A Case Study of Stratus Cloud Properties Using In Situ Aircraft Observations over Huanghua, China
Abstract
:1. Introduction
2. Instrument and Measurements
3. Analysis and Results
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Warren, S.G.; Hahn, C.J.; London, J.; Chervin, R.M.; Jenne, R.L. Global Distribution of Total Cloud Cover and Cloud Type Amounts over the Ocean; NCAR Tech. Notes TN-317+STR or DOE/ER-0406; NCAR: Boulder, CO, USA, 1988. [Google Scholar]
- Manabe, S.; Wetherald, R.T. Thermal equilibrium of the atmosphere with a given distribution of relative humidity. J. Atmos. Sci. 1967, 24, 241–259. [Google Scholar] [CrossRef]
- Schneider, S.H. Cloudiness as a global climatic feedback mechanism: The effects on the radiation balance and surface temperature of variations in cloudiness. J. Atmos. Sci. 1972, 29, 1413–1422. [Google Scholar] [CrossRef]
- Ramanathan, V.; Cess, R.D.; Harrison, E.F.; Minnis, P.; Barkstrom, B.R. Cloud-radiative forcing and climate: Results from the Earth radiation budget experiment. Science 1989, 243, 57–63. [Google Scholar] [CrossRef] [PubMed]
- Harrison, E.F.; Minnis, P.; Barkstrom, B.R.; Ramanathan, V.; Cess, R.D.; Gibson, G.G. Seasonal variation of cloud radiative forcing derived from the Earth radiation budget experiment. J. Geophys. Res. 1990, 95, 18687–18703. [Google Scholar] [CrossRef]
- Sporre, M.K.; Glantz, P.; Tunved, P.; Swietlicki, E.; Kulmala, M.; Lihavainen, H. A study of the indirect aerosol effect on subarctic marine liquid low-level clouds using MODIS cloud 30 data and ground-based aerosol measurements. Atmos. Res. 2012, 116, 56–66. [Google Scholar] [CrossRef]
- Hartmann, D.L.; Ockert-Bell, M.E.; Michelsen, M.L. The effects of cloud type on the Earth’s energy balance: Global analysis. J. Clim. 1992, 5, 1281–1304. [Google Scholar] [CrossRef]
- Zhao, C.; Xie, S.; Stephen, A.K.; Protat, A.; Shupe, M.D.; McFarlane, S.A.; Comstock, J.M.; Delanoë, J.; Deng, M.; Dunn, M.; et al. Toward understanding of differences in current cloud retrievals of ARM ground-based measurements. J. Geophys. Res. 2012, 117, D10206. [Google Scholar] [CrossRef]
- Zhao, C.; Xie, S.; Chen, X.; Jensen, M.P.; Dunn, M. Quantifying uncertainties of cloud microphysical property retrievals with a perturbation method. J. Geophys. Res. Atmos. 2014, 119, 5375–5385. [Google Scholar] [CrossRef] [Green Version]
- Miles, N.L.; Verlinde, J.; Clothiaux, E.E. Cloud droplet size distributions in low-level stratiform clouds. J. Atmos. Sci. 2000, 57, 295–311. [Google Scholar] [CrossRef]
- Lawson, R.P.; Baker, B.A.; Schmitt, C.G. An overview of microphysical properties of Arctic clouds observed in May and July 1998 during FIRE ACE. J. Geophys. Res. 2001, 106, 14989–15014. [Google Scholar] [CrossRef] [Green Version]
- Dong, X.; Minnis, P.; Xi, B. A climatology of midlatitude continental clouds from the ARM SGP central facility: Part I: Low-level cloud macrophysical, microphysical, and radiative properties. J. Clim. 2005, 18, 1391–1410. [Google Scholar] [CrossRef]
- Lu, M.L.; Conant, W.C.; Jonsson, H.H.; Varutbangkul, V.; Flagan, R.C.; Seinfeld, J.H. The Marine Stratus/Stratocumulus Experiment (MASE): Aerosol-cloud relationships in marine stratocumulus. J. Geophys. Res. 2007, 112, D10209. [Google Scholar] [CrossRef]
- Dong, X.; Xi, B.; Crosby, K.; Long, C.N.; Stone, R. A 10 year climatology of Arctic cloud fraction and radiative forcing at Barrow, Alaska. J. Geophys. Res. 2010, 115, D12124. [Google Scholar] [CrossRef]
