Sensitivity to Convective Schemes on Precipitation Simulated by the Regional Climate Model MAR over Belgium (1987–2017)
Abstract
:1. Introduction
2. Methods and Data
2.1. Study Area and Evaluation Dataset
2.2. The MAR Model and Set-Up
2.3. Description of the Convective Schemes
- the mass flux scheme of Kain-Fritsch [10] (called KFS or MAR–KFS in MAR sensitivity experiments);
3. Results
3.1. Evaluation with In Situ Observation of Precipitation
3.2. Changes in Precipitation over 1987–2017 in Belgium
3.2.1. Annual Precipitation
3.2.2. Convective Precipitation
3.2.3. Extreme Precipitation
4. Discussion
- MAR-STD simulates the smallest precipitation amounts, for both total annual precipitation and convective precipitation;
- MAR-NTK simulates the largest total annual precipitation while MAR-KFS simulates the largest contribution of convective precipitation;
- MAR-MES behaves in the same way than MAR-STD but produces more mean annual precipitation, which being thus more in agreement with E-OBS than MAR-STD;
- MAR-BMJ seems to perform better for extreme precipitation events. This suggests that the BMJ scheme is more reactive to extreme precipitation than the other schemes. In contrast, the STD and MES schemes, which are the original convective schemes implemented in MAR, are better on average.
5. Conclusions
- The MAR simulations are in better agreement with the SYNOP weather station observations than the gridded E-OBS data during autumn and winter when stratiform precipitation is dominant and explicitly simulated by MAR. This is the opposite during summer when convective precipitation is dominant. The two configurations of MAR using the Bechtold scheme (MAR-STD and MAR-MES) both give the best results compared to the three other configurations.
- The MAR simulations show a significant increasing trend of the mean annual precipitation amount during years 1987–2017 over the North Sea and the coastal regions as corroborated by E-OBS. This increase is most likely due to an increase in convective precipitation over the same period as a result of a warming of the sea surface temperature favouring the formation of convective systems.
- The MAR simulations also show a significant decrease in precipitation amount over High Belgium for the period 1987–2017. Such a decrease can also be seen in E-OBS and might be explained by multidecadal oscillations in extreme precipitation amounts.
- All simulations show the same trends in extreme precipitation whatever the convective scheme used. The best agreement with E-OBS occurs with MAR-BMJ but the scheme performs less well than the two Bechtold’s convective schemes in the simulation of the annual averages. It should be noted that the MAR model has been originally developed with this scheme.
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
References
- Anagnostou, E.N. A convective/stratiform precipitation classification algorithm for volume scanning weather radar observations. Meteorol. Appl. 2004, 11, 291–300. [Google Scholar] [CrossRef]
- Houze, R. Stratiform precipitation in regions of convection. Bull. Am. Meteorol. Soc. 1997, 78, 2179–2195. [Google Scholar] [CrossRef]
- Ooyama, K. A Theory on Parameterization of Cumulus Convection. J. Meteorol. Soc. Jpn. Ser. II 1971, 49A, 744–756. [Google Scholar] [CrossRef]
- Kendon, E.J.; Ban, N.; Roberts, N.M.; Fowler, H.J.; Roberts, M.J.; Chan, S.C.; Evans, J.P.; Fosser, G.; Wilkinson, J.M.; Kendon, E.J.; et al. Do Convection-Permitting Regional Climate Models Improve Projections of Future Precipitation Change? Bull. Am. Meteorol. Soc. 2017, 98, 79–93. [Google Scholar] [CrossRef]
- Kuo, H.L.; Kuo, H.L. Further Studies of the Parameterization of the Influence of Cumulus Convection on Large-Scale Flow. J. Atmos. Sci. 1974, 31, 1232–1240. [Google Scholar] [CrossRef] [Green Version]
- Das, S.; Mitra, A.K.; Iyengar, G.R.; Mohandas, S. Comprehensive test of different cumulus parameterization schemes for the simulation of the Indian summer monsoon. Meteorol. Atmos. Phys. 2001, 78, 227–244. [Google Scholar] [CrossRef]
