Impact of Short-Term Fasting on The Rhythmic Expression of the Core Circadian Clock and Clock-Controlled Genes in Skeletal Muscle of Crucian Carp (Carassius auratus)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals and Tissue Collection
2.2. RNA Extraction and complementary DNA Synthesis
2.3. Quantitative Real-Time PCR (qPCR)
2.4. Statistical Analysis
3. Results
3.1. Rhythmic Expression of Core Clock and Functional Genes during a Daily Cycle in the Muscle of Normally Fed Crucian Carp
3.2. Rhythmic Expression of Core Clock and Functional Genes during a Daily Cycle in the Muscle of Crucian Carp after 7-Day Fasting
3.3. Rhythmic Expression of Core Clock and Functional Genes during a Daily Cycle in the Muscle of Crucian Carp after 15-Day Fasting
3.4. Gene Correlation Analysis
3.5. Effects of Starvation on Circadian Clock and Functional Genes in Crucian Carp
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Ethical Approval
Conflicts of Interest
References
- Hardin, P.E.; Panda, S. Circadian timekeeping and output mechanisms in animals. Curr. Opin. Neurobiol. 2013, 23, 724–731. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferrell, J.M.; Chiang, J.Y.L. Circadian rhythms in liver metabolism and disease. Acta Pharm. Sin. B 2015, 5, 113–122. [Google Scholar] [CrossRef] [PubMed]
- Bao, L.; Wang, J.; Bin, S.; Li, Y.; Chu, W.; Zhang, J. Effects of short-term fasting on the rhythmic expression of core circadian clock and functional genes in skeletal muscle of goldfish (Carassius auratus). Comp. Biochem. Phys. B 2018, 226, 91–98. [Google Scholar] [CrossRef] [PubMed]
- Falcón, J.; Besseau, L.; Sauzet, S.; Boeuf, G. Melatonin effects on the hypothalamo-pituitary axis in fish. Trends Endocrinol. Metab. 2007, 18, 81–88. [Google Scholar] [CrossRef] [PubMed]
- Herbert, U.; Steele, C.T.; Bora, Z. Circadian organization and the role of the pineal in birds. Microsc. Res. Tech. 2001, 53, 48–62. [Google Scholar]
- Stanewsky, R. Clock mechanisms in Drosophila. Cell Tissue Res. 2002, 309, 11–26. [Google Scholar] [CrossRef] [PubMed]
- Shavlakadze, T.; Anwari, T.; Soffe, Z.; Cozens, G.; Mark, P.J.; Gondro, C.; Grounds, M.D. Impact of fasting on the rhythmic expression of myogenic and metabolic factors in skeletal muscle of adult mice. Am. J. Physiol. Cell Physiol. 2013, 305, C26–C35. [Google Scholar] [CrossRef] [PubMed]
- Costa, L.S.; Serrano, I.; Sánchez-Vázquez, F.J.; López-Olmeda, J.F. Circadian rhythms of clock gene expression in Nile tilapia (Oreochromis niloticus) central and peripheral tissues: influence of different lighting and feeding conditions. J. Comp. Physiol. B 2016, 186, 775–785. [Google Scholar] [CrossRef] [PubMed]
