The Effects of the Trans-Regional Transport of PM2.5 on a Heavy Haze Event in the Pearl River Delta in January 2015
Abstract
:1. Introduction
2. Data and Methods
2.1. Observation Data and Case Study
2.2. Model and Simulation Setup
2.3. Calculation of the Trans-Regional Transport of Pollutants
3. Results
3.1. Evaluation of the Simulation Results
3.2. Distribution of PM2.5 near the Surface
3.3. Extra-Regional and Intra-Regional Transport of PM2.5
3.4. Cross-Regional Transport of PM2.5
4. Conclusions and Discussion
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Wu, D.; Bi, X.; Deng, X.; Li, F.; Tan, H.; Liao, G.; Huang, J. Effect of atmospheric haze on the deterioration of visibility over the Pearl River Delta. Acta Meteorol. Sin. 2006, 64, 510–517. (In Chinese) [Google Scholar]
- Lyu, W.; Li, J.; Wang, X.; Zhang, Y. Numerical modeling on the impact of long-range transport of air pollutants on the regional air quality in the Pearl. Acta Sci. Circumstantiae 2015, 35, 30–41. (In Chinese) [Google Scholar] [CrossRef]
- Tao, Y.; Zhong, L.; Huang, X.; Lu, S.E.; Li, Y.; Dai, L.; Zhang, Y.; Zhu, T.; Huang, W. Acute mortality effects of carbon monoxide in the Pearl River Delta of China. Sci. Total Environ. 2011, 410, 34–40. [Google Scholar] [CrossRef] [PubMed]
- Wu, D.; Tie, X.; Li, C.; Ying, Z.; Lau, K.H.; Huang, J.; Deng, X.; Bi, X. An extremely low visibility event over the Guangzhou region: A case study. Atmos. Environ. 2005, 39, 6568–6577. [Google Scholar] [CrossRef]
- Sun, Y.; Chen, C.; Zhang, Y.; Xu, W.; Zhou, L.; Cheng, X.; Zheng, H.; Ji, D.; Li, J.; Tang, X. Rapid formation and evolution of an extreme haze episode in Northern China during winter 2015. Sci. Rep. 2016, 6, 27151. [Google Scholar] [CrossRef]
- Yang, Y.; Liu, X.; Yu, Q.; Wang, J.; An, J.; Zhang, Y.; Fang, Z. Formation mechanism of continuous extreme haze episodes in the megacity Beijing, China, in January 2013. Atmos. Res. 2015, 155, 192–203. [Google Scholar] [CrossRef]
- Chen, H.; Wang, Z.; Wu, Q.; Wang, W. Source analysis of Guangzhou air pollutants by numerical simulation in the Asian Games Period. Acta Sci. Circumstantiae 2010, 30, 2145–2153. (In Chinese) [Google Scholar] [CrossRef]
- Guo, J.; Lou, M.; Miao, Y.; Wang, Y.; Zeng, Z.; Liu, H.; He, J.; Xu, H.; Wang, F.; Min, M. Trans-Pacific transport of dust aerosols from East Asia: Insights gained from multiple observations and modeling. Environ. Pollut. 2017, 230, 1030–1039. [Google Scholar] [CrossRef]
- Huang, J.; Minnis, P.; Chen, B.; Huang, Z.W.; Ayers, J.K. Long-range transport and vertical structure of Asian dust from CALIPSO and surface measurements during PACDEX. J. Geophys. Res. Atmos. 2008, 113. [Google Scholar] [CrossRef]
