Effect of Typhoon-Generated Cold Wake on the Subsequent Typhoon Tembin and Its Sensitivity to Horizontal Resolutions
Abstract
:1. Introduction
2. Model Experiment and Case Selection
2.1. Model Experiment
2.2. Case Selection: Typhoon Tembin (1214) and Typhoon Bolaven (1215)
2.3. Experimental Design
3. Effect of the Location of the Cold Wake Generated by Bolaven on the Simulated Tembin
4. The Physical Response in the Surface and the Top of TC as SST and Horizontal Grid Spacing
5. Summary and Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Gentry, S.M.; Gray, M.L. Sensitivity of simulated tropical cyclone structure and intensity to horizontal resolution. Mon. Wea. Rev. 2009, 138, 688–704. [Google Scholar] [CrossRef]
- Davis, C.; Wei, W.; Jimy, D. Does increased horizontal resolution improve hurricane wind forecasts? Wea. Forecast. 2010, 25, 1826–1841. [Google Scholar] [CrossRef]
- Ma, Z.; Jianfang, F.; Xiaogang, H.; Xiaoping, C. Sensitivity of tropical cyclone intensity and structure to vertical resolution in WRF. Asia Pacific J. Atmos. Sci. 2012, 48, 67–81. [Google Scholar] [CrossRef]
- Wu, Z.; Changbo, J.; Bin, D.; Jie, C.; Xiaojian, L. Sensitivity of WRF simulated typhoon track and intensity over the South China Sea to horizontal and vertical resolutions. Acta Oceanol. Sin. 2019, 38, 74–83. [Google Scholar] [CrossRef]
- Chang, S.W.; Madala, R.V. Numerical simulation of the influence of sea surface temperature on translating tropical cyclones. J. Atmos. Sci. 1980, 37, 2617–2630. [Google Scholar] [CrossRef]
- Wang, B.; Elsberry, R.L.; Wang, Y.; Wu, L. Dynamics in Tropical Cyclone Motion: A Review. Chin. J. Atmos. Sci. 1998, 22, 416–434. [Google Scholar]
- Schade, L.R. Tropical cyclone intensity and sea surface temperature. J. Atmos. Sci. 2000, 57, 3122–3130. [Google Scholar] [CrossRef]
- Chan, J.C.L. The physics of tropical cyclone motion. Annu. Rev. Fluid Mech. 2005, 37, 99–128. [Google Scholar] [CrossRef]
- Jones, S.C.; Harr, P.A.; Abraham, J.; Bosart, L.F.; Bowyer, P.J.; Evans, J.L.; Hanley, D.E.; Hanstrum, B.N.; Hart, R.E.; Lalaurette, F.; et al. The extratropical transition of tropical cyclones: Forecast challenges, current understanding, and future directions. Wea. Forecast. 2003, 18, 1052–1092. [Google Scholar] [CrossRef]
- Mueller, K.J.; DeMaria, M.; Knaff, J.A.; Kossin, J.P.; Haar, T.H.V. Objective estimation of tropical cyclone wind structure from infrared satellite data. Wea. Forecast. 2006, 21, 990–1005. [Google Scholar] [CrossRef]
- Ueno, M. Observational Analysis and Numerical Evaluation of the Effects of Vertical Wind Shear on the Rainfall Asymmetry in the Typhoon Inner-Core Region. J. Meteor. Soc. Japan 2007, 85, 115–136. [Google Scholar] [CrossRef] [Green Version]
- Knaff, J.A.; Sampson, C.C.R.; DeMaria, M.; Marchok, T.P.; Gross, J.M.; McAdie, C.J. Statistical tropical cyclone wind radii prediction using climatology and persistence. Wea. Forecast. 2007, 22, 781–791. [Google Scholar] [CrossRef]
- Knaff, J.A.; Sampson, C.R.; Fitzpatrick, P.J.; Jin, Y.; Hill, C.M. Simple diagnosis of tropical cyclone structure via pressure gradients. Wea. Forecast. 2011, 26, 1020–1031. [Google Scholar] [CrossRef]
- Kanada, S.; Wada, A. Sensitivity to horizontal resolution of the simulated intensifying rate and inner-core structure of typhoon Ida, an extremely intense typhoon. J. Meteor. Soc. Japan 2016, 94A, 181–190. [Google Scholar] [CrossRef]
- Fujiwara, S. The natural tendency towards symmetry of motion and its application as a principle in meteorology. Quart. J. Roy. Meteor. Soc. 1921, 47, 287–293. [Google Scholar] [CrossRef]
- Fujiwara, S. On the growth and decay of vorticity systems. Quart. J. Roy. Meteor. Soc. 1923, 49, 75–104. [Google Scholar] [CrossRef]
- Fujiwara, S. Short note on the behavior of two vortices. Proc. Phys. Math. Soc. Japan. Ser. 1931, 3, 13. [Google Scholar]