- Lowrey, P.L.; Takahashi, J.S. Mammalian circadian biology: Elucidating genome-wide levels of temporal organization. Ann. Rev. Genomics Hum. Genet. 2004, 5, 407–441. [Google Scholar] [CrossRef] [PubMed]
- Ripperger, J.A.; Jud, C.; Albrecht, U. The daily rhythm of mice. FEBS Lett. 2011, 585, 1384–1392. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Amaral, I.P.; Johnston, I.A. Circadian expression of clock and putative clock-controlled genes in skeletal muscle of the zebrafish. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2012, 302, R193–R206. [Google Scholar] [CrossRef] [PubMed]
- Wang, H. Comparative analysis of teleost fish genomes reveals preservation of different ancient clock duplicates in different fishes. Mar. Genomics 2008, 1, 69–78. [Google Scholar] [CrossRef] [PubMed]
- Feliciano, A.; Vivas, Y.; Pedro, N.D.; Delgado, M.J.; Velarde, E.; Isorna, E. Feeding time synchronizes clock gene rhythmic expression in brain and liver of goldfish (Carassius auratus). J. Biol. Rhythms 2011, 26, 24–33. [Google Scholar] [CrossRef] [PubMed]
- Montoya, A.; López-Olmeda, J.F.; Garayzar, A.B.S.; Sánchez-Vázquez, F.J. Synchronization of daily rhythms of locomotor activity and plasma glucose, cortisol and thyroid hormones to feeding in Gilthead seabream (Sparus aurata) under a light–dark cycle. Physiol. Behav. 2010, 101, 101–107. [Google Scholar] [CrossRef] [PubMed]
- Martín-Robles, Á.J.; Whitmore, D.; Sánchez-Vázquez, F.J.; Pendón, C.; Muñoz-Cueto, J.A. Cloning, tissue expression pattern and daily rhythms of Period1, Period2, and Clock transcripts in the flatfish Senegalese sole, Solea senegalensis. J. Comp. Physiol. B 2012, 182, 673–685. [Google Scholar] [CrossRef] [PubMed]
- Lazado, C.C.; Kumaratunga, H.P.; Nagasawa, K.; Babiak, I.; Giannetto, A.; Fernandes, J.M. Daily rhythmicity of clock gene transcripts in atlantic cod fast skeletal muscle. PloS ONE 2014, 9, e99172. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, P.; Li, Y.L.; Cheng, J.; Chen, L.; Zhu, X.; Feng, Z.G.; Zhang, J.S.; Chu, W.Y. Daily rhythmicity of clock gene transcript levels in fast and slow muscle fibers from Chinese perch (Siniperca chuatsi). BMC Genomics 2016, 17, 1008. [Google Scholar] [CrossRef] [PubMed]
- Pozo, A.D.; Vera, L.M.; Sánchez, J.A. Molecular cloning, tissue distribution and daily expression of cry1 and cry2 clock genes in European seabass (Dicentrarchus labrax). Comp. Biochem. Physiol. A Mol. Integr. Physiol. 2012, 163, 364–371. [Google Scholar] [CrossRef] [PubMed]
- Delgado, M.J.; Alonso-Gómez, A.L.; Gancedo, B.; De, P.N.; Valenciano, A.I.; Alonso-Bedate, M. Serotonin n-acetyltransferase (nat) activity and melatonin levels in the frog retina are not correlated during the seasonal cycle. Gen. Comp. Endocrinol. 1993, 92, 143–150. [Google Scholar] [CrossRef] [PubMed]
