Black Carbon and Particulate Matter Concentrations in Eastern Mediterranean Urban Conditions: An Assessment Based on Integrated Stationary and Mobile Observations
Abstract
:1. Introduction
2. Materials and Methods
2.1. Country and City Descriptions
2.2. Aerosol Measurements
2.2.1. Stationary Aerosol Measurement Campaigns
2.2.2. Mobile Aerosol Measurement Campaigns—Driving/Walking/Standing
2.2.3. Portable Aerosol Instruments
2.3. Data Handling and Harmony
3. Results
3.1. Average Concentrations at the Reference Sites—Urban Background
3.1.1. Submicron Aerosols
3.1.2. Super-Micron Aerosols
3.2. Remote Area (Beren) Outside Amman and Zarqa
3.2.1. Off-Road Conditions in a Remote Area
3.2.2. On-Road Conditions in a Remote Area
3.3. Exposure as an Urban Pedestrian
3.3.1. Educational Campus and Its Surroundings
3.3.2. Leisure Time—Amman and Zarqa City Centers
3.4. In-Vehicle Exposure—Driving on Main Roads
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Fenger, J. Urban air quality. Atmos. Environ. 1999, 33, 4877–4900. [Google Scholar] [CrossRef]
- Kulmala, M. Build a global Earth observatory. Nature 2018, 553, 21–23. [Google Scholar] [CrossRef] [PubMed]
- Klob, C.E.; Herndon, S.C.; McManus, J.B.; Shorter, J.H.; Zahniser, M.S.; Nelson, D.D.; Jayne, J.T.; Canagaratna, M.R.; Worsnop, D.R. Mobile laboratory with rapid response instruments for real-time measurements of urban and regional trace gas and particulate distributions and emission source characteristics. Environ. Sci. Technol. 2004, 38, 5694–5703. [Google Scholar] [CrossRef]
- Simon, M.C.; Hudda, N.; Naumova, E.N.; Levy, J.I.; Brugge, D.; Durant, J.L. Comparisons of traffic-related ultrafine particle number concentrations measured in two urban areas by central, residential, and mobile monitoring. Atmos. Environ. 2017, 169, 113–127. [Google Scholar] [CrossRef] [PubMed]
- Hsu, C.Y.; Lin, M.Y.; Chiang, H.C.; Chen, M.J.; Lin, T.Y.; Chen, Y.C. Using a mobile measurement to characterize number, surface area, and mass concentrations of ambient fine particles with spatial variability during and after a PM Event. Aerosol Air Qual. Res. 2016, 16, 1416–1426. [Google Scholar] [CrossRef]
- Kim, K.H.; Woo, D.; Lee, S.-B.; Bae, G.-N. On-road measurements of ultrafine particles and associated air pollutants in a densely populated area of Seoul, Korea. Aerosol Air Qual. Res. 2015, 15, 142–153. [Google Scholar] [CrossRef]
- Bukowiecki, N.; Dommen, J.; Prévôt, A.S.H.; Richter, R.; Weingartner, E.; Baltensperger, U. A mobile pollutant measurement laboratory measuring gas phase and aerosol ambient concentrations with high spatial and temporal resolution. Atmos. Environ. 2002, 36, 5569–5579. [Google Scholar] [CrossRef]
- Etyemezian, V.; Kuhns, H.; Nikolich, G. Precision and repeatability of the TRAKER vehicle-based paved road dust emission measurement. Atmos. Environ. 2006, 40, 2953–2958. [Google Scholar] [CrossRef]
- Etyemezian, V.; Kuhns, H.; Gillies, J.; Chow, J.; Hendrickson, K.; McGown, M.; Pitchford, M. Vehicle-based road dust emissions measurement (Ш): Effect of speed, traffic volume, location, and season on PM10 road dust emissions in the Treasure Valley. Atmos. Environ. 2003, 37, 4583–4593. [Google Scholar] [CrossRef]
- Etyemezian, V.; Kuhns, H.; Gillies, J.; Green, M.; Pitchford, M.; Watson, J. Vehicle-based road dust emissions measurements: I—Methods and calibration. Atmos. Environ. 2003, 37, 4559–4571. [Google Scholar] [CrossRef]
- Kuhns, H.; Etyemezian, V.; Green, M.; Hendrickson, K.; McGrown, M.; Barton, K.; Pitchford, M. Vehicle based road dust emissions measurements—Part II: Effect of precipitation, wintertime road sanding, and street sweepers on inferred PM10 emission potentials from paved and unpaved roads. Atmos. Environ. 2003, 37, 4573–4582. [Google Scholar] [CrossRef]
- Kuhns, H.; Etyemezian, V.; Landwehr, D.; MacDougall, C.; Pitchford, M.; Green, M. Testing re-entrained aerosol kinetic emissions from roads (TRAKER): A new approach to infer silt loading on roadways. Atmos. Environ. 2001, 35, 2815–2825. [Google Scholar] [CrossRef]
- Pirjola, L.; Parviainen, H.; Hussein, T.; Valli, A.; Hameri, K.; Aalto, P.; Virtanen, A.; Keskinen, J.; Pakkanen, T.; Makela, J.; et al. Sniffer—A novel tool for chasing vehicles and measuring traffic pollutants. Atmos. Environ. 2004, 38, 3625–3635. [Google Scholar] [CrossRef]
- Pirjola, I.; Paasonen, P.; Pfeiffer, D.; Hussein, T.; Hameri, K.; Koskentalo, T.; Virtanen, A.; Ronkko, T.; Keskinen, J.; Pakkanen, T.; et al. Dispersion of particles and trace gases nearby a city highway: Mobile laboratory measurements in Finland. Atmos. Environ. 2006, 40, 867–879. [Google Scholar] [CrossRef]