- Betts, A.K.; Miller, M.J. A new convective adjustment scheme. Part II: Single column tests using GATE wave, BOMEX, ATEX and arctic air-mass data sets. Q. J. R. Meteorol. Soc. 1986, 112, 693–709. [Google Scholar] [CrossRef]
- Janjić, Z.I. The Step-Mountain Eta Coordinate Model: Further Developments of the Convection, Viscous Sublayer and Turbulence Closure Schemes. Mon. Weather Rev. 1994, 122, 927–945. [Google Scholar] [CrossRef]
- Bechtold, P.; Bazile, E.; Guichard, F.; Mascart, P.; Richard, E. A mass-flux convection scheme for regional and global models. Q. J. R. Meteorol. Soc. 2001, 127, 869–886. [Google Scholar] [CrossRef]
- Kain, J.S. The Kain–Fritsch Convective Parameterization: An Update. J. Appl. Meteorol. 2004, 43, 170–181. [Google Scholar] [CrossRef]
- Tiedtke, M. A Comprehensive Mass Flux Scheme for Cumulus Parameterization in Large-Scale Models. Mon. Weather Rev. 1989, 117, 1779–1800. [Google Scholar] [CrossRef] [Green Version]
- Arakawa, A.; Schubert, W.H. Interaction of a Cumulus Cloud Ensemble with the Large-Scale Environment, Part I. J. Atmos. Sci. 1974, 31, 674–701. [Google Scholar] [CrossRef] [Green Version]
- Bechtold, P. Atmospheric moist convection. In Meteorological Training Course Lecture Series; ECMWF: Reading, UK, 2009; pp. 1–85. [Google Scholar]
- Rybka, H.; Tost, H. Uncertainties in future climate predictions due to convection parameterisations. Atmos. Chem. Phys. 2014, 14, 5561–5576. [Google Scholar] [CrossRef] [Green Version]
- Nikulin, G.; Jones, C.; Giorgi, F.; Asrar, G.; Büchner, M.; Cerezo-Mota, R.; Christensen, O.B.; Déqué, M.; Fernandez, J.; Hänsler, A.; et al. Precipitation Climatology in an Ensemble of CORDEX-Africa Regional Climate Simulations. J. Clim. 2012, 25, 6057–6078. [Google Scholar] [CrossRef] [Green Version]
- Kotlarski, S.; Keuler, K.; Christensen, O.B.; Colette, A.; Déqué, M.; Gobiet, A.; Goergen, K.; Jacob, D.; Lüthi, D.; van Meijgaard, E.; et al. Regional climate modelling on European scales: A joint standard evaluation of the EURO-CORDEX RCM ensemble. Geosci. Model Dev. 2014, 7, 1297–1333. [Google Scholar] [CrossRef]
- Huang, B.; Polanski, S.; Cubasch, U. Assessment of precipitation climatology in an ensemble of CORDEX-East Asia regional climate simulations. Clim. Res. 2015, 64, 141–158. [Google Scholar] [CrossRef]
- Wyard, C.; Scholzen, C.; Fettweis, X.; Van Campenhout, J.; François, L. Decrease in climatic conditions favouring floods in the south-east of Belgium over 1959–2010 using the regional climate model MAR. Int. J. Climatol. 2017, 37, 2782–2796. [Google Scholar] [CrossRef]
- Fettweis, X.; Box, J.E.; Agosta, C.; Amory, C.; Kittel, C.; Lang, C.; van As, D.; Machguth, H.; Gallée, H. Reconstructions of the 1900–2015 Greenland ice sheet surface mass balance using the regional climate MAR model. Cryosphere 2017, 11, 1015–1033. [Google Scholar] [CrossRef] [Green Version]
- Wyard, C.; Doutreloup, S.; Belleflamme, A.; Wild, M.; Fettweis, X. Global Radiative Flux and Cloudiness Variability for the Period 1959–2010 in Belgium: A Comparison between Reanalyses and the Regional Climate Model MAR. Atmosphere 2018, 9, 262. [Google Scholar] [CrossRef]
- Erpicum, M.; Nouri, M.; Demoulin, A. The climate of Belgium and Luxembourg. In Landscapes and Landforms of Belgium and Luxembourg; Springer: Cham, Switzerland, 2018; pp. 35–41. [Google Scholar]
- Alexandre, J.; Erpicum, M.; Vernemmen, C. Géographie de la Belgique: Le Climat. In Géographie de la Belgique; Denis, J., Ed.; Crédit Communal: Bruxelles, Belgium, 1992; pp. 88–128. ISBN 2871931526. [Google Scholar]
- Poelman, D.R. A 10-Year Study on the Characteristics of Thunderstorms in Belgium Based on Cloud-to-Ground Lightning Data. Mon. Weather Rev. 2014, 142, 4839–4849. [Google Scholar] [CrossRef]
- OGIMET Website. Available online: http://www.ogimet.com (accessed on 25 October 2017).