- Vivienroels, B.; Arendt, J.; Bradtke, J. Circadian and circannual fluctuations of pineal indoleamines (serotonin and melatonin) in Testudo hermanni gmelin (Reptilia, Chelonia): I. Under natural conditions of photoperiod and temperature. Gen. Comp. Endocrinol. 1979, 37, 197–210. [Google Scholar] [CrossRef]
- Velarde, E.; Haque, R.; Iuvone, P.M.; Azpeleta, C.; Alonso-Gómez, A.L.; Delgado, M.J. Circadian clock genes of goldfish, Carassius auratus: cDNA cloning and rhythmic expression of Period and Cryptochrome transcripts in retina, liver, and gut. J. Biol. Rhythms 2009, 24, 104–113. [Google Scholar] [CrossRef] [PubMed]
- Cahill, G.M. Clock mechanisms in zebrafish. Cell Tissue Res. 2002, 309, 27–34. [Google Scholar] [CrossRef] [PubMed]
- Patiño, M.A.L.; Rodríguez-Illamola, A.; Conde-Sieira, M.; Soengas, J.L.; Míguez, J.M. Daily Rhythmic Expression Patterns of Clock1a, Bmal1, and Per1 Genes in Retina and Hypothalamus of the Rainbow Trout, Oncorhynchus mykiss. Chronobiol. Int. 2011, 28, 381–389. [Google Scholar] [CrossRef] [PubMed]
- Vera, L.M.; Negrini, P.; Zagatti, C.; Frigato, E.; Sánchez-Vázquez, F.J.; Bertolucci, C. Light and feeding entrainment of the molecular circadian clock in a marine teleost (Sparus aurata). Chronobiol. Int. 2013, 30, 649–661. [Google Scholar] [CrossRef] [PubMed]
- Cuesta, I.H.; Lahiri, K.; López-Olmeda, J.F.; Loosli, F.; Foulkes, N.S.; Vallone, D. Differential maturation of rhythmic clock gene expression during early development in medaka (Oryzias latipes). Chronobiol. Int. 2014, 31, 468–478. [Google Scholar] [CrossRef] [PubMed]
- Schmutz, I.; Albrecht, U.; Ripperger, J.A. The role of clock genes and rhythmicity in the liver. Mol. Cell. Endocrinol. 2012, 349, 38–44. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rey, G.; Cesbron, F.; Rougemont, J.; Reinke, H.; Brunner, M.; Naef, F. Genome-Wide and Phase-Specific DNA-Binding Rhythms of BMAL1 Control Circadian Output Functions in Mouse Liver. PLoS Biol. 2011, 9, e1000595. [Google Scholar] [CrossRef] [PubMed]
- Canaple, L.; Rambaud, J.; Dkhissibenyahya, O.; Rayet, B.; Tan, N.S.; Michalik, L.; Delaunay, F.; Wahli, W.; Laudet, V. Reciprocal regulation of brain and muscle Arnt-like protein 1 and peroxisome proliferator-activated receptor αdefines a novel positive feedback loop in the rodent liver circadian clock. Mol. Endocrinol. 2006, 20, 1715–1727. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hirota, T.; Fukada, Y. Resetting Mechanism of Central and Peripheral Circadian Clocks in Mammals. Zoolog. Sci. 2004, 21, 359–368. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sánchez, J.A.; Madrid, J.A.; Sánchez-Vázquez, F.J. Molecular cloning, tissue distribution, and daily rhythms of expression of per1 gene in European sea bass (Dicentrarchus labrax). Chronobiol. Int. 2010, 27, 19–33. [Google Scholar] [CrossRef] [PubMed]