- Pirjola, L.; Kupiainen, K.J.; Perhoniemi, P.; Tervahattu, H.; Vesala, H. Nonexhaust emission measurement system of the mobile laboratory SNIFFER. Atmos. Environ. 2009, 43, 4703–4713. [Google Scholar] [CrossRef]
- Pirjola, L.; Lähde, T.; Niemi, J.; Kousa, A.; Rönkkö, T.; Karjalainen, P.; Keskinen, J.; Frey, A.; Hillamo, R. Spatial and temporal characterization of traffic emissions in urban microenvironments with a mobile laboratory. Atmos. Environ. 2012, 63, 156–167. [Google Scholar] [CrossRef]
- Kupiainen, K.; Pirjola, L. Vehicle non-exhaust emissions from the tyre-road interface e effect of stud properties and traction sanding. Atmos. Environ. 2011, 45, 4141–4146. [Google Scholar] [CrossRef]
- Lähde, T.; Niemi, J.V.; Kousa, A.; Rönkkö, T.; Karjalainen, P.; Keskinen, J.; Frey, A.; Hillamo, R.; Pirjola, L. Mobile particle and NOx emission characterization at helsinki downtown: Comparison of different traffic flow areas. Aerosol Air Qual. Res. 2014, 14, 1372–1382. [Google Scholar]
- Hussein, T.; Johansson, C.; Karlsson, H.; Hansson, H.C. Factors affecting nontailpipe aerosol particle missions from paved roads: On-road measurements in Stockholm, Sweden. Atmos. Environ. 2008, 42, 688–702. [Google Scholar] [CrossRef]
- Pirjola, L.; Johansson, C.; Kupiainen, K.; Stojiljkovic, A.; Karlsson, H.; Hussein, T. Road dust emissions from paved roads measured using different mobile systems. J. Air Waste Manag. 2010, 60, 1422–1433. [Google Scholar] [CrossRef]
- Hagemann, R.; Corsmeier, U.; Kottmeier, C.; Rinke, R.; Wieser, A.; Vogel, B. Spatial variability of particle number concentrations and NOx in the Karlsruhe (Germany) area obtained with the mobile laboratory ‘AERO-TRAM’. Atmos. Environ. 2014, 94, 341–352. [Google Scholar] [CrossRef]
- Castellini, S.; Moroni, B.; Cappelletti, D. PMetro: Measurement of urban aerosols on a mobile platform. Measurement 2014, 49, 99–106. [Google Scholar] [CrossRef]
- Hussein, T.; Boor, B.E.; Dos Santos, V.N.; Kangasluoma, J.; Petäjä, T.; Lihavainen, H. Mobile aerosol measurement in the eastern Mediterranean—A utilization of portable instruments. Aerosol Air Qual. Res. 2017, 17, 1775–1786. [Google Scholar] [CrossRef]
- Xu, J.Y.; Jiang, H.; Zhao, H.R.; Stephens, B. Mobile monitoring of personal NOx exposures during scripted daily activities in Chicago, IL. Aerosol Air Qual. Res. 2017, 17, 1999–2009. [Google Scholar] [CrossRef]
- Targino, A.C.; Gibson, M.D.; Krecl, P.; Rodrigues, M.V.C.; dos Santos, M.M.; de Paula Correa, M. Hotspots of black carbon and PM2.5 in an urban area and relationships to traffic characteristics. Environ. Pollut. 2016, 218, 475–486. [Google Scholar] [CrossRef] [PubMed]
- Bossche, V.J.; Peter, J.; Verwaeren, J.; Botteldooren, D.; Theunis, J.; De Baets, B. Mobile monitoring for mapping spatial variation in urban air quality: Development and validation of a methodology based on an extensive dataset. Atmos. Environ. 2015, 105, 148–161. [Google Scholar] [CrossRef] [Green Version]
- Yang, F.; Kaul, D.; Wong, K.; Westerdahl, D.; Sun, L.; Ho, K.; Tian, L.; Brimblecombe, P.; Ning, Z. Heterogeneity of passenger exposure to air pollutants in public transport microenvironments. Atmos. Environ. 2015, 109, 42–51. [Google Scholar] [CrossRef] [Green Version]
- Ruths, M.; von Bismarck-Osten, C.; Weber, C. Measuring and modelling the local-scale spatio-temporal variation of urban particle number size distributions and black carbon. Atmos. Environ. 2014, 96, 37–49. [Google Scholar] [CrossRef]
- Wang, Y.; Xing, Z.; Zhao, S.; Zheng, M.; Mu, C.; Du, K. Are emissions of black carbon from gasoline vehicles overestimated? Real-time, in situ measurement of black carbon emission factors. Sci. Total Environ. 2016, 547, 422–428. [Google Scholar] [CrossRef] [PubMed]
- Peters, J.; Theunis, J.; Van Poppel, M.; Berghmans, P. Monitoring PM10 and ultrafine particles in urban environments using mobile measurements. Aerosol Air Qual. Res. 2013, 13, 509–522. [Google Scholar] [CrossRef]
- Ramanathan, N.; Lukac, M.; Ahmed, T.; Kar, A.; Siva, P.; Honles, T.; Leong, I.; Rehman, I.H.; Schauer, J.; Ramanathan, V. A cellphone based system for global monitoring of black carbon. Atmos. Environ. 2011, 45, 4481–4487. [Google Scholar] [CrossRef]
- MegaSense. Available online: https://www.helsinki.fi/en/researchgroups/sensing-and-analytics-of-air-quality (accessed on 7 June 2019).
