Customization and Validation of a Regional Climate Model Using Satellite Data Over East Africa
Abstract
:1. Introduction
- Evaluate the ability of the model to reproduce the observed inter-annual variability over the region;
- Investigate the ability of the model to reproduce the dominant modes of variability for both the Long and Short Rains.
2. Model and Experimental Setup, Data, and Methods
2.1. Model and Experimental Setup
2.2. Data
- Nino 3 index (https://www.esrl.noaa.gov/psd/data/correlation/nina3.anom.data): Several regions of the tropical Pacific Ocean have been chosen as being important for monitoring and identifying El Niño and La Niña. The Nino 3 index spans from 150 W to 90 W, and from 5 S to 5 N.
- Dipole Mode Index (DMI, http://www.jamstec.go.jp/aplinfo/sintexf/DATA/dmi.monthly.txt): The index is used to measure the strength of the gradient between the West and East Indian Ocean. It is obtained by calculating the difference between SST anomalies in the western (50 E to 70 E and 10 S to 10 N) and eastern (90 E to 11 E and 10 S to 0 S) equatorial Indian Ocean.
- The quasi-biennial oscillation (QBO, https://www.esrl.noaa.gov/psd/data/correlation/qbo.data): The QBO is a quasi-periodic oscillation of the equatorial 30 mb zonal wind between easterlies and westerlies in the tropical stratosphere. It propagates downwards at about 1 km per month until they are dissipated at the tropical tropopause.
- North Atlantic Oscillation (NAO, https://www.esrl.noaa.gov/psd/data/correlation/nao.data): The daily NAO index is constructed by projecting the daily (00Z) 500 mb height anomalies over the Northern Hemisphere onto the loading pattern of the NAO.
- Tropical North Atlantic (TNA, https://www.esrl.noaa.gov/psd/data/correlation/tna.data) Index: The index is calculated using sea surface temperatures (55 W–15 W, 5 N–25 N) in the eastern North Atlantic Ocean.
- Tropical South Atlantic (TSA, https://www.esrl.noaa.gov/psd/data/correlation/tsa.data) Index: The TSA is an indicator of the surface temperatures in the Gulf of Guinea. It is calculated using the SST box 30 W–10 E, 20 S–0 S.
- West Pacific (WP, https://www.esrl.noaa.gov/psd/data/correlation/wp.data) Index: The West Pacific index is obtained by calculating the gradient between the North Pacific and the East Pacific.
2.3. Methods of Analysis
3. Results and Discussion
3.1. Model Evaluation
3.1.1. Cumulus Schemes
3.1.2. Microphysics Schemes
3.2. Model Climatology and Inter-Annual Variability
3.3. Empirical Orthogonal Functional Analysis
3.3.1. Short Rains Season
3.3.2. Long-Rains Season
4. Summary and Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- East African Community. Agriculture and Rural Development Policy for the East African Community; East African Community: Arusha, Tanzania, 2006. [Google Scholar]
- Yang, W.; Seager, R.; Cane, M.A.; Lyon, B. The East African long rains in observations and models. J. Clim. 2014, 27, 7185–7202. [Google Scholar] [CrossRef]
- Lyon, B.; DeWitt, D.G. A recent and abrupt decline in the East African long rains. Geophys. Res. Lett. 2012, 39. [Google Scholar] [CrossRef] [Green Version]