- Brand, S. Interaction of binary tropical cyclones of the western north pacific ocean. J. Appl. Meteor 1970, 9, 433–441. [Google Scholar] [CrossRef]
- Carr, L.E., III; Boothe, M.A.; Elsberry, R.L. Observational evidence for alternate modes of track-altering binary tropical cyclone scenarios. Mon. Wea. Rev. 1997, 125, 2094–2211. [Google Scholar] [CrossRef]
- Carr, L.E., III; Elsberry, R.L. Objective diagnosis of binary tropical cyclone interactions for the western North Pacific Basin. Mon. Wea. Rev. 1998, 126, 1734–1740. [Google Scholar] [CrossRef]
- Wu, C.-C.; Huang, T.-S.; Huang, W.-P.; Chou, K.-H. A new look at the binary interaction: Potential vorticity diagnosis of the unusual southward movement of Typhoon Bopha (2000) and its interaction with Typhoon Saomai (2000). Mon. Wea. Rev. 2003, 131, 1289–1300. [Google Scholar] [CrossRef]
- Mauk, R.G.; Hobgood, J.S. Tropical cyclone formation in environments with cool SST and high wind shear over the northeastern Atlantic Ocean. Wea. Forecast. 2012, 27, 1433–1448. [Google Scholar] [CrossRef]
- DeMaria, M.; Chan, C.L. Comments on “A numerical study of the interactions between two tropical cyclones”. Mon. Wea. Rev. 1984, 112, 1643–1645. [Google Scholar] [CrossRef]
- Holland, G.J.; Dietachmayer, G.S. On the interaction of tropical-cyclone-scale vortices. III: Continuous barotropic vortices. Quart. J. Roy. Meteor. Soc. 1993, 119, 1381–1398. [Google Scholar] [CrossRef]
- Wang, Y.; Holland, G.J. On the interaction of tropical cyclone-scale vortices. IV: Baroclinic vortices. Quart. J. Roy. Meteor. Soc. 1995, 121, 95–126. [Google Scholar] [CrossRef]
- Yang, C.-C.; Wu, C.-C.; Chou, K.-H.; Lee, C.-Y. Binary interaction between Typhoons Fengshen (2002) and Fungwong (2002) based on the potential vorticity diagnosis. Mon. Wea. Rev. 2008, 136, 4593–4611. [Google Scholar] [CrossRef]
- Wu, C.-C.; Chen, S.-G.; Chen, J.-H.; Chou, K.-H.; Lin, P.-H. Interaction of Typhoon Shanshan (2006) with the midlatitude trough from both adjoint-derived sensitivity steering vector and potential vorticity perspectives. Mon. Wea. Rev. 2009, 137, 852–862. [Google Scholar] [CrossRef]
- Balaguru, K.; Taraphdar, S.; Leung, L.R.; Foltz, G.R.; Knaff, J.A. Cyclone-cyclone interactions through the ocean pathway. Geophys. Res. Lett. 2014, 41, 6855–6862. [Google Scholar] [CrossRef]
- Price, J.F. Upper ocean response to a hurricane. J. Phys. Oceanogr. 1981, 11, 153–175. [Google Scholar] [CrossRef]
- Cione, J.J.; Uhlhorn, E.W. Sea surface temperature variability in hurricanes: Implications with respect to intensity change. Ameri. Meteor. Soci. 2003, 131, 1783–1796. [Google Scholar] [CrossRef]
- Lin, I.; Liu, W.T.; Wu, C.C.; Wong, G.T.; Hu, C.; Chen, Z.; Liang, W.D.; Yang, Y.; Liu, K.K. New evidence for enhanced primary production triggered by tropical cyclone. Geophys. Res. Lett. 2003, 30, 1718. [Google Scholar] [CrossRef]
- Price, J.F.; Morzel, J.; Niiler, P.P. Warming of SST in the cool wake of a moving hurricane. J. Geophys. Res. 2008, 113. [Google Scholar] [CrossRef]
- Dare, R.A.; McBride, J.L. Sea surface temperature response to tropical cyclones. Mon. Wea. Rev. 2011, 139, 3798–3808. [Google Scholar] [CrossRef]
- Jeong, Y.; Moon, I.; Kim, S. A Study on Upper Ocean Response to Typhoon Ewiniar (0603) and Its Impact. Atmosphere 2013, 23, 205–220. [Google Scholar] [CrossRef] [Green Version]
- Kim, C.; Lim, S.; Jeong, J.; Shim, J.; Moon, I.; Oh, Y.; You, H. Response of coastal waters in the Yellow sea to typhoon Bolaven. J. Coastal. Res. 2014, 70, 278–283. [Google Scholar] [CrossRef]
- Lee, J.; Cheong, H.; Kang, H.; Kwon, I. Tropical cyclone track and intensity forecast using asymmetric 3-dimensional bogus vortex. Atmosphere 2014, 24, 207–223. [Google Scholar] [CrossRef]