- Hussein, T.; Juwhari, H.; Al Kuisi, M.; Alkattan, H.; Lahlouh, B.; Al-Hunaiti, A. Accumulation and coarse mode aerosol concentrations and carbonaceous contents in the urban background atmosphere in Amman—Jordan. Arab. J. GeoSci. 2018, 11, 617. [Google Scholar] [CrossRef]
- Hussein, T.; Halayka, M.; Abu Al-Ruz, R.; Abdullah, H.; Mølgaard, B.; Petäjä, T. Fine particle number concentrations in Amman and Zarqa during spring 2014. Jordan J. Phys. 2016, 9, 31–46. [Google Scholar]
- Hussein, T.; Rasha, A.; Tuukka, P.; Heikki, J.; Arafah, D.; Kaarle, H.; Markku, K. Local air pollution versus short–range transported dust episodes: A comparative study for submicron particle number concentration. Aerosol Air Qual. Res. 2011, 11, 109–119. [Google Scholar] [CrossRef]
- Hussein, T.; Betar, A. Size-fractionated number and mass concentrations in the urban background atmosphere during spring 2014 in Amman—Jordan. Jordan J. Phys. 2017, 10, 51–60. [Google Scholar]
- Lihavainen, H.; Alghamdi, M.A.; Hyvärinen, A.; Hussein, T.; Neitola, K.; Khoder, M.; Abdelmaksoud, A.S.; Al-Jeelani, H.; Shabbaj, I.I.; Almehmadi, F.M. Aerosol optical properties at rural background area in Western Saudi Arabia. Atmos. Environ. 2017, 197, 370–378. [Google Scholar] [CrossRef]
- Moustafa, M.; Mohamed, A.; Ahmed, A.-R.; Nazmy, H. Mass size distributions of elemental aerosols in industrial area. J. Adv. Res. 2015, 6, 827–832. [Google Scholar] [CrossRef] [PubMed]
- Munir, S.; Habeebullah, T.M.; Seroji, A.R.; Gabr, S.S.; Mohammed, A.M.F.; Abu Saud, W.; Abdou, A.E.A.; Awad, A.H.; Gabr, S.S.; Mohammed, A.M.F.; et al. Modelling particulate matter concentrations in Makkah, applying a statistical modelling approach. Aerosol Air Qual. Res. 2013, 13, 901–910. [Google Scholar] [CrossRef]
- Munir, S.; Habeebullah, T.M.; Seroji, A.R.; Gabr, S.S.; Mohammed, A.M.F.; Morsy, E.A. Quantifying temporal trends of atmospheric pollutants in Makkah (1997–2012). Atmos. Environ. 2013, 77, 647–655. [Google Scholar] [CrossRef]
- Waked, A.; Seigneur, C.; Couvidat, F.; Kim, Y.; Sartelet, K.; Afif, C.; Borbon, A.; Formenti, P.; Sauvage, S. Modeling air pollution in Lebanon: Evaluation at a suburban site in Beirut during summer. Atmos. Chem. Phys. 2013, 13, 5873–5886. [Google Scholar] [CrossRef]
- Tadros, M.T.Y.; Madkour, M.; El-Metwally, M. Size distribution of aerosol particles: Comparison between agricultural and industrial areas in Egypt. Renew. Energy 1999, 17, 339–354. [Google Scholar] [CrossRef]
- Clifford, S.; Mazaheri, M.; Salimi, F.; Ezz, W.N.; Yeganeh, B.; Low-Choy, S.; Walker, K.; Mengersen, K.; Marks, G.B.; Morawska, L. Effects of exposure to ambient ultrafine particles on respiratory health and systemic inflammation in children. Environ. Int. 2018, 114, 167–180. [Google Scholar] [CrossRef] [PubMed]
- Tobías, A.; Rivas, I.; Reche, C.; Alastuey, A.; Rodríguez, S.; Fernández-Camacho, R.; Sánchez de la Campa, A.M.; de la Rosa, J.; Sunyer, J.; Querol, X. Short-term effects of ultrafine particles on daily mortality by primary vehicle exhaust versus secondary origin in three Spanish cities. Environ. Int. 2018, 111, 144–151. [Google Scholar] [CrossRef] [PubMed]
- Chen, R.; Hu, B.; Liu, Y.; Xu, J.; Yang, G.; Xu, D.; Chen, C. Beyond PM2.5: The role of ultrafine particles on adverse health effects of air pollution. Biochim. Biophys. Acta—Gen. Subj. 2016, 1860, 2844–2855. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Chancellor, G.; Evenstad, J.; Farnsworth, J.; Hase, A.; Olson, G.; Sreenath, A.; Agarwal, J. A novel optical instrument for estimating size segregated aerosol mass concentration in real time. Aerosol Sci. Technol. 2009, 43, 939–950. [Google Scholar] [CrossRef]
- Maricq, M.M. Monitoring Motor Vehicle PM Emissions: An Evaluation of Three Portable Low-Cost Aerosol Instruments. Aerosol Sci. Technol. 2013, 47, 564–573. [Google Scholar] [CrossRef] [Green Version]
- Chung, A.; Chang, D.P.Y.; Kleeman, M.J.; Perry, K.; Cahill, T.A.; Dutcher, D.; McDougal, E.M.; Stroud, K. Comparison of real-time instruments used to monitor airborne particulate matter. J. Air Waste Manag. Assoc. 2001, 51, 109–120. [Google Scholar] [CrossRef] [PubMed]
- Nyarku, M.; Mazaheri, M.; Jayaratne, R.; Dunbabin, M.; Rahman, M.M.; Uhde, E.; Morawska, L. Mobile phones as monitors of personal exposure to air pollution: Is this the future? PLoS ONE 2018, 13, e0193150. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Y.H.; Lin, M.H. Real-time performance of the micro-aeth AE51 and the effects of aerosol loading on its measurement results at a traffic site. Aerosol Air Qual. Res. 2013, 13, 1853–1863. [Google Scholar] [CrossRef]