- Williams, A.P.; Funk, C. A westward extension of the warm pool leads to a westward extension of the Walker circulation, drying eastern Africa. Clim. Dyn. 2011, 37, 2417–2435. [Google Scholar] [CrossRef] [Green Version]
- Hillier, D.; Dempsey, B. A Dangerous delay: The cost of late response to early warnings in the 2011 drought in the Horn of Africa. Oxfam Policy Pract. Agric. Food Land 2012, 12, 1–34. [Google Scholar]
- Robinson, S.; Nishimizu, M. Africa-Second Phase of the Lake Victoria Environmental Management Project; World Development Sources: Washington, DC, USA, 2015. [Google Scholar]
- Tenge, A.J.; Mvuma, A.N.; Baker, S.B.; Mongi, H.J.; Mwakijele, J.; Gabriel, M.C. Community Perception on Lake Victoria Basin Resources Degradation: Implications to Sustainable Management. J. Sustain. Dev. 2015, 8, 14. [Google Scholar] [CrossRef]
- Mutai, C.; Ward, M.; Colman, A. Towards the prediction of the East Africa short rains based on sea-surface temperature–atmosphere coupling. Int. J. Climatol. 1998, 18, 975–997. [Google Scholar] [CrossRef]
- Anyah, R.O.; Semazzi, F.H.; Xie, L. Simulated physical mechanisms associated with climate variability over Lake Victoria Basin in East Africa. Mon. Weather Rev. 2006, 134, 3588–3609. [Google Scholar] [CrossRef]
- Ogallo, L. Relationships between seasonal rainfall in East Africa and the Southern Oscillation. J. Climatol. 1988, 8, 31–43. [Google Scholar] [CrossRef]
- Nicholson, S.E.; Kim, J. The relationship of the El Nino-Southern oscillation to African rainfall. Int. J. Climatol. 1997, 17, 117–135. [Google Scholar] [CrossRef]
- Saji, N.; Goswami, B.N.; Vinayachandran, P.; Yamagata, T. A dipole mode in the tropical Indian Ocean. Nature 1999, 401, 360–363. [Google Scholar] [CrossRef]
- Birkett, C.; Murtugudde, R.; Allan, T. Indian Ocean climate event brings floods to East Africa’s lakes and the Sudd Marsh. Geophys. Res. Lett. 1999, 26, 1031–1034. [Google Scholar] [CrossRef]
- Camberlin, P.; Philippon, N. The East African March-May rainy season: Associated atmospheric dynamics and predictability over the 1968-97 period. J. Clim. 2002, 15, 1002–1019. [Google Scholar] [CrossRef]
- Ntale, H.K.; Gan, T.Y. East African rainfall anomaly patterns in association with El Nino/Southern Oscillation. J. Hydrol. Eng. 2004, 9, 257–268. [Google Scholar] [CrossRef]
- Indeje, M.; Semazzi, F.H.; Ogallo, L.J. ENSO signals in East African rainfall seasons. Int. J. Climatol. 2000, 20, 19–46. [Google Scholar] [CrossRef]
- Semazzi, H.; Cornforth, R.; Houghton-Carr, H.; Bain, C.; Anyah, R.; Roberts, R.; Xie, L.; Ogallo, L.; Waniha, P.; Githeko, A.; et al. HyVic Science Plan. Available online: http://climlab.meas.ncsu.edu/HYVIC/HYVIC\protect\discretionary{\char\hyphenchar\font}{}{}Science_Plan.pdf (accessed on 10 October 2018).
- Rowell, D.P.; Booth, B.B.; Nicholson, S.E.; Good, P. Reconciling past and future rainfall trends over east Africa. J. Clim. 2015, 28, 9768–9788. [Google Scholar] [CrossRef]
- Cook, K.H.; Vizy, E.K. Projected changes in East African rainy seasons. J. Clim. 2013, 26, 5931–5948. [Google Scholar] [CrossRef]