- Castillo, J.; Le, B.P.; Paboeuf, G.; Navarro, I.; Weil, C.; Fauconneau, B.; Gutiérrez, J. IGF-I binding in primary culture of muscle cells of rainbow trout: changes during in vitro development. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2002, 283, R647–R652. [Google Scholar] [CrossRef] [PubMed]
- Zhong, H.; Li, J.; Zhou, Y.; Li, H.; Tang, Y.; Yu, J.; Yu, F. A transcriptome resource for common carp after growth hormone stimulation. Mar. Genomics 2016, 25, 25–27. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.; Li, Y.L.; Liu, L.; Wang, J.H.; Li, H.H.; Wu, P.; Chu, W.Y.; Zhang, J.S. Molecular characterization of Myf5 and comparative expression patterns of myogenic regulatory factors in Siniperca chuatsi. Gene Expr. Patterns 2016, 20, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Andrews, J.L.; Zhang, X.; Mccarthy, J.J.; Mcdearmon, E.L.; Hornberger, T.A.; Russell, B.; Campbell, K.S.; Arbogast, S.; Reid, M.B.; Walker, J.R. CLOCK and BMAL1 regulate MyoD and are necessary for maintenance of skeletal muscle phenotype and function. Proc. Natl. Acad. Sci. USA 2010, 107, 19090–19095. [Google Scholar] [CrossRef] [PubMed]
Gene | Forward Primer (5′-3′) | Reverse Primer (5′-3′) | Tm (°C) |
---|---|---|---|
Clock | CTCATTGGTCATCTGCCGTC | GGTGGTTCTTTCGGGTCAAT | 62 |
Bmal1a | AAGCCAGCATTCTTGTCGGA | AAACCGACTCCGAGACGAAC | 62 |
Cry1 | AGTCGCTTGTTTCCTCACCC | ACAGCCACATCCAGCTTCCT | 57 |
Cry2 | CCAACCCCCGATTTGATAAG | TGAGAAAACAAGCGACAGCG | 62 |
Cry3 | TCAATCACTGTTCGCAAGCC | AAAACTCTCGCCACAGCAGC | 62 |
Per1 | GAATGAGCACCAGCAAAGCG | CGGGAATCAATGAAGACCTG | 62 |
Per2 | CCGCAAAGTTTCCTTCGTCA | ATCCTCTTCCTCTTGTCGCA | 62 |
Per3 | GCAGCCTCTACAAGAAGCCC | GCCGCTGTGGGTTTGTCTTC | 62 |
Ampk1a | CTCAGCGGTAGATTACTGCCACA | ACATTTTCAGGCTTGAGGTCTCT | 62 |
Ampk1b | CACCCCTCCGTTATTAGCCT | CTTCTCGCACACCTCCTTCA | 62 |
EPO | ATTACGCCCCATCTGTGACC | GACGCCTGTAATGAGCCGAT | 62 |
EPOR | GATACGCAGCGGAGGGAAGT | GCGTGACTCCAAACACAGGC | 63 |
ERK2 | CCACAGAGACCTGAAGCCAT | CCAGAATACAACCCACCGAC | 60 |
Fas | CCCCGAAGAAATGGAAAACT | TTGCTGCCACGCATAGACAC | 62 |
GH | TGAAAATGGGCATCAGTGTG | TGAAGCAAGCCAGCAGACGA | 62 |
GHR | CACACAGCAGTCCATCTACGG | TCACCACTCCAATCATTCCAA | 62 |
IGF1R1 | GAACCACAAAAACCCAACGG | CCGCACACGGGCAGAATAGT | 63 |
IGF1R2 | AGGACAAGCACATTCTGGGG | TGCCAACGGAGCAGGTAGAG | 58 |
IGF2 | GAGTGCTGCTTTCGGAGTTG | TGGATGGGACCCCTCTTCTT | 62 |
JNK1 | CTGGAGCACAAGGCATCGTC | GGGTTTGGTTCTGGAAGGGT | 60 |
LPL | GATGGACGGTCACGGGTATG | GTGTAGGGTAGTGCTGTTGCG | 62 |
MyoD | CACACAGCAGTCCATCTACGG | TCACCACTCCAATCATTCCAA | 63 |