- Garrett, T.J.; Zhao, C. Ground-based remote sensing of thin clouds in the Arctic. Atmos. Meas. Tech. 2013, 6, 1227–1243. [Google Scholar] [CrossRef] [Green Version]
- Garrett, T.J.; Zhao, C.; Dong, X.; Mace, G.G.; Hobbs, P.V. Effects of Long-Range Pollution Transport on North American Arctic Stratus. Geophys. Res. Lett. 2004, 31, L17105. [Google Scholar] [CrossRef]
- Twomey, S. The influence of pollution on the shortwave albedo of clouds. J. Atmos. Sci. 1977, 34, 1149–1152. [Google Scholar] [CrossRef]
- Sassen, K.; Mace, G.G.; Wang, Z. Continetal stratus clouds: A case study using coordinated remote sensing and aircraft measurements. J. Atmos. Sci. 1999, 56, 2345–2358. [Google Scholar] [CrossRef]
- Wang, Y.F.; Lei, H.C.; Wu, Y.X.; Xiao, W.A.; Zhang, X.Q. Size distributions of the water drops in the warm layer of stratiform clouds in Yanan. J. Nanjing Inst. Meteorol. 2005, 28, 787–793. [Google Scholar]
- Zhao, Z.L.; Mao, J.T.; Wei, Q.; Ying, Y.J.; Wang, L.; Han, Z.G.; Li, C.C. A study of vertical structure of spring stratiform clouds in Northwest China. Meteorol. Mon. 2010, 36, 71–77. [Google Scholar]
- Wang, L.; Li, C.C.; Yao, Z.G.; Zhao, Z.L.; Han, Z.G.; Wei, Q. Application of aircraft observations over Beijing in cloud microphysical property retrievals from CloudSat. Adv. Atmos. Sci. 2014, 31, 926–937. [Google Scholar] [CrossRef]
- Zhao, C.; Qiu, Y.; Dong, X.; Wang, Z.; Peng, Y.; Li, B.; Wu, Z.; Wang, Y. Negative Aerosol-Cloud re Relationship from Aircraft Observations over Hebei, China. Earth Space Sci. 2018, 5, 19–29. [Google Scholar] [CrossRef]
- Burnet, F.; Brenguier, J.-L. Validation of droplet spectra and liquid water content measurements. Phys. Chem. 1999, 24, 249–254. [Google Scholar] [CrossRef]
- Baumgardner, D. An analysis and comparison of five water droplet measuring instruments. J. Appl. Meteorol. 1983, 22, 891–910. [Google Scholar] [CrossRef]
- Baumgardner, D.; Strapp, W.; Dye, J.E. Evaluation of the forward scattering spectrometer probe. Part II: Corrections for coincidence and dead-time losses. J. Atmos. Ocean. Technol. 1985, 2, 626–632. [Google Scholar] [CrossRef]
- Baumgardner, D.; Spowart, M. Evaluation of the forward scattering spectrometer probe. Part III: Time response and laser inhomogeneity limitations. J. Atmos. Oceanic. Technol. 1990, 7, 666–672. [Google Scholar] [CrossRef]
- Kleinman, L.I.; Daum, P.H.; Lee, Y.-N.; Lewis, E.R.; Sedlacek, A.J., III; Senum, G.I.; Springston, S.R.; Wang, J.; Hubbe, J.; Jayne, J.; et al. Aerosol concentration and size distribution measured below, in, and above cloud from the DOE G-1 during VOCALS-Rex. Atmos. Chem. Phys. 2012, 12, 207–223. [Google Scholar] [CrossRef]
- Yang, Y.; Zhao, C.; Dong, X.; Fan, G.; Zhou, Y.; Wang, Y.; Zhao, L.; Lv, F.; Yan, F. Toward understanding the process-level impacts of aerosols on microphysical properties of shallow cumulus cloud using aircraft observations. Atmos. Res. 2018. in review. [Google Scholar]
- Zhang, Q.; Quan, J.; Tie, X.; Huang, M.; Ma, X. Impact of aerosol particles on cloud formation: aircraft measurements in China. Atmos. Environ. 2011, 45, 665–672. [Google Scholar] [CrossRef]
- Hu, M.; Zhang, J.; Wu, Z.J. Chemical compositions of precipitation and scavenging of particles in Beijing. Sci. China Ser. B Chem. 2005, 48, 265–272. [Google Scholar] [CrossRef]
- Qian, L.; Yin, Y.; Tong, Y.Q.; Wang, W.W.; Wei, Y.X. Characteristics of size distributions of atmospheric fine particles in the north suburban area of Nanjing. China Environ. Sci. 2008, 28, 18–22. (In Chinese) [Google Scholar]