- Cai, J.; Yan, B.; Ross, J.; Zhang, D.; Kinney, P.L.; Perzanowski, M.S.; Jung, K.; Miller, R.; Chillrud, S.N. Validation of MicroAeth® as a black carbon monitor for fixed-site measurement and optimization for personal exposure characterization. Aerosol Air Qual. Res. 2014, 14, 1–9. [Google Scholar] [CrossRef]
- Hämeri, K.; Koponen, I.K.; Aalto, P.P.; Kulmala, M. The particle detection efficiency of the TSI3007 condensation particle counter. Aerosol Sci. 2002, 33, 1463–1469. [Google Scholar] [CrossRef]
- Rahman, M.M.; Mazaheri, M.; Clifford, S.; Morawska, L. Estimate of main local sources to ambient ultrafine particle number concentrations in an urban area. Atmos. Res. 2017, 194, 178–189. [Google Scholar] [CrossRef] [Green Version]
- Goel, A.; Kumar, P. A review of fundamental drivers governing the emissions, dispersion and exposure to vehicle-emitted nanoparticles at signalised traffic intersections. Atmos. Environ. 2014, 97, 316–331. [Google Scholar] [CrossRef] [Green Version]
- Hussein, T.; Mølgaard, B.; Hannuniemi, H.; Martikainen, J.; Järvi, L.; Wegner, T.; Ripamonti, G.; Weber, S.; Vesala, T.; Hämeri, K. Fingerprints of the urban particle number size distribution in Helsinki, Finland: Local versus regional characteristics. Boreal Environ. Res. 2014, 19, 1–20. [Google Scholar]
- Padro-Martinez, L.T.; Patton, A.P.; Trull, J.B.; Zamore, W.; Brugge, D.; Durant, J.L. Mobile monitoring of particle number concentration and other traffic-related air pollutants in a near-highway neighbourhood over the course of a year. Atmos. Environ. 2012, 61, 253–264. [Google Scholar] [CrossRef] [PubMed]
- Hussein, T.; Puustinen, A.; Aalto, P.P.; Mäkelä, J.M.; Hämeri, K.; Kulmala, M. Urban aerosol number size distributions. Atmos. Chem. Phys. 2004, 4, 391–411. [Google Scholar] [CrossRef] [Green Version]
- Krecl, P.; Johansson, C.; Créso Targino, A.; Ström, J.; Burman, L. Trends in black carbon and sizeresolved particle number concentrations and veihicle emission factors under realworld conditions. Atmos. Environ. 2017, 165, 155–168. [Google Scholar] [CrossRef]
- Hussein, T.; Alghamdi, M.A.; Khoder, M.; AbdelMaksoud, A.S.; Al-Jeelani, H.; Goknil, M.K.; Shabbaj, I.I.; Almehmadi, F.M.; Hyvärinen, A.; Lihavainen, H.; et al. Particulate matter and number concentrations of particles larger than 0.25 µm in the urban atmosphere of Jeddah, Saudi Arabia. Aerosol Air Qual. Res. 2014, 14, 1383–1391. [Google Scholar] [CrossRef]
- Backman, J.; Rizzo, L.V.; Hakala, J.; Nieminen, T.; Manninen, H.E.; Morais, F.; Aalto, P.P.; Siivola, E.; Carbone, S.; Hillamo, R.; et al. On the diurnal cycle of urban aerosols, black carbon and the occurrence of new particle formation events in springtime São Paulo, Brazil. Atmos. Chem. Phys. 2012, 12, 11733–11751. [Google Scholar] [CrossRef]
- Chang, S.C.; Chou, C.C.K.; Chan, C.C.; Lee, C.T. Temporal characteristics from continuous measurements of PM2.5 and speciation at the taipei aerosol supersite from 2002 to 2008. Atmos. Environ. 2010, 44, 1088–1096. [Google Scholar] [CrossRef]
- Yu, T.Y. Characterization of ambient PM2.5 concentrations. Atmos. Environ. 2010, 44, 2902–2912. [Google Scholar] [CrossRef]
- Wu, Z.; Hu, M.; Lin, P.; Liu, S.; Wehner, B.; Wiedensohler, A. Particle number size distribution in the urban atmosphere of Beijing, China. Atmos. Environ. 2008, 42, 7967–7980. [Google Scholar] [CrossRef]
- Olivares, G.; Johansson, C.; Strom, J.; Hasson, H.C. The role of ambient temperature for particle number concentrations in a street canyon. Atmos. Environ. 2007, 41, 2145–2155. [Google Scholar] [CrossRef]
- Wehner, B.; Wiedensohler, A. Long term measurements of submicrometer urban aerosols: Statistical analysis for correlations with meteorological conditions and trace gases. Atmos. Chem. Phys. 2003, 3, 867–879. [Google Scholar] [CrossRef]
- Wehner, B.; Wiedensohler, A.; Tuch, T.M.; Wu, Z.J.; Hu, M.; Slanina, J.; Kiang, C.S. Variability of the aerosol number size distribution in Beijing, China: New particle formation, dust storms, and high continental background. Geophys. Res. Lett. 2004, 31, L22108. [Google Scholar] [CrossRef]