MyoG | TTTTTACGAAGGCGGCGATA | AGTGCTGCTGCTCCTGGTGA | 62 |
MSTN | CGGCTGGGACTGGATTATTG | GGAGACATCTTGGTGGGGGT | 56 |
Pnp5a | GCAGGGACGGTTTCATCTCTA | TGTTTCCAGCAAATCCAGGCA | 62 |
PPARα | AATGCCACAGTCGGAGAAGC | GGAGGTGTGCTCGTCTTGCC | 62 |
Ucp1 | CTGCCCAACATCACGAGGAA | CGAACGCAGACACGAAATGA | 54 |
β-actin | CCGTGACATCAAGGAGAAGC | GGAAGGATGGCTGGAAAAGA | 58 |
Gene | Fed | Fasted-7d | Fasted-15d | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Amplitude | Mesor | Acrophase (h) | p-value | p | Amplitude | Mesor | Acrophase (h) | p-value | p | Amplitude | Mesor | Acrophase (h) | p-value | p | |
Clock | 4.82 | 4.78 | 18.43 | 0.08 | >0.05 | 2.62 | 4.34 | 9.54 | 0.06 | >0.05 | 0.99 | 2.60 | 2.03 | 0.24 | >0.05 |
Bmal1a | 0.65 | 0.90 | 16.08 | 0.20 | >0.05 | 0.97 | 0.93 | 11.15 | 0.20 | >0.05 | - | - | - | - | <0.05 |
Cry1 | 0.11 | 0.29 | 7.95 | 0.51 | >0.05 | - | - | - | - | <0.05 | 0.26 | 0.90 | 3.04 | 0.76 | >0.05 |
Cry2 | - | - | - | - | <0.05 | - | - | - | - | <0.05 | 0.27 | 2.02 | 15.01 | 0.93 | >0.05 |
Cry3 | 0.16 | 1.14 | 23.45 | 0.68 | >0.05 | 0.31 | 0.64 | 18.69 | 0.14 | >0.05 | - | - | - | - | <0.05 |
Per1 | 0.23 | 0.34 | 15.55 | 0.22 | >0.05 | 0.33 | 0.66 | 17.38 | 0.37 | >0.05 | 1.95 | 2.27 | 1.30 | 0.00 | >0.05 |
Per2 | 0.63 | 0.88 | 2.98 | 0.42 | >0.05 | 1.71 | 1.68 | 12.07 | 0.24 | >0.05 | 1.15 | 2.13 | 18.82 | 0.32 | >0.05 |
Per3 | 0.04 | 0.13 | 1.49 | 0.55 | >0.05 | 0.16 | 0.38 | 3.82 | 0.60 | >0.05 | 1.12 | 1.00 | 3.99 | 0.00 | >0.05 |
Ampk1a | 0.14 | 0.55 | 19.72 | 0.61 | >0.05 | 0.38 | 1.49 | 11.80 | 0.67 | >0.05 | 3.84 | 6.74 | 8.77 | 0.10 | >0.05 |
Ampk1b | - | - | - | - | <0.05 | 0.62 | 0.94 | 12.57 | 0.35 | >0.05 | 1.80 | 3.87 | 19.75 | 0.30 | >0.05 |
Erk2 | 0.21 | 0.45 | 16.23 | 0.57 | >0.05 | 0.15 | 0.51 | 14.78 | 0.58 | >0.05 | 0.49 | 1.88 | 0.34 | 0.71 | >0.05 |
EPO | 0.87 | 1.29 | 14.77 | 0.04 | >0.05 | 0.68 | 0.78 | 23.11 | 0.10 | >0.05 | 0.19 | 0.79 | 22.92 | 0.71 | >0.05 |
EPOR | 0.72 | 1.54 | 17.44 | 0.57 | >0.05 | 0.44 | 1.58 | 5.58 | 0.80 | >0.05 | 1.57 | 3.38 | 15.62 | 0.60 | >0.05 |
FAS | 0.12 | 0.14 | 8.29 | 0.07 | >0.05 | 0.09 | 0.34 | 16.12 | 0.64 | >0.05 | - | - | - | - | <0.05 |
GH | 0.28 | 0.77 | 21.81 | 0.55 | >0.05 | 0.50 | 1.15 | 12.95 | 0.25 | >0.05 | - | - | - | - | <0.05 |
GHR | 0.35 | 1.14 | 19.06 | 0.66 | >0.05 | - | - | - | - | <0.05 | 2.77 | 6.99 | 22.19 | 0.38 | >0.05 |
IGF1R1 | 0.14 | 0.64 | 14.44 | 0.81 | >0.05 | 0.27 | 0.58 | 14.67 | 0.32 | >0.05 | 1.65 | 2.40 | 10.77 | 0.37 | >0.05 |
IGF1R2 | 0.41 | 0.49 | 21.83 | 0.01 | >0.05 | - | - | - | - | <0.05 | 0.02 | 1.13 | 4.32 | 1.00 | >0.05 |
IGF2 | 0.13 | 0.89 | 23.15 | 0.60 | >0.05 | 0.47 | 0.82 | 11.99 | 0.17 | >0.05 | 0.25 | 1.29 | 5.65 | 0.91 | >0.05 |