- Haylock, M.R.; Hofstra, N.; Klein Tank, A.M.G.; Klok, E.J.; Jones, P.D.; New, M. A European daily high-resolution gridded data set of surface temperature and precipitation for 1950–2006. J. Geophys. Res. 2008, 113, D20119. [Google Scholar] [CrossRef]
- Hofstra, N.; New, M.; Mcsweeney, C. The Influence of Interpolation and Station Network Density on the Distribution and Extreme Trends of Climate Variables in Gridded Data. 2009. Available online: https://www.ecad.eu/documents/Scalingpaper.pdf (accessed on 19 November 2018).
- Lenderink, G. Exploring metrics of extreme daily precipitation in a large ensemble of regional climate model simulations. Clim. Res. 2010, 44, 151–166. [Google Scholar] [CrossRef] [Green Version]
- Katragkou, E.; García-Díez, M.; Vautard, R.; Sobolowski, S.; Zanis, P.; Alexandri, G.; Cardoso, R.M.; Colette, A.; Fernandez, J.; Gobiet, A.; et al. Regional climate hindcast simulations within EURO-CORDEX: Evaluation of a WRF multi-physics ensemble. Geosci. Model Dev. 2015, 8, 603–618. [Google Scholar] [CrossRef]
- Smiatek, G.; Kunstmann, H.; Senatore, A. EURO-CORDEX regional climate model analysis for the Greater Alpine Region: Performance and expected future change. J. Geophys. Res. Atmos. 2016, 121, 7710–7728. [Google Scholar] [CrossRef] [Green Version]
- Lhotka, O.; Kyselý, J.; Plavcová, E. Evaluation of major heat waves’ mechanisms in EURO-CORDEX RCMs over Central Europe. Clim. Dyn. 2018, 50, 4249–4262. [Google Scholar] [CrossRef]
- Gallée, H.; Schayes, G. Development of a Three-Dimensional Meso-γ Primitive Equation Model: Katabatic Winds Simulation in the Area of Terra Nova Bay, Antarctica. Mon. Weather Rev. 1994, 122, 671–685. [Google Scholar] [CrossRef] [Green Version]
- Fettweis, X.; Franco, B.; Tedesco, M.; van Angelen, J.H.; Lenaerts, J.T.M.; van den Broeke, M.R.; Gallée, H. Estimating the Greenland ice sheet surface mass balance contribution to future sea level rise using the regional atmospheric climate model MAR. Cryosphere 2013, 7, 469–489. [Google Scholar] [CrossRef]
- Brasseur, O. Development and Application of a Physical Approach to Estimating Wind Gusts. Mon. Weather Rev. 2001, 129, 5–25. [Google Scholar] [CrossRef]
- Brasseur, O.; Gallée, H.; Creutin, J.-D.; Lebel, T.; Marbaix, P. High Resolution Simulations of Precipitation over the ALPS with the Perspective of Coupling to Hydrological Models; Springer: Dordrecht, The Netherlands, 2002; pp. 75–99. [Google Scholar]
- Fettweis, X.; Wyard, C.; Doutreloup, S.; Belleflamme, A. Noël 2010 En Belgique: Neige En Flandre Et Pluie En Haute-Ardenne. Bull. Soc. Géogr. Liège 2017, 68, 97–107. [Google Scholar]
- Termonia, P.; Van Schaeybroeck, B.; De Cruz, L.; De Troch, R.; Caluwaerts, S.; Giot, O.; Hamdi, R.; Vannitsem, S.; Duchêne, F.; Willems, P.; et al. The CORDEX.be initiative as a foundation for climate services in Belgium. Clim. Serv. 2018, 11, 49–61. [Google Scholar] [CrossRef]
- Gallée, H.; Moufouma-Okia, W.; Bechtold, P.; Brasseur, O.; Dupays, I.; Marbaix, P.; Messager, C.; Ramel, R.; Lebel, T. A high-resolution simulation of a West African rainy season using a regional climate model. J. Geophys. Res. 2004, 109, D05108. [Google Scholar] [CrossRef]
- Brasseur, O.; Ntezimana, V.; Gallee, H.; Schayes, G.; Tricot, C. Importance of the convective adjustment scheme in the simulation of the diurnal cycle of convective activity in Africa. In Proceedings of the International Conference on Tropical Climatology, Meteorology and Hydrology in Memoriam Franz Bultot, Bruxelles, Belgium, 22–24 May 1996; Royal Meteorological Institute of Belgium; Royal Academy of Overseas Science: Leuven, Belgium, 1998. [Google Scholar]