- Mølgaard, B.; Birmili, W.; Clifford, S.; Massling, A.; Eleftheriadis, K.; Norman, M.; Vratolis, S.; Wehner, B.; Corander, J.; Hämeri, K.; et al. Evaluation of a statistical forecast model for size-fractionated urban particle number concentrations using data from five European cities. J. Aerosol Sci. 2013, 66, 96–110. [Google Scholar] [CrossRef]
- Ragettli, M.S.; Corradi, E.; Braun-Fahrländer, C.; Schindler, C.; de Nazelle, A.; Jerrett, M.; Ducret-Stich, R.E.; Künzli, N.; Phuleria, H.C. Commuter exposure to ultrafine particles in different urban locations, transportation modes and routes. Atmos. Environ. 2013, 77, 376–384. [Google Scholar] [CrossRef]
- Velasco, E.; Tan, S.H. Particles exposure while sitting at bus stops of hot and humid Singapore. Atmos. Environ. 2016, 142, 251–263. [Google Scholar] [CrossRef]
- Cheng, Y.H.; Chang, H.P.; Hsieh, C.J. Short-term exposure to PM10, PM2.5, ultrafine particles and CO2 for passengers at an intercity bus terminal. Atmos. Environ. 2011, 45, 2034–2042. [Google Scholar] [CrossRef]
- Hess, D.B.; Ray, P.D.; Stinson, A.E.; Park, J. Determinants of exposure to fine particulate matter (PM2.5) for waiting passengers at bus stops. Atmos. Environ. 2010, 44, 5174–5182. [Google Scholar] [CrossRef]
- Hamdi, M.R.; Bdour, A.; Tarawneh, Z. Diesel quality in Jordan: Impacts of vehicular and industrial emissions on urban air quality. Environ. Eng. Sci. 2008, 25, 1333–1343. [Google Scholar] [CrossRef]
- Hudda, N.; Fruin, S.A. Carbon dioxide accumulation inside vehicles: The effect of ventilation and driving conditions. Sci. Total Environ. 2018, 610–611, 1448–1456. [Google Scholar] [CrossRef] [PubMed]
- Leavey, A.; Reed, N.; Patel, S.; Bradley, K.; Kulkarni, P.; Biswas, P. Comparing on-road Real-time Simultaneous in-cabin and Outdoor Particulate and Gaseous Concentrations for a Range of Ventilation Scenarios. Atmos. Environ. 2017, 166, 130–141. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Lee, E.S.; Zhou, B.; Liu, J.; Zhu, Y. Effects of the window openings on the micro-environmental condition in a school bus. Atmos. Environ. 2017, 167, 434–443. [Google Scholar] [CrossRef]
- Alameddine, I.; Abi Esber, L.; Bou Zeid, E.; Hatzopoulou, M.; El-Fadel, M. Operational and environmental determinants of in-vehicle CO and PM2.5 exposure. Sci. Total Environ. 2016, 551–552, 42–50. [Google Scholar] [CrossRef] [PubMed]
- Ding, H.; Zhang, Y.; Sun, H.; Feng, L. Analysis of PM2.5 distribution and transfer characteristics in a car cabin. Energy Build. 2016, 127, 252–258. [Google Scholar] [CrossRef]
- Lee, E.S.; Stenstrom, M.K.; Zhu, Y. Ultrafine particle infiltration into passenger vehicles. Part I: Experimental evidence. Transp. Res. D 2015, 38, 156–165. [Google Scholar] [CrossRef] [Green Version]
- Lee, E.S.; Stenstrom, M.K.; Zhu, Y. Ultrafine particle infiltration into passenger vehicles. II: Model analysis. Transp. Res. D 2015, 38, 144–155. [Google Scholar] [CrossRef]
- Shu, S.; Yu, N.; Wang, Y.; Zhu, Y. Measuring and modeling air exchange rates inside taxi cabs in Los Angeles, California. Atmos. Environ. 2015, 122, 628–635. [Google Scholar] [CrossRef]
- Abi-Esber, L.; El-Fadel, M. Indoor to outdoor air quality associations with self pollution implications inside passenger car cabins. Atmos. Environ. 2013, 81, 450–463. [Google Scholar] [CrossRef]
- Bigazzi, A.Y.; Figliozzi, M.A. Impacts of freeway traffic conditions on in-vehicle exposure to ultrafine particulate matter. Atmos. Environ. 2012, 60, 495–503. [Google Scholar] [CrossRef]
- Hudda, N.; Eckel, S.P.; Knibbs, L.D.; Sioutas, C.; Delfino, R.J.; Fruin, S.A. Linking in-vehicle ultrafine particle exposures to on-road concentrations. Atmos. Environ. 2012, 59, 578–586. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Knibbs, L.D.; de Dear, R.J. Exposure to ultrafine particles and PM2.5 in four Sydney transport modes. Atmos. Environ. 2010, 44, 3224–3227. [Google Scholar] [CrossRef] [Green Version]
- Pattinson, W.; Longley, I.; Kingham, S. Using mobile monitoring to visualise diurnal variation of traffic pollutants across two near-highway neighbourhoods. Atmos. Environ. 2014, 94, 782–792. [Google Scholar] [CrossRef]
- Li, B.; Lei, X.N.; Xiu, G.L.; Gao, C.Y.; Gao, S.; Qian, N.S. Personal exposure to black carbon during commuting in peak and off-peak hours in Shanghai. Sci. Total Environ. 2015, 524–525, 237–245. [Google Scholar] [CrossRef] [PubMed]