Jnk1 | 0.15 | 0.29 | 13.91 | 0.26 | >0.05 | 0.08 | 0.32 | 16.95 | 0.70 | >0.05 | - | - | - | - | <0.05 |
LPL | 0.17 | 1.39 | 4.85 | 0.96 | >0.05 | - | - | - | - | <0.05 | 0.95 | 2.56 | 20.41 | 0.28 | >0.05 |
Mstn | 0.01 | 0.12 | 20.64 | 0.93 | >0.05 | 0.42 | 0.64 | 16.39 | 0.01 | >0.05 | - | - | - | - | <0.05 |
MyoD | 0.37 | 1.00 | 17.51 | 0.59 | >0.05 | 0.55 | 1.52 | 13.43 | 0.54 | >0.05 | - | - | - | - | <0.05 |
MyoG | 0.46 | 0.41 | 2.94 | 0.19 | >0.05 | 0.12 | 0.39 | 20.37 | 0.30 | >0.05 | 0.47 | 0.55 | 23.65 | 0.29 | >0.05 |
Pnp5a | 0.27 | 0.48 | 3.27 | 0.33 | >0.05 | 1.03 | 1.05 | 19.06 | 0.20 | >0.05 | 0.85 | 1.08 | 0.33 | 0.20 | >0.05 |
PPARa | - | - | - | - | <0.05 | - | - | - | - | <0.05 | 3.93 | 4.99 | 2.98 | 0.18 | >0.05 |
Ucp1 | 0.13 | 0.35 | 21.84 | 0.61 | >0.05 | 0.95 | 1.01 | 21.40 | 0.23 | >0.05 | 0.98 | 0.88 | 4.55 | 0.03 | >0.05 |
Fed | Fasted-7d | Fasted-15d | |||
---|---|---|---|---|---|
Gene Pairs | r | Gene Pairs | r | Gene Pairs | r |
Clock:MyoG | −0.55 | Clock:Cry3 | −0.63 | Clock:Per1 | 0.52 |
Per1:Jnk1 | 0.89 | Bmal1a: Per2 | 0.98 | Per1:Per3 | 0.83 |
Clock:EPO | −0.58 | Clock:Pnp5a | 0.67 | ||
Bmal1a: GH | 0.86 | Clock:Ucp1 | 0.63 | ||
Bmal1a:IGF2 | 0.88 | Per1:MyoG | 0.60 | ||
Cry3:EPO | 0.62 | Per1: Pnp5a | 0.65 | ||
Cry3: MSTN | 0.77 | Per3:MyoG | 0.68 | ||
Per2:GH | 0.87 | Per3: Pnp5a | 0.79 | ||
Per2: IGF2 | 0.88 | Per3: Ppara | 0.56 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, P.; Bao, L.; Zhang, R.; Li, Y.; Liu, L.; Wu, Y.; Zhang, J.; He, Z.; Chu, W. Impact of Short-Term Fasting on The Rhythmic Expression of the Core Circadian Clock and Clock-Controlled Genes in Skeletal Muscle of Crucian Carp (Carassius auratus). Genes 2018, 9, 526. https://doi.org/10.3390/genes9110526
Wu P, Bao L, Zhang R, Li Y, Liu L, Wu Y, Zhang J, He Z, Chu W. Impact of Short-Term Fasting on The Rhythmic Expression of the Core Circadian Clock and Clock-Controlled Genes in Skeletal Muscle of Crucian Carp (Carassius auratus). Genes. 2018; 9(11):526. https://doi.org/10.3390/genes9110526
Chicago/Turabian StyleWu, Ping, Lingsheng Bao, Ruiyong Zhang, Yulong Li, Li Liu, Yuanan Wu, Jianshe Zhang, Zhigang He, and Wuying Chu. 2018. "Impact of Short-Term Fasting on The Rhythmic Expression of the Core Circadian Clock and Clock-Controlled Genes in Skeletal Muscle of Crucian Carp (Carassius auratus)" Genes 9, no. 11: 526. https://doi.org/10.3390/genes9110526
APA StyleWu, P., Bao, L., Zhang, R., Li, Y., Liu, L., Wu, Y., Zhang, J., He, Z., & Chu, W. (2018). Impact of Short-Term Fasting on The Rhythmic Expression of the Core Circadian Clock and Clock-Controlled Genes in Skeletal Muscle of Crucian Carp (Carassius auratus). Genes, 9(11), 526. https://doi.org/10.3390/genes9110526