- Sun, L.; Semazzi, F.H.; Giorgi, F.; Ogallo, L. Application of the NCAR regional climate model to eastern Africa: 1. Simulation of the short rains of 1988. J. Geophys. Res. Atmos. 1999, 104, 6529–6548. [Google Scholar] [CrossRef] [Green Version]
- Davis, N.; Bowden, J.; Semazzi, F.; Xie, L.; Önol, B. Customization of RegCM3 regional climate model for eastern Africa and a tropical Indian Ocean domain. J. Clim. 2009, 22, 3595–3616. [Google Scholar] [CrossRef]
- Anyah, R.O.; Semazzi, F.H. Variability of East African rainfall based on multiyear RegCM3 simulations. Int. J. Climatol. 2007, 27, 357–371. [Google Scholar] [CrossRef]
- Segele, Z.T.; Leslie, L.M.; Lamb, P.J. Evaluation and adaptation of a regional climate model for the Horn of Africa: rainfall climatology and interannual variability. Int. J. Climatol. 2009, 29, 47–65. [Google Scholar] [CrossRef]
- Sylla, M.B.; Coppola, E.; Mariotti, L.; Giorgi, F.; Ruti, P.; DellAquila, A.; Bi, X. Multiyear simulation of the African climate using a regional climate model (RegCM3) with the high resolution ERA-interim reanalysis. Clim. Dyn. 2010, 35, 231–247. [Google Scholar] [CrossRef]
- Ogwang, B.A.; Chen, H.; Li, X.; Gao, C. Evaluation of the capability of RegCM4. 0 in simulating East African climate. Theor. Appl. Climatol. 2015, 124, 303–313. [Google Scholar] [CrossRef]
- Pohl, B.; Crétat, J.; Camberlin, P. Testing WRF capability in simulating the atmospheric water cycle over Equatorial East Africa. Clim. Dyn. 2011, 37, 1357–1379. [Google Scholar] [CrossRef]
- Argent, R.; Sun, X.; Semazzi, F.; Xie, L.; Liu, B. The development of a customization framework for the WRF Model over the Lake Victoria basin, Eastern Africa on seasonal timescales. Adv. Meteorol. 2015, 2015, 653473. [Google Scholar] [CrossRef]
- Sun, X.; Xie, L.; Semazzi, F.; Liu, B. Effect of lake surface temperature on the spatial distribution and intensity of the precipitation over the Lake Victoria basin. Mon. Weather Rev. 2015, 143, 1179–1192. [Google Scholar] [CrossRef]
- Abdelwares, M.; Haggag, M.; Wagdy, A.; Lelieveld, J. Customized framework of the WRF model for regional climate simulation over the Eastern NILE basin. Theor. Appl. Climatol. 2018, 134, 1135–1151. [Google Scholar] [CrossRef]
- Giorgi, F.; Coppola, E.; Solmon, F.; Mariotti, L.; Sylla, M.; Bi, X.; Elguindi, N.; Diro, G.; Nair, V.; Giuliani, G.; et al. RegCM4: Model description and preliminary tests over multiple CORDEX domains. Clim. Res. 2012, 2, 7–29. [Google Scholar] [CrossRef]
- Giorgi, F.; Anyah, R. The road towards RegCM4. Clim. Res. 2012, 52, 3–6. [Google Scholar] [CrossRef]
- Dickinson, E.; Henderson-Sellers, A.; Kennedy, J. Biosphere-Atmosphere Transfer Scheme (BATS) Version 1E as Coupled to the NCAR Community Climate Model; NCAR: Boulder, CO, USA, 1993. [Google Scholar]
- Holtslag, A.; De Bruijn, E.; Pan, H. A high resolution air mass transformation model for short-range weather forecasting. Mon. Weather Rev. 1990, 118, 1561–1575. [Google Scholar] [CrossRef]
- Kiehl, T.; Hack, J.; Bonan, B.; Boville, A.; Briegleb, P.; Williamson, L.; Rasch, J. Description of the NCAR Community Climate Model (CCM3); NCAR: Boulder, CO, USA, 1996. [Google Scholar]