- MacNaughton, P.; Melly, S.; Vallarino, J.; Adamkiewicz, G.; Spengler, J.D. Impact of 731 bicycle route type on exposure to traffic-related air pollution. Sci. Total Environ. 2014, 490, 37–43. [Google Scholar] [CrossRef] [PubMed]
- Kumar, P.; Rivas, I.; Sachdeva, L. Exposure of in-pram babies to airborne particles during morning drop-in and afternoon pick-up of school children. Environ. Pollut. 2017, 224, 407–420. [Google Scholar] [CrossRef]
- Okokon, E.O.; Yli-Tuomi, T.; Turunen, A.W.; Taimisto, P.; Pennanen, A.; Vouitsis, I.; Samaras, Z.; Voogt, M.; Keuken, M.; Lanki, T. Particulates and noise exposure during bicycle, bus and car commuting: A study in three European cities. Environ. Res. 2017, 154, 181–189. [Google Scholar] [CrossRef]
- Nazelle, A.; Fruin, S.; Westerdahl, D.; Mareinez, D.; Ripoll, A.; Kubesch, N.; Nieuwenhuijsen, M. A travel mode comparison of commuters’ exposures to air pollutants in Barcelona. Atmos. Environ. 2012, 59, 151–159. [Google Scholar] [CrossRef]
- Panis, I.L.; de Geus, B.; Vandenbulcke, G.; Willems, H.; Degraeuwe, B.; Bleux, N.; Mishra, V.; Thomas, I.; Meeusen, R. Exposure to particulate matter in traffic: A comparison of cyclists and car passengers. Atmos. Environ. 2010, 44, 2263–2270. [Google Scholar] [CrossRef]
- Dons, E.; Int Panis, I.L.; Poppel, M.V.; Theunis, J.; Wets, G. Personal exposure to Black Carbon in transport microenvironments. Atmos. Environ. 2012, 55, 392–398. [Google Scholar] [CrossRef]
- Quiros, D.C.; Lee, E.S.; Wang, R.; Zhu, Y. Ultrafine particle exposures while walking, cycling, and driving along an urban residential roadway. Atmos. Environ. 2013, 73, 185–194. [Google Scholar] [CrossRef]
- Ham, W.; Vijayan, A.; Schulte, N.; Herner, J.D. Commuter exposure to PM2.5, BC, and UFP in six common transport microenvironments in Sacramento, California. Atmos. Environ. 2017, 167, 335–345. [Google Scholar] [CrossRef]
- Boarnet, M.G.; Houston, D.; Edwards, R.; Princevac, M.; Ferguson, G.; Pan, H.; Bartolome, C. Fine particulate concentrations on sidewalks in five Southern California cities. Atmos. Environ. 2011, 45, 4025–4033. [Google Scholar] [CrossRef]
- Hankey, S.; Marshall, J.D. On-bicycle exposure to particulate air pollution: Particle number, black carbon, PM2.5, and particle size. Atmos. Environ. 2015, 122, 65–73. [Google Scholar] [CrossRef]
- Apte, J.S.; Kirchstetter, T.W.; Reich, A.H.; Deshpande, S.J.; Kaushik, G.; Chel, A.; Marshall, J.D.; Nazaroff, W.W. Concentrations of fine, ultrafine, and black carbon particles in auto-rickshaws in New Delhi, India. Atmos. Environ. 2011, 45, 4470–4480. [Google Scholar] [CrossRef]
- Goel, R.; Gani, S.; Guttikunda, S.K.; Wilson, D.; Tiwari, G. On-road PM2.5 pollution exposure in multiple transport microenvironments in Delhi. Atmos. Environ. 2015, 123, 129–138. [Google Scholar] [CrossRef]
- Qiu, Z.; Xu, X.; Song, J.; Luo, Y.; Zhao, R.; Zhou, B.X.W.; Li, X.; Hao, Y. Pedestrian exposure to traffic PM on different types of urban roads: A case study of Xi’an, China. Sustain. Cities Soc. 2017, 32, 475–485. [Google Scholar] [CrossRef]
- Qiu, Z.; Song, J.; Xu, X.; Luo, Y.; Zhao, R.; Zhou, W.; Xiang, B.; Hao, Y. Commuter exposure to particulate matter for different transportation modes in Xi’an, China. Atmos. Pollut. Res. 2017, 8, 940–948. [Google Scholar] [CrossRef]
- Huang, J.; Deng, F.; Wu, S.; Guo, X. Comparisons of personal exposure to PM2.5 and CO by different commuting modes in Beijing, China. Sci. Total Environ. 2012, 425, 52–59. [Google Scholar] [CrossRef]
- Betancourt, R.M.; Galvis, B.; Balachandran, S.; Ramos-Bonilla, J.P.; Sarmiento, O.L.; Gallo-Murcia, S.M.; Contreras, Y. Exposure to fine particulate, black carbon, and particle number concentration in transportation microenvironments. Atmos. Environ. 2017, 157, 135–145. [Google Scholar] [CrossRef]
- Odeh, I.; Hussein, T. Activity pattern of urban adult students in an Eastern Mediterranean Society. Int. J. Environ. Res. Public Health 2016, 13, E960. [Google Scholar] [CrossRef] [PubMed]
- Hussein, T.; Paasonen, P.; Kulmala, M. Activity pattern of a selected group of school occupants and their family members in Helsinki-Finland. Sci. Total Environ. 2012, 425, 289–292. [Google Scholar] [CrossRef] [PubMed]
- Knibbs, L.D.; Cole-Hunter, T.; Morawska, L. A review of commuter exposure to ultrafine particles and its health effects. Atmos. Environ. 2011, 45, 2611–2622. [Google Scholar] [CrossRef] [Green Version]