- De Ridder, K.; Gallée, H. Land Surface–Induced Regional Climate Change in Southern Israel. J. Appl. Meteorol. 1998, 37, 1470–1485. [Google Scholar] [CrossRef]
- Kessler, E. On the continuity and distribution of water substance in atmospheric circulations. Atmos. Res. 1995, 38, 109–145. [Google Scholar] [CrossRef]
- Lin, Y.-L.; Farley, R.D.; Orville, H.D. Bulk Parameterization of the Snow Field in a Cloud Model. J. Clim. Appl. Meteorol. 1983, 22, 1065–1092. [Google Scholar] [CrossRef] [Green Version]
- Levkov, L.; Rockel, B.; Kapitza, H.; Raschke, E. 3D mesoscale numerical 680 studies of cirrus and stratus clouds by their time and space evolution. Contrib. Atmos. Phys. 1992, 65, 35–58. [Google Scholar]
- Meyers, M.P.; DeMott, P.J.; Cotton, W.R. New Primary Ice-Nucleation Parameterizations in an Explicit Cloud Model. J. Appl. Meteorol. 1992, 31, 708–721. [Google Scholar] [CrossRef] [Green Version]
- Morcrette, J.-J. Assessment of the ECMWF Model Cloudiness and Surface Radiation Fields at the ARM SGP Site. Mon. Weather Rev. 2002, 130, 257–277. [Google Scholar] [CrossRef]
- Dee, D.P.; Uppala, S.M.; Simmons, A.J.; Berrisford, P.; Poli, P.; Kobayashi, S.; Andrae, U.; Balmaseda, M.A.; Balsamo, G.; Bauer, P.; et al. The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc. 2011, 137, 553–597. [Google Scholar] [CrossRef]
- Antic, S.; Laprise, R.; Denis, B.; de Elía, R. Testing the downscaling ability of a one-way nested regional climate model in regions of complex topography. Clim. Dyn. 2006, 26, 305–325. [Google Scholar] [CrossRef]
- Giorgi, F.; Gutowski, W.J. Regional Dynamical Downscaling and the CORDEX Initiative. Annu. Rev. Environ. Resour. 2015, 40, 467–490. [Google Scholar] [CrossRef]
- Lac, C.; Chaboureau, J.-P.; Masson, V.; Pinty, J.-P.; Tulet, P.; Escobar, J.; Leriche, M.; Barthe, C.; Aouizerats, B.; Augros, C.; et al. Overview of the Meso-NH model version 5.4 and its applications. Geosci. Model Dev. Discuss. 2018, 11, 1929–1969. [Google Scholar] [CrossRef]
- Skamarock, C.; Klemp, B.; Dudhia, J.; Gill, O.; Barker, D.; Duda, G.; Huang, X.; Wang, W.; Powers, G. A Description of the Advanced Research WRF Version 3; NCAR Technical Note NCAR/TN-475+STR; NCAR: Boulder Colorado, CO, USA, 2008. [Google Scholar]
- Zhang, C.; Wang, Y.; Hamilton, K. Improved Representation of Boundary Layer Clouds over the Southeast Pacific in ARW-WRF Using a Modified Tiedtke Cumulus Parameterization Scheme. Mon. Weather Rev. 2011, 139, 3489–3513. [Google Scholar] [CrossRef]
- Stergiou, I.; Tagaris, E.; Sotiropoulou, R.-E.P. Sensitivity Assessment of WRF Parameterizations over Europe. Proceedings 2017, 1, 119. [Google Scholar] [CrossRef]
- Argueso, D.; Hidalgo-muñoz, J.M.; Gamiz-fortis, S.R.; Esteban-Parra, M.J. Evaluation of WRF Parameterizations for Climate Studies over Southern Spain Using a Multistep Regionalization. J. Clim. 2011, 24, 5633–5651. [Google Scholar] [CrossRef]
- Pieri, A.B.; von Hardenberg, J.; Parodi, A.; Provenzale, A. Sensitivity of Precipitation Statistics to Resolution, Microphysics and Convective Parameterization: A Case Study with the High-Resolution WRF Climate Model over Europe. J. Hydrometeorol. 2015, 16, 1857–1872. [Google Scholar] [CrossRef]
- Torn, R.D.; Davis, C.A. The Influence of Shallow Convection on Tropical Cyclone Track Forecasts. Mon. Weather Rev. 2012, 140, 2188–2197. [Google Scholar] [CrossRef]
