.744 | 0.677 | 0.553 | 0.305 | 0.297 |
Preveza | 39.00° N, 21.00° E | 0.720 | 0.695 | 0.727 | 0.426 | 0.577 | 0.087 |
Rodos | 36.00° N, 27.75° E | 0.730 | 0.756 | 0.437 | 0.523 | 0.097 | 0.161 |
Skiros | 39.00° N, 24.75° E | 0.703 | 0.731 | 0.544 | 0.615 | 0.409 | 0.271 |
Souda | 35.25° N, 24.00° E | 0.691 | 0.745 | 0.688 | 0.490 | 0.287 | 0.399 |
Thessaloniki | 40.50° N, 23.25° E | 0.717 | 0.702 | 0.463 | 0.521 | 0.299 | 0.377 |
Tripoli | 37.50° N, 22.50° E | 0.734 | 0.701 | 0.380 | 0.380 | 0.317 | −0.029 |
Truncation Type | Asymmetry Parameter |
---|---|
LL | 0.288–0.450 |
L | 0.033–0.698 |
S | 0.029–0.341 |
R | −0.087–0.016 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Philippopoulos, K.; Kalamaras, N.; Tzanis, C.G.; Deligiorgi, D.; Koutsogiannis, I. Multifractal Detrended Fluctuation Analysis of Temperature Reanalysis Data over Greece. Atmosphere 2019, 10, 336. https://doi.org/10.3390/atmos10060336
Philippopoulos K, Kalamaras N, Tzanis CG, Deligiorgi D, Koutsogiannis I. Multifractal Detrended Fluctuation Analysis of Temperature Reanalysis Data over Greece. Atmosphere. 2019; 10(6):336. https://doi.org/10.3390/atmos10060336
Chicago/Turabian StylePhilippopoulos, Kostas, Nikolaos Kalamaras, Chris G. Tzanis, Despina Deligiorgi, and Ioannis Koutsogiannis. 2019. "Multifractal Detrended Fluctuation Analysis of Temperature Reanalysis Data over Greece" Atmosphere 10, no. 6: 336. https://doi.org/10.3390/atmos10060336
APA StylePhilippopoulos, K., Kalamaras, N., Tzanis, C. G., Deligiorgi, D., & Koutsogiannis, I. (2019). Multifractal Detrended Fluctuation Analysis of Temperature Reanalysis Data over Greece. Atmosphere, 10(6), 336. https://doi.org/10.3390/atmos10060336