- Emanuel, K.A. A scheme for representing cumulus convection in large-scale models. J. Atmos. Sci. 1991, 48, 2313–2329. [Google Scholar] [CrossRef]
- Grell, G.A. Prognostic evaluation of assumptions used by cumulus parameterizations. Mon. Weather Rev. 1993, 121, 764–787. [Google Scholar] [CrossRef]
- Pal, J.S.; Small, E.E.; Eltahir, E.A. Simulation of regional-scale water and energy budgets: Representation of subgrid cloud and precipitation processes within RegCM. J. Geophys. Res. Atmos. 2000, 105, 29579–29594. [Google Scholar] [CrossRef]
- Nogherotto, R.; Tompkins, A.M.; Giuliani, G.; Coppola, E.; Giorgi, F. Numerical framework and performance of the new multiple-phase cloud microphysics scheme in RegCM4. 5: Precipitation, cloud microphysics, and cloud radiative effects. Geosci. Model Dev. 2016, 9, 2533–2547. [Google Scholar] [CrossRef]
- Dee, D.; Uppala, S.; Simmons, A.; Berrisford, P.; Poli, P.; Kobayashi, S.; Andrae, U.; Balmaseda, M.; Balsamo, G.; Bauer, P.; et al. The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc. 2011, 137, 553–597. [Google Scholar] [CrossRef]
- Simmons, A.; Uppala, S.; Dee, D.; Kobayashi, S. ERA-Interim: New ECMWF reanalysis products from 1989 onwards. ECMWF Newslett. 2007, 110, 25–35. [Google Scholar]
- Becker, A.; Finger, P.; Meyer-Christoffer, A.; Rudolf, B.; Schamm, K.; Schneider, U.; Ziese, M. A description of the global land-surface precipitation data products of the Global Precipitation Climatology Centre with sample applications including centennial (trend) analysis from 1901—Present. Earth Syst. Sci. Data 2013, 5, 71–99. [Google Scholar] [CrossRef]
- Funk, C.; Nicholson, S.E.; Landsfeld, M.; Klotter, D.; Peterson, P.; Harrison, L. The centennial trends greater horn of Africa precipitation dataset. Sci. Data 2015, 2, 150050. [Google Scholar] [CrossRef]
- Huffman, G.; Bolvin, D. TRMM and Other Data Precipitation Data Set Documentation; Laboratory for Atmospheres, NASA Goddard Space Flight Center and Science Systems and Applications, Inc.: Washington, DC, USA, 2011.
- Dinku, T.; Ceccato, P.; Grover-Kopec, E.; Lemma, M.; Connor, S.; Ropelewski, C. Validation of satellite rainfall products over East Africa’s complex topography. Int. J. Remote Sens. 2007, 28, 1503–1526. [Google Scholar] [CrossRef]
- Li, L.; Hong, Y.; Wang, J.; Adler, R.F.; Policelli, F.S.; Habib, S.; Irwn, D.; Korme, T.; Okello, L. Evaluation of the real-time TRMM-based multi-satellite precipitation analysis for an operational flood prediction system in Nzoia Basin, Lake Victoria, Africa. Nat. Hazards 2009, 50, 109–123. [Google Scholar] [CrossRef]
- Duan, Z.; Bastiaanssen, W. First results from Version 7 TRMM 3B43 precipitation product in combination with a new downscaling—Calibration procedure. Remote Sens. Environ. 2013, 131, 1–13. [Google Scholar] [CrossRef]
- Naumann, G.; Barbosa, P.; Carrao, H.; Singleton, A.; Vogt, J. Monitoring drought conditions and their uncertainties in Africa using TRMM data. J. Appl. Meteorol. Climatol. 2012, 51, 1867–1874. [Google Scholar] [CrossRef]
- Kalnay, E.; Kanamitsu, M.; Kistler, R.; Collins, W.; Deaven, D.; Gandin, L.; Iredell, M.; Saha, S.; White, G.; Woollen, J.; et al. The NCEP/NCAR 40-year reanalysis project. Bull. Am. Meteorol. Soc. 1996, 77, 437–471. [Google Scholar] [CrossRef]