- Brown, B.R.; Hakim, G.J. Sensitivity of intensifying Atlantic hurricanes to vortex structure. Q. J. R. Meteorol. Soc. 2015, 141, 2538–2551. [Google Scholar] [CrossRef]
- Evans, J.P.; Ekström, M.; Ji, F. Evaluating the performance of a WRF physics ensemble over South-East Australia. Clim. Dyn. 2012, 39, 1241–1258. [Google Scholar] [CrossRef]
- Ratna, S.B.; Ratnam, J.V.; Behera, S.K.; Rautenbach, C.J.D.; Ndarana, T.; Takahashi, K.; Yamagata, T. Performance assessment of three convective parameterization schemes in WRF for downscaling summer rainfall over South Africa. Clim. Dyn. 2014, 42, 2931–2953. [Google Scholar] [CrossRef]
- Madala, S.; Satyanarayana, A.N.V.; Rao, T.N. Performance evaluation of PBL and cumulus parameterization schemes of WRF ARW model in simulating severe thunderstorm events over Gadanki MST radar facility—Case study. Atmos. Res. 2014, 139, 1–17. [Google Scholar] [CrossRef]
- Pohl, B.; Crétat, J.; Camberlin, P. Testing WRF capability in simulating the atmospheric water cycle over Equatorial East Africa. Clim. Dyn. 2011, 37, 1357–1379. [Google Scholar] [CrossRef]
- Ishak, A.M.; Bray, M.; Remesan, R.; Han, D. Seasonal evaluation of rainfall estimation by four cumulus parameterization schemes and their sensitivity analysis. Hydrol. Process. 2012, 26, 1062–1078. [Google Scholar] [CrossRef]
- Daniels, E.E.; Lenderink, G.; Hutjes, R.W.A.; Holtslag, A.A.M. Spatial precipitation patterns and trends in The Netherlands during 1951–2009. Int. J. Climatol. 2014, 34, 1773–1784. [Google Scholar] [CrossRef]
- Attema, J.J.; Lenderink, G. The influence of the North Sea on coastal precipitation in the Netherlands in the present-day and future climate. Clim. Dyn. 2014, 42, 505–519. [Google Scholar] [CrossRef]
- Joyce, A.E. The coastal temperature network and ferry route programme: Long-term temperature and salinity observations. Sci. Data Rep. 2006, 43, 129. [Google Scholar]
- Sherman, K.; Reilly, J.O.; Hyde, K. Variability of Large Marine Ecosystems in response to global climate change. Int. Counc. Explor. Seas 2007, 20, 46. [Google Scholar]
- Willems, P. Adjustment of extreme rainfall statistics accounting for multidecadal climate oscillations. J. Hydrol. 2013, 490, 126–133. [Google Scholar] [CrossRef]
- Moberg, A.; Jones, P.D.; Lister, D.; Walther, A.; Brunet, M.; Jacobeit, J.; Alexander, L.V.; Della-Marta, P.M.; Luterbacher, J.; Yiou, P.; et al. Indices for daily temperature and precipitation extremes in Europe analyzed for the period 1901–2000. J. Geophys. Res. 2006, 111, D22106. [Google Scholar] [CrossRef]
- Ntegeka, V.; Willems, P. Trends and multidecadal oscillations in rainfall extremes, based on a more than 100-year time series of 10 min rainfall intensities at Uccle, Belgium. Water Resour. Res. 2008, 44, W07402. [Google Scholar] [CrossRef]
- De Jongh, I.L.M.; Verhoest, N.E.C.; De Troch, F.P. Analysis of A 105-year time series of precipitation observed at Uccle, Belgium. Int. J. Climatol. 2006, 26, 2023–2039. [Google Scholar] [CrossRef]
- Madsen, H.; Lawrence, D.; Lang, M.; Martinkova, M.; Kjeldsen, T.R. Review of trend analysis and climate change projections of extreme precipitation and floods in Europe. J. Hydrol. 2014, 519, 3634–3650. [Google Scholar] [CrossRef] [Green Version]
- Royal Meteorological Institute. Royal Meteorological Institute of Belgium (RMI) Vigilence Climatique 2015; Royal Meteorological Institute of Belgium: Leuven, Belgium, 2015; Volulme 86. [Google Scholar]