- Miao, Y.; Guo, J.; Liu, S.; Liu, H.; Zhang, G.; Yan, Y.; Jing, H. Relay transport of aerosols to Beijing-Tianjin-Hebei region by multi-scale atmospheric circulations. Atmos. Environ. 2017, 165, 35–45. [Google Scholar] [CrossRef]
- Wang, W.; Chen, H.S.; Wu, Q.; Wei, L.; Wang, Z.; Li, C.; Chen, D.; Jiang, Z.; Wu, W. Numerical study of PM2.5 regional transport over Pearl River Delta during a winter heavy haze event. Acta Sci. Circumstantiae 2016, 36, 2741–2751. (In Chinese) [Google Scholar]
- Wang, Z.F.; Jie, L.; Wang, Z.; Yang, W.Y.; Tang, X.; Baozhu, G.E.; Yan, P.Z.; Zhu, L.L.; Chen, X.S.; Chen, H.S. Modeling study of regional severe hazes over mid-eastern China in January 2013 and its implications on pollution prevention and control. Sci. China Earth Sci. 2014, 57, 3–13. [Google Scholar] [CrossRef]
- Fan, S.; Wang, A.; Fan, Q.; Liu, J.; Wang, B. Atmospheric boundary layer features of Pearl River Delta and its conception model. China Environ. Sci. 2006, 26, 4–6. [Google Scholar]
- Wu, D.; Liao, B.; Chen, H.; Wu, S. Advances in studies of haze weather over Pearl River Delta. Clim. Environ. Res. 2014, 19, 248–264. [Google Scholar] [CrossRef]
- Wu, D.; Liao, G.; Deng, X.; Bi, X.; Tan, H.; Li, F.; Jiang, C.; Xia, D.; Fan, S. Transport condition of surface layer under haze weather over the Pearl River Delta. J. Appl. Meteorol. 2008, 19, 1–9. [Google Scholar]
- Dongwei, W.U.; Fung, J.C.H.; Yao, T.; Lau, A.K.H. A study of control policy in the Pearl River Delta region by using the particulate matter source apportionment method. Atmos. Environ. 2013, 76, 147–161. [Google Scholar] [CrossRef]
- Xue, W.; Fu, F.; Wang, J.; Tang, G.; Lei, Y.; Yang, J.; Wang, Y. Numerical study on the characteristics of regional transport of PM2.5 in China. China Environ. Sci. 2014, 34, 1361–1368. (In Chinese) [Google Scholar]
- Xue, W.; Tang, X.; Lei, Y.; Wang, J.; Xu, Y. Impacts of ammonia emission on PM2.5 pollution in China. China Environ. Sci. 2016, 36, 3531–3539. (In Chinese) [Google Scholar]
- Kasten, F. Falling speed of aerosol particles. J. Appl. Meteorol. 1968, 7, 4. [Google Scholar] [CrossRef]
- Wang, S.; Zhang, Y.; Zhong, L.; Li, J.; Yu, Q. Interaction of urban air pollution among cities in Zhujiang Delta. China Environ. Sci. 2005, 25, 133–137. (In Chinese) [Google Scholar]
- Hu, X.; Li, Y.; Li, J.; Wang, X.; Zhang, Y. Interaction of ambient PM10 among the cities over the Pearl River Delta. Acta Sci. Nat. Univ. Pekin. 2011, 47, 519–524. (In Chinese) [Google Scholar] [CrossRef]
- GTS dataset Archive. Available online: http://222.195.136.24/forecast.html (accessed on 30 May 2017).
- ERA-Interim Daily Dataset Archive. Available online: https://apps.ecmwf.int/datasets/data/interim-full-daily/levtype=sfc/ (accessed on 30 May 2017).
- CMEP Hourly Air Quality Monitoring Dataset Archive. Available online: http://106.37.208.233:20035/ (accessed on 30 May 2017). (In Chinese).