- Pielke Sr, R.A. Mesoscale Meteorological Modeling; Academic Press: Cambridge, MA, USA, 2013; Volume 98. [Google Scholar]
- Taylor, K.E. Summarizing multiple aspects of model performance in a single diagram. J. Geophys. Res. Atmos. 2001, 106, 7183–7192. [Google Scholar] [CrossRef]
- Lorenz, E.N. Empirical Orthogonal Functions and Statistical Weather Prediction; Statistical Forecasting Project: Cambridge, MA, USA, 1956. [Google Scholar]
- North, G.R.; Bell, T.L.; Cahalan, R.F.; Moeng, F.J. Sampling errors in the estimation of empirical orthogonal functions. Mon. Weather Rev. 1982, 110, 699–706. [Google Scholar] [CrossRef]
- Jolliffe, I.T. Discarding variables in a principal component analysis. I: Artificial data. Appl. Stat. 1972, 21, 160–173. [Google Scholar] [CrossRef]
- Overland, J.E.; Preisendorfer, R. A significance test for principal components applied to a cyclone climatology. Mon. Weather Rev. 1982, 110, 1–4. [Google Scholar] [CrossRef]
- Preisendorfer, R.W.; Zwiers, F.; Barnett, T. Foundations of principal component selection rules. SIO Ref. Ser. 1981, 192, 10005106368. [Google Scholar]
- Schreck, C.J.; Semazzi, F.H. Variability of the recent climate of eastern Africa. Int. J. Climatol. 2004, 24, 681–701. [Google Scholar] [CrossRef]
- Giorgi, F.; Shields, C. Tests of precipitation parameterizations available in latest version of NCAR regional climate model (RegCM) over continental United States. J. Geophys. Res. Atmos. 1999, 104, 6353–6375. [Google Scholar] [CrossRef]
- Zou, L.; Zhou, T. Can a regional ocean–atmosphere coupled model improve the simulation of the interannual variability of the western North Pacific summer monsoon? J. Clim. 2013, 26, 2353–2367. [Google Scholar] [CrossRef]
- Yang, W.; Seager, R.; Cane, M.A.; Lyon, B. The rainfall annual cycle bias over East Africa in CMIP5 coupled climate models. J. Clim. 2015, 28, 9789–9802. [Google Scholar] [CrossRef]
- Black, E.; Slingo, J.; Sperber, K.R. An observational study of the relationship between excessively strong short rains in coastal East Africa and Indian Ocean SST. Mon. Weather Rev. 2003, 131, 74–94. [Google Scholar] [CrossRef]
- Bowden, J.H.; Semazzi, F.H. Empirical analysis of intraseasonal climate variability over the Greater Horn of Africa. J. Clim. 2007, 20, 5715–5731. [Google Scholar] [CrossRef]
- Manatsa, D.; Chipindu, B.; Behera, S.K. Shifts in IOD and their impacts on association with East Africa rainfall. Theor. Appl. Climatol. 2012, 110, 115–128. [Google Scholar] [CrossRef]
- Anyah, R.O.; Semazzi, F. Idealized simulation of hydrodynamic characteristics of Lake Victoria that potentially modulate regional climate. Int. J. Climatol. 2009, 29, 971–981. [Google Scholar] [CrossRef]
- Nicholson, S.E. The Predictability of Rainfall over the Greater Horn of Africa. Part II: Prediction of Monthly Rainfall during the Long Rains. J. Hydrometeorol. 2015, 16, 2001–2012. [Google Scholar] [CrossRef]
- Indeje, M.; Semazzi, F. Relationships between QBO in the lower equatorial stratospheric zonal winds and East African seasonal rainfall. Meteorol. Atmos. Phys. 2000, 73, 227–244. [Google Scholar] [CrossRef]