- Cortés-Hernández, V.E.; Zheng, F.; Evans, J.; Lambert, M.; Sharma, A.; Westra, S. Evaluating regional climate models for simulating sub-daily rainfall extremes. Clim. Dyn. 2016, 47, 1613–1628. [Google Scholar] [CrossRef]
- Frigon, A.; Music, B.; Slivitzky, M. Sensitivity of runoff and projected changes in runoff over Quebec to the update interval of lateral boundary conditions in the Canadian RCM. Meteorol. Z. 2010, 19, 225–236. [Google Scholar] [CrossRef]
- Gao, X.; Shi, Y.; Song, R.; Giorgi, F.; Wang, Y.; Zhang, D. Reduction of future monsoon precipitation over China: Comparison between a high resolution RCM simulation and the driving GCM. Meteorol. Atmos. Phys. 2008, 100, 73–86. [Google Scholar] [CrossRef]
- Seth, A.; Giorgi, F. The Effects of Domain Choice on Summer Precipitation Simulation and Sensitivity in a Regional Climate Model. J. Clim. 1998, 11, 2698–2712. [Google Scholar] [CrossRef] [Green Version]
- Holland, G.; Done, J.; Bruyere, C.; Cooper, C.K.; Suzuki, A. Model Investigations of the Effects of Climate Variability and Change on Future Gulf of Mexico Tropical Cyclone Activity. In Proceedings of the Offshore Technology Conference, Houston, TX, USA, 3–6 May 2010. [Google Scholar]
- Sato, T.; Kimura, F.; Kitoh, A. Projection of global warming onto regional precipitation over Mongolia using a regional climate model. J. Hydrol. 2007, 333, 144–154. [Google Scholar] [CrossRef]
- AQUAPÔLE—ULg Étude et Modélisation des Impacts Hydrologiques de Pluies Exceptionnelles dans un Environnement Vallonné et Boisé; Université de Liège: Liège, Belgium, 2009; pp. 12–22.
- Huffman, G.; Bolvin, D.T.; Braithwaite, D.; Hsu, K.; Joyce, R.; Kidd, C.; Nelkin, E.J.; Xie, P. Integrated Multi-Satellite Retrievals for GPM (IMERG). In Algorithm Theoretical Basis Document (ATBD) Version 4.5; National Aeronautics Space Administration Goddard Space Flight Center: Greenbelt, MD, USA, 2015. [Google Scholar]
- Chen, F.; Li, X. Evaluation of IMERG and TRMM 3B43 Monthly Precipitation Products over Mainland China. Remote Sens. 2016, 8, 472. [Google Scholar] [CrossRef]
- Sharifi, E.; Steinacker, R.; Saghafian, B. Assessment of GPM-IMERG and Other Precipitation Products against Gauge Data under Different Topographic and Climatic Conditions in Iran: Preliminary Results. Remote Sens. 2016, 8, 135. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Doutreloup, S.; Wyard, C.; Amory, C.; Kittel, C.; Erpicum, M.; Fettweis, X. Sensitivity to Convective Schemes on Precipitation Simulated by the Regional Climate Model MAR over Belgium (1987–2017). Atmosphere 2019, 10, 34. https://doi.org/10.3390/atmos10010034
Doutreloup S, Wyard C, Amory C, Kittel C, Erpicum M, Fettweis X. Sensitivity to Convective Schemes on Precipitation Simulated by the Regional Climate Model MAR over Belgium (1987–2017). Atmosphere. 2019; 10(1):34. https://doi.org/10.3390/atmos10010034
Chicago/Turabian StyleDoutreloup, Sébastien, Coraline Wyard, Charles Amory, Christoph Kittel, Michel Erpicum, and Xavier Fettweis. 2019. "Sensitivity to Convective Schemes on Precipitation Simulated by the Regional Climate Model MAR over Belgium (1987–2017)" Atmosphere 10, no. 1: 34. https://doi.org/10.3390/atmos10010034
APA StyleDoutreloup, S., Wyard, C., Amory, C., Kittel, C., Erpicum, M., & Fettweis, X. (2019). Sensitivity to Convective Schemes on Precipitation Simulated by the Regional Climate Model MAR over Belgium (1987–2017). Atmosphere, 10(1), 34. https://doi.org/10.3390/atmos10010034