- Wang, H.; Zhu, B.; Shen, L.; Liu, X.; Zhang, Z.; Yang, Y. Size Distributions of Aerosol During the Spring Festival in Nanjing. Environ. Sci. 2014, 2, 442–450. [Google Scholar]
- Zhang, F.; Li, Z.; Li, R.J.; Sun, L.; Zhao, C.; Wang, P.C.; Sun, Y.L.; Li, Y.N.; Liu, X.G.; Li, J.X.; et al. Aerosol hygroscopicity and CCN activity obtained from a combination analysis based on size-resolved CCN and aerosol chemical composition observations during the AC3Exp13 campaign. Atmos. Chem. Phys. 2014, 14, 14889–14931. [Google Scholar] [CrossRef]
- Liu, P.; Zhao, C.; Zhang, Q.; Deng, Z.; Huang, M.; Ma, X.; Tie, X. Aircraft study of aerosol vertical distributions over Beijing and their optical properties. Tellus B 2009, 61, 756–767. [Google Scholar] [CrossRef] [Green Version]
- Hudson, J.G.; Frisbie, P.R. Cloud condensation nuclei near marine stratus. J. Geophys. Res. 1991, 96, 20795–20808. [Google Scholar] [CrossRef]
- Hudson, J.G. Cloud condensation nuclei near marine cumulus. J. Geophys. Res. 1993, 98, 2693–2702. [Google Scholar] [CrossRef]
- Weber, R.J.; Clarke, A.D.; Litchy, M.; Li, J.; Kok, G.; Schillawski, R.D.; McMurry, P.H. Spurious aerosol measurements when sampling from aircraft in the vicinity of clouds. J. Geophys. Res. 1998, 103, 28337–28346. [Google Scholar] [CrossRef] [Green Version]
- Craig, L.; Schanot, A.; Moharreri, A.; Roger, D.C.; Dhaniyala, S. Design and sampling characteristics of a new airborne aerosol inlet for aerosol measurements in clouds. J. Atmos. Ocean. Technol. 2013, 30, 1123–1135. [Google Scholar] [CrossRef]
- Martin, G.M.; Johnson, D.W.; Spice, A. The measurement and parameterization of effective radius of droplets in warm stratocumulus clouds. J. Atmos. Sci. 1994, 51, 1823–1842. [Google Scholar] [CrossRef]
- Wood, R. Parameterization of the effect of drizzle upon the droplets effective radius in stratocumulus clouds. Q. J. R. Meteorol. Soc. 2000, 126, 3309–3324. [Google Scholar] [CrossRef]
- Verlinde, J.; Harrington, J.Y.; Yannuzzi, V.T.; Avramov, A.; Greenberg, S.; Richardson, S.J.; Bahrmann, C.P.; McFarquhar, G.M.; Zhang, G.; Johnson, N.; et al. The Mixed-Phase Arctic Cloud Experiment. Bull. Am. Meteor. Soc. 2007, 88, 205–221. [Google Scholar] [CrossRef]
- McFarquhar, G.M.; Heymsfield, A.J. Microphysical characteristics of three anvils sampled during the Central Equatorial Pacific Experiment (CEPEX). J. Atmos. Sci. 1996, 53, 2401–2423. [Google Scholar] [CrossRef]
- Dong, X.; Minnis, P.; Mace, G.G.; Smith Jr, W.L.; Poellt, M.; Marchand, R.; Rapp, A.D. Comparison of stratus cloud properties deduced from surface, GOES, and aircraft data during the March 2000 ARM Cloud IOP. J. Atmos. Sci. 2002, 59, 3265–3284. [Google Scholar] [CrossRef]
- Heymsfield, A.J.; Schmitt, C.G.; Bansemer, A.; Baumgardner, D.; Weinstock, E.M.; Smith, J.T.; Sayres, D. Effective ice particle densities for cold anvil cirrus. Geophys. Res. Lett. 2004, 31, L02101. [Google Scholar] [CrossRef]
- McFarquhar, G.M.; Zhang, G.; Poellot, M.R.; Kok, G.L.; McCoy, R.; Tooman, T.; Fridlind, A.; Heymsfield, A.J. Ice properties of single-layer stratocumulus during the Mixed-Phase Arctic Cloud Experiment: 1. Observations. J. Geophys. Res. 2007, 112, D24201. [Google Scholar] [CrossRef]
- Yost, C.R.; Minnis, P.; Ayers, J.K.; Palikonda, R.; Spangenberg, D.; Change, F.L.; Sun-Mack, S.; Heck, P.W.; Lawson, R.P. Evaluation of In-Situ and Satellite-Derived Cirrus Microphysical Properties During SPARTICUS. Available online: https://asr.science.energy.gov/meetings/stm/posters/poster_pdf/2011/P000458.pdf (accessed on 25 November 2018).