- Guangzhou Institute of Tropical and Marine Meteorology, C.M.A. Observation and Forecasting Levels of Haze. QX: 2010; Vol. QX/T 113-2010, p 8p:A4. Available online: http://www.cma.gov.cn/root7/auto13139/201612/P020161223252938063210.pdf (accessed on 18 April 2019). (In Chinese)
- Chen, H.; Wang, H. Haze Days in North China and the Associated Atmospheric Circulations Based on Daily Visibility Data from 1960 to 2012. J. Geophys. Res. Atmos. 2015, 120, 5895–5909. [Google Scholar] [CrossRef]
- Centre, C.N.E.M.; Sciences, C.R.A.O.E.; Center, D.E.M.; Center, S.E.M.; Center, S.E.M.; Center, J.E.M.; Center, H.E.M.; Center, C.E.M. Technical Regulation on Ambient Air Quality Index(on Trial). CN-HJ: 2012; Vol. HJ 633-2012, p 12P.;A14. Available online: http://kjs.mee.gov.cn/hjbhbz/bzwb/jcffbz/201309/W020131105548549111863.pdf (accessed on 18 April 2019). (In Chinese)
- Sciences, C.R.A.o.E.; Centre, C.N.E.M. Ambient Air Quality Standard. PRC National Standard: 2012; Vol. GB 3095-2012, p 12p:A14. Available online: http://kjs.mee.gov.cn/hjbhbz/bzwb/dqhjbh/dqhjzlbz/201203/W020120410330232398521.pdf (accessed on 18 April 2019). (In Chinese)
- Grell, G.A.; Schmitz, P.R.; Mckeen, S.A.; Frost, G.; Skamarock, W.C.; Eder, B. Fully coupled “online” chemistry within the WRF model. Atmos. Environ. 2005, 39, 6957–6975. [Google Scholar] [CrossRef]
- Homepage of WRF-Chem. Available online: https://ruc.noaa.gov/wrf/wrf-chem/ (accessed on 18 April 2019).
- Kleczek, M.A.; Steeneveld, G.J.; Holtslag, A.A.M. Evaluation of the Weather Research and Forecasting Mesoscale Model for GABLS3: Impact of Boundary-Layer Schemes, Boundary Conditions and Spin-Up. Bound. Lay. Meteorol. 2014, 152, 213–243. [Google Scholar] [CrossRef]
- Miao, Y.; Liu, S.; Zheng, Y.; Wang, S.; Chen, B.; Zheng, H.; Zhao, J. Numerical study of the effects of local atmospheric circulations on a pollution event over Beijing–Tianjin–Hebei, China. J. Environ. Sci. 2015, 30, 9–20. [Google Scholar] [CrossRef]
- NCEP-FNL Reanalysis Dataset Archive. Available online: https://rda.ucar.edu/datasets/ds083.2/ (accessed on 30 May 2017).
- Li, M.; Zhang, Q.; Kurokawa, J.; Woo, J.H.; He, K.; Lu, Z.; Ohara, T.; Song, Y.; Streets, D.G.; Carmichael, G.R. MIX: A mosaic Asian anthropogenic emission inventory under the international collaboration framework of the MICS-Asia and HTAP. Atmos. Chem. Phys. 2017, 17, 935–963. [Google Scholar] [CrossRef]
- MIX Asian Emission Inventory. Available online: http://www.meicmodel.org/dataset-mix.html (accessed on 30 May 2017).
- Guenther, A.; Karl, T.; Harley, P.; Wiedinmyer, C.; Palmer, P.I.; Geron, C. Estimates of global terrestrial isoprene emissions using MEGAN (Model of Emissions of Gases and Aerosols from Nature). Atmos. Chem. Phys. 2006, 6, 3181–3210. [Google Scholar] [CrossRef]
- MOZART dataset download Archive. Available online: http://www.acom.ucar.edu/wrf-chem/mozart.shtml (accessed on 30 May 2017).