Exp | Land | Ocean |
---|---|---|
A | Grell AS | Grell AS |
B | Grell AS | MIT-Emanuel |
C | MIT-Emanuel | Grell AS |
D | Grell FC | Grell FC |
E | Grell FC | MIT-Emanuel |
F | MIT-Emanuel | Grell FC |
G | MIT-Emanuel | MIT-Emanuel |
Scheme | Region | RMSE | SD Mod. | SD Obs. | Cor. |
---|---|---|---|---|---|
Grell FC | Congo | 177 | 217 | 244 | 0.72 |
EA | 147 | 192 | 221 | 0.78 | |
Ocean | 148 | 165 | 175 | 0.64 | |
MIT | Congo | 253 | 296 | 244 | 0.63 |
EA | 204 | 295 | 221 | 0.75 | |
Ocean | 212 | 232 | 175 | 0.49 |
Model | DMI | Nino 3 | QBO | TNA | TSA | NAO | WP | TRMM |
---|---|---|---|---|---|---|---|---|
Grell FC | 0.84 ** | 0.51 * | 0.28 | −0.04 | 0.24 | 0.07 | −0.12 | 0.92 ** |
MIT | 0.80 ** | 0.57 ** | 0.16 | 0.02 | −0.18 | −0.02 | −0.16 | 0.90 ** |
TRMM | 0.84 ** | 0.48 * | −0.30 | −0.01 | 0.19 | −0.20 | 0.01 | 1 |
Region | Mode | DMI | Nino 3 | QBO | TNA | TSA | NAO | WP | TRMM |
---|---|---|---|---|---|---|---|---|---|
LVB | Grell FC | 0.68 ** | 0.43 * | 0.19 | −0.02 | −0.32 | −0.22 | −0.43 * | 0.86 ** |
MIT | 0.69 ** | 0.35 | 0.16 | 0.08 | −0.33 | −0.01 | −0.26 | 0.77 ** | |
TRMM | 0.76 ** | 0.43 * | 0.19 | −0.02 | −0.18 | −0.02 | −0.16 | 1 |
Region | Season | Model | IOD | NINO3 | QBO | TNA | TSA | NAO | WP | TRMM |
---|---|---|---|---|---|---|---|---|---|---|
EA | Long Rains | Grell FC | 0.35 | 0.18 | 0.47 * | 0.04 | −0.17 | −0.35 | 0.10 | 0.43 |
MIT | −0.13 | 0.07 | 0.46 * | −0.13 | 0.10 | −0.11 | −0.16 | 0.35 | ||
TRMM | 0.46 * | −0.39 | 0.03 | −0.14 | −0.06 | −0.42 | −0.41 | 1 | ||
Mar–Apr | Grell FC | 0.48 * | −0.08 | 0.06 | −0.15 | 0.04 | −0.12 | −0.31 | 0.51 ** | |
MIT | −0.23 | 0.25 | 0.27 | −0.21 | −0.30 | −0.05 | −0.07 | 0.39 | ||
TRMM | 0.5 ** | −0.29 | 0.40 | −0.06 | −0.20 | 0.35 | −0.50 ** | 1 | ||
May | Grell FC | 0.07 | 0.04 | 0.60 ** | 0.16 | −0.33 | −0.07 | −0.15 | 0.67 ** | |
MIT | −0.32 | −0.21 | 0.34 | 0.01 | 0.20 | −0.24 | 0.0 | 0.6 ** | ||
TRMM | 0.23 | 0.05 | 0.43 * | 0.26 | −0.22 | 0.02 | 0.06 | 1 | ||
LV | Long Rains | Grell FC | 0.67 ** | 0.04 | 0.09 | 0.24 | 0.26 | 0.31 | −0.20 | 0.63 ** |
MIT | 0.64 ** | −0.0 | −0.11 | −0.01 | −0.46 | 0.00 | −0.21 | 0.61 ** | ||
TRMM | 0.61 ** | −0.06 | −0.30 | 0.05 | −0.08 | 0.36 | −0.49 * | 1 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gudoshava, M.; Semazzi, F.H.M. Customization and Validation of a Regional Climate Model Using Satellite Data Over East Africa. Atmosphere 2019, 10, 317. https://doi.org/10.3390/atmos10060317
Gudoshava M, Semazzi FHM. Customization and Validation of a Regional Climate Model Using Satellite Data Over East Africa. Atmosphere. 2019; 10(6):317. https://doi.org/10.3390/atmos10060317
Chicago/Turabian StyleGudoshava, Masilin, and Fredrick H. M. Semazzi. 2019. "Customization and Validation of a Regional Climate Model Using Satellite Data Over East Africa" Atmosphere 10, no. 6: 317. https://doi.org/10.3390/atmos10060317
APA StyleGudoshava, M., & Semazzi, F. H. M. (2019). Customization and Validation of a Regional Climate Model Using Satellite Data Over East Africa. Atmosphere, 10(6), 317. https://doi.org/10.3390/atmos10060317