- Lim, S.; Dirks, K.N.; Salmond, J.A.; Xie, S. Determinants of spikes in ultrafine particle concentration whilst commuting by bus. Atmos. Environ. 2015, 112, 1–8. [Google Scholar] [CrossRef]
- Both, A.F.; Westerdahl, D.; Fruin, S.; Haryanto, B.; Marshall, J.D. Exposure to carbon monoxide, fine particle mass, and ultrafine particle number in Jakarta, Indonesia: Effect of commute mode. Sci. Total Environ. 2013, 443, 965–972. [Google Scholar] [CrossRef]
- Zhang, Q.; Fischer, H.J.; Weiss, R.E.; Zhu, Y. Ultrafine particle concentrations in and around idling school buses. Atmos. Environ. 2013, 69, 65–75. [Google Scholar] [CrossRef]
- Liu, L.J.S.; Phuleria, H.C.; Webber, W.; Davey, M.; Lawson, D.R.; Ireson, R.G.; Zielinska, B.; Ondov, J.M.; Weaver, C.S.; Lapin, C.A.; et al. Quantification of self pollution from two diesel school buses using three independent methods. Atmos. Environ. 2010, 44, 3422–3431. [Google Scholar] [Green Version]
- Zhang, Q.; Zhu, Y. Measurements of ultrafine particles and other vehicular pollutants inside school buses in South Texas. Atmos. Environ. 2010, 44, 253–261. [Google Scholar] [CrossRef]
- Knibbs, L.D.; de Dear, R.J.; Morawska, L. Effect of cabin ventilation rate on ultrafine particle exposure inside automobiles. Environ. Sci. Technol. 2010, 44, 3546–3551. [Google Scholar] [CrossRef]
- Costabile, F.; Alas, H.; Aufderheide, M.; Avino, P.; Amato, F.; Argentini, S.; Barnaba, F.; Berico, M.; Bernardoni, V.; Biondi, R.; et al. First results of the “Carbonaceous aerosol in Rome and Environs (CARE)” experiment: Beyond current standards for PM10. Atmosphere 2017, 8, 249. [Google Scholar] [CrossRef]
- Alas, H.D.; Weinhold, K.; Costabile, F.; Di Ianni, A.; Müller, T.; Pfeifer, S.; Di Liberto, L.; Turner, J.R.; Wiedensohler, A. Methodology for high quality mobile measurement with focus on black carbon and particle mass concentrations. Atmos. Meas. Tech. Disc. 2019. [Google Scholar] [CrossRef]
- Messier, K.P.; Chambliss, S.E.; Gani, S.; Alvarez, R.; Brauer, M.; Choi, J.J.; Hamburg, S.P.; Kerckhoffs, J.; La Franchi, B.; Lunden, M.M.; et al. Mapping air pollution with google street view cars: Efficient Approaches with mobile monitoring and land use regression. Environ. Sci. Technol. 2018, 52, 12563–12572. [Google Scholar] [CrossRef]
- Hankey, S.; Sforza, P.; Pierson, M. Using mobile monitoring to develop hourly empirical models of particulate air pollution in a rural Appalachian community. Environ. Sci. Technol. 2019, 53, 4305–4315. [Google Scholar] [CrossRef] [PubMed]
Type | Campaign | Date | Time Period | Distance | Location | City | Classification 1 |
---|---|---|---|---|---|---|---|
Stationary | Pre-campaign Ia | March 6–18 | continuous | - | JU campus 2 | Amman | UB |
Pre-campaign Ib | April 14–30 | continuous | - | JU campus 2 | Amman | UB | |
Pre-campaign II | May 12–18 | continuous | - | Ma’asom | Zarqa | UB | |
Parallel-campaign | May 29–June 4 | continuous | - | JU campus | Amman | UB | |
Mobile | Walking Ia | May 29 | 15:00–17:39 | ~7 km | JU campus | Amman | UB 3 + T 4 |
Walking Ib | June 1 | 17:29–18:45 | ~7 km | JU campus | Amman | UB 3 + T 4 | |
Walking Ic | June 1 | 11:21–13:03 | ~7 km | JU campus | Amman | UB 3 + T 4 | |
Walking II | May 29 | 21:45–00:18 | ~4 km | City center | Amman | U + T | |
Walking III | June 3 | 17:55–19:28 | ~5 km | City center | Zarqa | U + T | |
Driving Ia | May 29 | 21:11–21:44 | ~17 km | Main roads | Amman | U/SU + T | |
Driving Ib | May 30 | 00:19–00:36 | ~15 km | Main roads | Amman | U/SU + T | |
Driving IIa | June 1 | 19:45–20:21 | ~18 km | Main roads | Amman | U/SU + T | |
Driving IIb | June 1 | 21:21–21:14 | ~4 km | City center | Amman | U+T | |
Driving IIc | June 1 | 21:14–21:27 | ~11 km | Main roads | Amman | U/SU + T | |
Driving III | June 2 | 16:51–20:00 | ~67 km | Main roads | Amman/Zarqa | U/SU/R + T | |
Driving IV | June 4 | 11:01–11:52 | ~2.3 km | Repair shop | Amman | U + T | |
Remote Ia | May 30 | 00:36–00:51 | ~9 km | Beren | Amman/Zarqa | R | |
Remote Ia | May 30 | 01:14–01:24 | ~9 km | Beren | Amman/Zarqa | R | |
Standing | Remote Ib | May 30 | 00:52–01:13 | - | Beren | Amman + Zarqa | R |
Country | City | Mobile Setup | BC | |
---|---|---|---|---|
Nazelle et al. [90] | Spain | Barcelona | Walking, biking, car/bus | 6–17 |
Okokon et al. [89] | Greece | Thessaloniki | In-car 1 | 11 |
Okokon et al. [89] | Finland | Helsinki | Bike, bus, and car | 3–8 |