- Morrison, H.; Thompson, G.; Tatarskii, V. Impact of Cloud Microphysics on the Development of Trailing Stratiform Precipitation in a Simulated Squall Line: Comparison of One- and Two-Moment Schemes. Mon. Wea. Rev. 2009, 137, 991–1007. [Google Scholar] [CrossRef]
- Janjić, Z.I. The Step-Mountain Eta Coordinate Model: Further Developments of the Convection, Viscous Sublayer, and Turbulence Closure Schemes. Mon. Weather Rev. 1994, 122, 927. [Google Scholar] [CrossRef]
- Arakawa, A. The Cumulus Parameterization Problem: Past, Present, and Future. J. Climate 2004, 17, 2493–2525. [Google Scholar] [CrossRef]
- Chen, F.; Dudhia, J. Coupling an Advanced Land Surface–Hydrology Model with the Penn State–NCAR MM5 Modeling System. Part I: Model Implementation and Sensitivity. Mon. Weather Rev. 2001, 129, 569–585. [Google Scholar] [CrossRef]
- Iacono, M.J.; Delamere, J.S.; Mlawer, E.J.; Shephard, M.W.; Clough, S.A.; Collins, W.D. Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models. J. Geophys. Res. Atmos. 2008, 113. [Google Scholar] [CrossRef]
- Ackermann, I.J.; Hass, H.; Memmesheimer, M.; Ebel, A.; Binkowski, F.S.; Shankar, U. Modal aerosol dynamics model for Europe : Development and first applications. Atmos. Environ. 1998, 32, 2981–2999. [Google Scholar] [CrossRef]
- Schell, B.; Ackermann, I.J.; Hass, H.; Binkowski, F.S.; Ebel, A. Modeling the formation of secondary organic aerosol within a comprehensive air quality model system. J. Geophys. Res. Atmos. 2001, 106, 28275–28293. [Google Scholar] [CrossRef]
- Stockwell, W.R.; Middleton, P.; Chang, J.S.; Tang, X. The second generation regional acid deposition model chemical mechanism for regional air quality modeling. J. Geophys. Res. Atmos. 1990, 95, 16343–16367. [Google Scholar] [CrossRef]
- Wild, O.; Zhu, X.; Prather, M.J. Fast-J: Accurate Simulation of In- and Below-Cloud Photolysis in Tropospheric Chemical Models. J. Atmos. Chem. 2000, 37, 245–282. [Google Scholar] [CrossRef]
- Kwok, R.H.F.; Fung, J.C.H.; Lau, A.K.H.; Fu, J.S. Numerical study on seasonal variations of gaseous pollutants and particulate matters in Hong Kong/Pearl River Delta Region. J. Geophys. Res. 2010, 115. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, T.; Lyu, M.; Zhang, Q. On the severe haze in Beijing during January 2013: Unraveling the effects of meteorological anomalies with WRF-Chem. Atmos. Environ. 2015, 104, 11–21. [Google Scholar] [CrossRef]
- Grewe, V. Technical Note: A Diagnostic for Ozone Contributions of Various NOx Emissions in Multi-Decadal Chemistry-Climate Model Simulations. Atmos. Chem. Phys. 2004, 4, 729–736. [Google Scholar] [CrossRef]
- Wang, L.; Hao, J.; He, K.; Wang, S.; Li, J.; Zhang, Q.; Streets, D.G.; Fu, J.S.; Jang, C.J.; Hideto, T.; et al. A Modeling Study of Coarse Particulate Matter Pollution in Beijing: Regional Source Contributions and Control Implications for the 2008 Summer Olympics. J. Air Waste Manag. Assoc. 2008, 58, 14. [Google Scholar] [CrossRef]
- Yang, L.; Wang, X.; Chen, Q. New method for investigating regional interactions of air pollutants. Acta Sci. Circumstantiae 2012, 32, 528–536. (In Chinese) [Google Scholar]
- Balzarini, A.; Honzak, L.; Pirovano, G.; Riva, G.M.; Zabkar, R. WRF-Chem Model Sensitivity Analysis to Chemical Mechanism Choice. 2014. Available online: https://link.springer.com/chapter/10.1007/978-3-319-04379-1_92 (accessed on 22 March 2019).