- Lu, C.; Liu, Y.; Niu, S.; Krueger, S.; Wagner, T. Exploring parameterization for turbulent entrainment-mixing processes in clouds. J. Geophys. Res. 2013, 118, 185–194. [Google Scholar] [CrossRef] [Green Version]
- Bennartz, R. Global assessment of marine boundary layer cloud droplet number concentration from satellite. J. Geophys. Res. 2007, 112, D02201. [Google Scholar] [CrossRef]
- Ahmad, I.; Mielonen, T.; Grosvenor, D.; Portin, H.; Arola, A.; Mikkonen, S.; Kühn, T.; Leskinen, A.; Juotsensaari, J.; Komppula, M.; et al. Long-term measurements of cloud droplet concentrations and aerosol-cloud interactions in continental boundary layer clouds. Tellus B 2013, 65, 20138. [Google Scholar] [CrossRef]
- Albrecht, B.A. Aerosols, Cloud Microphysics, and Fractional Cloudiness. Science 1989, 245, 1227–1230. [Google Scholar] [CrossRef]
- Feingold, G.; Eberhard, W.L.; Veron, D.E.; Previdi, M. First measurements of the Twomey indirect effect using ground-based remote sensors. Geophys. Res. Lett. 2003, 30, 1287. [Google Scholar] [CrossRef]
- Garrett, T.J.; Zhao, C. Increased Arctic cloud longwave emissivity associated with pollution from mid-latitudes. Nature 2006, 440, 787–789. [Google Scholar] [CrossRef]
- Qiu, Y.; Zhao, C.; Guo, J.; Li, J. 8-Year ground-based observational analysis about the seasonal variation of the aerosol-cloud droplet effective radius relationship at SGP site. Atmos. Environm. 2017, 164, 139–146. [Google Scholar] [CrossRef]
Variable | PBL Cloud Layer | Low Layer Above the PBL | Upper Layer Above the PBL | |||
---|---|---|---|---|---|---|
Mean | Standard Deviation | Mean | Standard Deviation | Mean | Standard Deviation | |
Na | 583.13 | 142.26 | 167.47 | 35.55 | 64.35 | 32.2 |
CCN | 191.16 | 71.74 | 50.45 | 18.46 | 14.18 | 25.49 |
Nc | 320.25 | 138.41 | 116.06 | 68.56 | 52.34 | 14.48 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, C.; Zhao, L.; Dong, X. A Case Study of Stratus Cloud Properties Using In Situ Aircraft Observations over Huanghua, China. Atmosphere 2019, 10, 19. https://doi.org/10.3390/atmos10010019
Zhao C, Zhao L, Dong X. A Case Study of Stratus Cloud Properties Using In Situ Aircraft Observations over Huanghua, China. Atmosphere. 2019; 10(1):19. https://doi.org/10.3390/atmos10010019
Chicago/Turabian StyleZhao, Chuanfeng, Lijun Zhao, and Xiaobo Dong. 2019. "A Case Study of Stratus Cloud Properties Using In Situ Aircraft Observations over Huanghua, China" Atmosphere 10, no. 1: 19. https://doi.org/10.3390/atmos10010019
APA StyleZhao, C., Zhao, L., & Dong, X. (2019). A Case Study of Stratus Cloud Properties Using In Situ Aircraft Observations over Huanghua, China. Atmosphere, 10(1), 19. https://doi.org/10.3390/atmos10010019