- Moon, M.; Choi, Y.; Ha, K.-J. Effect of sea surface temperature gradient induced by the previous typhoon’s cold wake on the track of the following typhoon: Bolaven (1215) and Tembin (1214). Atmosphere 2016, 26, 635–647. [Google Scholar] [CrossRef]
- Heo, K.-Y.; Ha, T.; Park, K.-S. The effects of a typhoon induced oceanic cold wake on typhoon intensity and typhoon-induced ocean waves. J. Hydro-Environ. Res. 2017, 14, 61–75. [Google Scholar] [CrossRef]
- Skamarock, W.C.; Klemp, J.B.; Dudhia, J.; Gill, D.O.; Barker, D.M.; Wang, W.; Powers, J.G. A Description of the Advanced Research WRF Version 3; Tech. Rep. TN-475+STR; NCAR: Boulder, CO, USA, 2008; 113p. [Google Scholar] [CrossRef]
- Kain, J.S.; Fritsch, J.M. Convective parameterization for mesoscale models: The Kain-Fritcsh scheme. In The Representation of Cumulus Convection in Numerical Models; American Meteorological Society: Boston, MA, USA, 1993; pp. 165–170. [Google Scholar]
- Yun, K.-S.; Chan, J.C.L.; Ha, K.-J. Effects of SST magnitude and gradient on typhoon tracks around East Asia: A case study for Typhoon Maemi (2003). Atmos. Res. 2012, 109–110, 36–51. [Google Scholar] [CrossRef]
- Choi, Y.; Yun, K.-S.; Ha, K.-J.; Kim, K.-Y.; Yoon, S.-J.; Chan, J.C.L. Effects of asymmetric SST distribution on straight-moving Typhoon Ewiniar (2006) and recurving Typhoon Maemi (2003). Mon. Wea. Rev. 2013, 141, 3950–3967. [Google Scholar] [CrossRef]
- Banzon, V.F.; Reynolds, R.W.; Stokes, D.; Xue, Y. A 1/48-spatial-resolution daily sea surface temperature climatology based on a blended satellite and in situ analysis. J. Climate 2014, 27, 8221–8228. [Google Scholar] [CrossRef]
- Davis, C.A.; Low-Nam, S. The NCAR-AFWA Tropical Cyclone Bogussing Scheme; U.S. Air Force Weather Agency (AFWA) Report; National Center for Atmospheric Research: Bellevue, CO, USA, 2001; 21p. [Google Scholar]
- Ha, K.-J.; Nam, S.H.; Jeong, J.-Y.; Moon, I.-J.; Lee, M.; Yun, J.; Jang, C.; Kim, Y.; Byun, D.-S.; Heo, K.-Y.; et al. Observations utilizing Korean Ocean Research Stations and their Applications for Process Studies. Bull. Amer. Meteor. Soc. 2019. [Google Scholar] [CrossRef]
- Hoskins, B.J.; McIntyre, M.E.; Robertson, A.W. On the use and significance of isentropic potential vorticity maps. Quart. J. Roy. Meteor. Soc. 1985, 111, 877–946. [Google Scholar] [CrossRef]
- Wu, L.; Wang, B. A potential vorticity tendency diagnostic approach for tropical cyclone motion. Mon. Wea. Rev. 2000, 128, 1899–1911. [Google Scholar] [CrossRef]
- Wong, M.L.M.; Chan, J.C.L. Tropical cyclone intensity in vertical wind shear. J. Atmos. Sci. 2004, 61, 1859–1876. [Google Scholar] [CrossRef]
SST | No_CW | ET_CW | WT_CW | |
---|---|---|---|---|
Res | ||||
12 km | Using 00 UTC 27 August SST : (No Cold Wake) ex) SST: No_CW, Res: 6 km, EXP: No_CW_6 km | : (Eastern region of Tembin Cold Wake) ex) SST: ET_CW, Res: 8 km, EXP: No_CW_8 km | : (Western region of Tembin Cold Wake) ex) SST: WT_CW, Res: 12 km, EXP: WT_CW_12 km | |
8 km | ||||
6 km |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moon, M.; Ha, K.-J. Effect of Typhoon-Generated Cold Wake on the Subsequent Typhoon Tembin and Its Sensitivity to Horizontal Resolutions. Atmosphere 2019, 10, 644. https://doi.org/10.3390/atmos10110644
Moon M, Ha K-J. Effect of Typhoon-Generated Cold Wake on the Subsequent Typhoon Tembin and Its Sensitivity to Horizontal Resolutions. Atmosphere. 2019; 10(11):644. https://doi.org/10.3390/atmos10110644
Chicago/Turabian StyleMoon, Mincheol, and Kyung-Ja Ha. 2019. "Effect of Typhoon-Generated Cold Wake on the Subsequent Typhoon Tembin and Its Sensitivity to Horizontal Resolutions" Atmosphere 10, no. 11: 644. https://doi.org/10.3390/atmos10110644
APA StyleMoon, M., & Ha, K. -J. (2019). Effect of Typhoon-Generated Cold Wake on the Subsequent Typhoon Tembin and Its Sensitivity to Horizontal Resolutions. Atmosphere, 10(11), 644. https://doi.org/10.3390/atmos10110644