- Ritter, M.; Müller, M.D.; Jorba, O.; Parlow, E.; Liu, L.J.S. Impact of chemical and meteorological boundary and initial conditions on air quality modeling: WRF-Chem sensitivity evaluation for a European domain. Meteorol. Atmos. Phys. 2013, 119, 59–70. [Google Scholar] [CrossRef]
Parameter | Configurations |
---|---|
Microphysics scheme | Morrison scheme [38] |
PBL scheme | MYJ scheme [39] |
Cumulus scheme | Grell-Freitas scheme [40] |
Land surface scheme | Noah Land Surface Model [41] |
Longwave / shortwave radiation scheme | RRTMG scheme [42] |
Chemical scheme | RADM2 -MADE/SORGAM [43,44,45] |
Photolysis option | Fast-J photolysis [46] |
Name | Starting Location | Ending Location | Length (km) | Average Elevation (m) | |
---|---|---|---|---|---|
North (AB) | 113.10° E, 23.78° N | 114.38° E, 23.78° N | 136 | 234 | 0 |
East (BC) | 114.38° E, 23.78° N | 115.28° E, 22.88° N | 136 | 212 | 45 |
Southeast (CD) | 115.28° E, 22.88° N | 112.19° E, 21.64° N | 347 | 22 | 22.5 |
West (DE) | 112.19° E, 21.64° N | 112.19° E, 22.88° N | 136 | 145 | 90 |
Northwest (EA) | 112.19° E, 22.88° N | 113.10° E, 23.78° N | 136 | 95 | 45 |
Parameter 1 | PRD | GZ | SZ | ZH | FS | ZS | JM | DG | HZ | ZQ |
---|---|---|---|---|---|---|---|---|---|---|
MO (μg/m3) | 74.6 | 82.9 | 62.2 | 73.5 | 78.0 | 65.9 | 84.1 | 84.1 | 54.3 | 81.9 |
MC (μg/m3) | 49.7 | 67.1 | 41.5 | 49.4 | 70.3 | 49.6 | 63.3 | 65.3 | 53.2 | 54.8 |
MB (μg/m3) | −24.9 | −15.8 | −20.7 | −24.1 | −7.6 | −16.3 | −20.8 | −18.7 | −1.1 | −27.1 |
NMB (%) | −33.4 | −19.0 | −33.3 | −32.8 | −9.8 | −24.7 | −24.7 | −22.3 | −2.1 | −33.1 |
NME (%) | 41.2 | 27.2 | 38.0 | 33.8 | 21.9 | 35.4 | 29.3 | 29.1 | 34.4 | 35.3 |
RMSE (μg/m3) | 32.9 | 29.3 | 33.21 | 29.1 | 23.1 | 33.1 | 32.3 | 30.3 | 23.1 | 34.7 |
CTL | TR | LC | (TR + LC) − CTL | |
---|---|---|---|---|
Concentration (μg/m3) | 58.96 | 22.85 | 19.61 | −16.50 |
Contribution (%) | 100 | 38.75 | 33.27 | −27.98 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Q.; Sheng, L.; Gao, Y.; Miao, Y.; Hai, S.; Gao, S.; Gao, Y. The Effects of the Trans-Regional Transport of PM2.5 on a Heavy Haze Event in the Pearl River Delta in January 2015. Atmosphere 2019, 10, 237. https://doi.org/10.3390/atmos10050237
Chen Q, Sheng L, Gao Y, Miao Y, Hai S, Gao S, Gao Y. The Effects of the Trans-Regional Transport of PM2.5 on a Heavy Haze Event in the Pearl River Delta in January 2015. Atmosphere. 2019; 10(5):237. https://doi.org/10.3390/atmos10050237
Chicago/Turabian StyleChen, Qing, Lifang Sheng, Yi Gao, Yucong Miao, Shangfei Hai, Shanhong Gao, and Yang Gao. 2019. "The Effects of the Trans-Regional Transport of PM2.5 on a Heavy Haze Event in the Pearl River Delta in January 2015" Atmosphere 10, no. 5: 237. https://doi.org/10.3390/atmos10050237
APA StyleChen, Q., Sheng, L., Gao, Y., Miao, Y., Hai, S., Gao, S., & Gao, Y. (2019). The Effects of the Trans-Regional Transport of PM2.5 on a Heavy Haze Event in the Pearl River Delta in January 2015. Atmosphere, 10(5), 237. https://doi.org/10.3390/atmos10050237