Dons et al. [92] | Belgium | Flanders | In train | 2.4 |
Biking/walking | 3.6 | |||
car/bus/metro | 6–7 | |||
Targino et al. [25] | Brazil | Mid-sized city | On-bike 2 | ~8 |
On-bike 3 | 6 | |||
Ham et al. [94] | USA | Sacramento, California | Car | 0.5 |
Bus | 0.95 | |||
Light-rail | 0.25 | |||
Train | 2.54 | |||
Bike | 0.71 | |||
Hankey and Marshall [96] | USA | Minneapolis, Minnesota | On-bike 4 | ~2.5 (0.7) |
MacNaughton et al. [87] | USA | Boston | Bike lanes 5 | 2.4 |
Bike paths 6 | 1.7 | |||
Background | 0.6 | |||
Apte et al. [97] | India | New Delhi | Auto-rickshaw 7 | 42 |
Auto-rickshaw 8 | 85 | |||
Li et al. [86] | China | Xuhui, Shanghai | Taxi | 8.6 |
Bus | 7.3 | |||
Subway | 9.4 | |||
Cycling | 6.6 | |||
Walking | 5.6 |
Country | City | Mobile Setup | UFP | Fine | |
---|---|---|---|---|---|
Nazelle et al. [90] | Spain | Barcelona | Walking, biking, car/bus | 51–120 | - |
Okokon et al. [89] | Greece | Thessaloniki | On-bus | - | 50 |
In-car 1 | - | - | |||
In-car 2 | - | 80 | |||
Okokon et al. [89] | Finland | Helsinki | Bike, bus, and car | - | 10–40 |
Kumar et al. [88] | UK | Surrey | Babies prams | - | up to 10 |
Ragettli et al. [68] | Switzerland | Basel | In-car | 32 | - |
On-bike | 23 | - | |||
Walking | 19 | - | |||
Public transportation | 14–19 | - | |||
Panis et al. [91] | Belgium | Brussels 3 | On-bike/in-car | - | ~30 |
Wallonia 4 | On-bike/in-car | - | ~12 | ||
Flanders 5 | On-bike/in-car | - | 10 | ||
Pattinson et al. [85] | N. Zealand | S. Auckland | On-bike | 5–40 | - |
Quiros et al. [93] | USA | S. Monica, California | Walking 6 | 12–28 | - |
Ham et al. [94] | USA | Sacramento, California | Car | 7.9 | - |
Bus | 13 | - | |||
Light-rail | 5.5 | - | |||
Train | 42 | - | |||
Bike | 22 | - | |||
Hankey and Marshall [96] | USA | Minneapolis Minnesota | On-bike 7 | - | ~3.3 (~1.7) |
Apte et al. [97] | India | New Delhi | Auto-rickshaw 8 | 280 | - |
Auto-rickshaw 9 | 650 | - |
Country | City | Mobile Setup | PM10 | PM2.5 | |
---|---|---|---|---|---|
Abi-Esber and El-Fadel [81] | Lebanon | Beirut | In-car 1 | - | 38–93 |
Nazelle et al. [90] | Spain | Barcelona | Walking, biking, car/bus | - | 21–35 |
Okokon et al. [89] | Greece | Thessaloniki | On-bus | 131 | 85 |
Okokon et al. [89] | Finland | Helsinki | Bike, bus, and car | 40 | 30 |
Kumar et al. [88] | UK | Surrey | Babies prams | ~40 | ~18 |
Panis et al. [91] | Belgium | Brussels 4 | On-bike/in-car | 62/35 | - |
Wallonia 5 | On-bike/in-car | 48/32 | - | ||
Flanders 6 | On-bike/in-car | 72/75 | - | ||
Pattinson et al. [85] | N. Zealand | Auckland | On-bike | 10–30 | - |
On-bike 9 | - | ~8.5 | |||
Quiros et al. [91] | USA | S. Monica, California | Walking 10 | - | 6–11 |
Ham et al. [94] | USA | Sacramento, California | Car | - | 7.1 |
Bus | - | 7.5 | |||
Light-rail | - | 5.7 | |||
Train | - | 32.5 | |||
Bike | - | 9.6 | |||
Boarnet et al. [95] | USA | Los Angeles | Commuters 11 | - | 20–70 |
Hankey and Marshall [96] | USA | Minneapolis, Minnesota | On-bike 12 | - | ~8.7 (8.3) |
Apte et al. [97] | India | New Delhi | Auto-rickshaw 15 | - | 190 |
Auto-rickshaw 16 | - | 300 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hussein, T.; Saleh, S.S.A.; dos Santos, V.N.; Abdullah, H.; Boor, B.E. Black Carbon and Particulate Matter Concentrations in Eastern Mediterranean Urban Conditions: An Assessment Based on Integrated Stationary and Mobile Observations. Atmosphere 2019, 10, 323. https://doi.org/10.3390/atmos10060323
Hussein T, Saleh SSA, dos Santos VN, Abdullah H, Boor BE. Black Carbon and Particulate Matter Concentrations in Eastern Mediterranean Urban Conditions: An Assessment Based on Integrated Stationary and Mobile Observations. Atmosphere. 2019; 10(6):323. https://doi.org/10.3390/atmos10060323
Chicago/Turabian StyleHussein, Tareq, Shatha Suleiman Ali Saleh, Vanessa N. dos Santos, Huthaifah Abdullah, and Brandon E. Boor. 2019. "Black Carbon and Particulate Matter Concentrations in Eastern Mediterranean Urban Conditions: An Assessment Based on Integrated Stationary and Mobile Observations" Atmosphere 10, no. 6: 323. https://doi.org/10.3390/atmos10060323
APA StyleHussein, T., Saleh, S. S. A., dos Santos, V. N., Abdullah, H., & Boor, B. E. (2019). Black Carbon and Particulate Matter Concentrations in Eastern Mediterranean Urban Conditions: An Assessment Based on Integrated Stationary and Mobile Observations. Atmosphere, 10(6), 323. https://doi.org/10.3390/atmos10060323