Development of Genome-Wide SSR Markers from Angelica gigas Nakai Using Next Generation Sequencing
Abstract
:1. Introduction
2. Material and Methods
2.1. Plant Material and DNA Isolation
2.2. Genomic DNA Sequencing and Sequence Assembly
2.3. SSR Findings and Primer Designs
2.4. In Silico SSR Polymorphism Screening
2.5. PCR Amplification and Genotyping
3. Results and Discussion
3.1. Characteristics of Genomic SSR in the NGS Assemblies of A. gigas
3.2. SSR Marker Development by In Silico Polymorphism Analysis and Characterization of SSR Markers
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Sarker, S.D.; Nahar, L. Natural medicine: The genus Angelica. Curr. Med. Chem. 2004, 11, 1479–1500. [Google Scholar] [CrossRef] [PubMed]
- Chan, P.H.; Zhang, W.L.; Lau, C.H.; Cheung, C.Y.; Keun, H.C.; Tsim, K.W.K.; Lam, H. Metabonomic analysis of water extracts from different Angelica roots by 1H-nuclear magnetic resonance spectroscopy. Molecules 2014, 19, 3460–3470. [Google Scholar] [CrossRef] [PubMed]
- Son, C.Y.; Baek, I.H.; Song, G.Y.; Kang, J.S.; Kwon, K.I. Pharmacological effect of decursin and decursinol angelate from Angelica gigas Nakai. Yakhak Hoeji 2009, 53, 303–313. [Google Scholar]
- Son, S.H.; Park, K.K.; Park, S.K.; Kim, Y.C.; Kim, Y.S.; Lee, S.K.; Chung, W.Y. Decursin and decursinol from Angelica gigas inhibit the lung metastasis of murine colon carcinoma. Phytother. Res. 2011, 25, 959–1023. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.R.; El-Aty, A.M.; Choi, J.H.; Lee, K.B.; Shim, J.H. Identification of volatile components in Angelica species using supercritical-CO2 fluid extraction and solid phase microextraction coupled to gas chromatography-mass spectrometry. Biomed. Chromatogr. 2006, 20, 1267–1273. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.; Lee, Y.S.; Jung, S.H.; Shin, K.H.; Kim, B.K.; Kang, S.S. Anti-tumor activities of decursinol angelate and decursin from Angelica gigas. Arch. Pharm. Res. 2003, 26, 727–730. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.; Lee, Y.S.; Jung, S.H.; Shin, K.H.; Kim, B.K.; Kang, S.S. Antioxidant activities of decursinol angelate and decursin from Angelica gigas roots. Nat. Prod. Sci. 2003, 9, 170–173. [Google Scholar]
- Lee, S.; Shin, D.S.; Kim, J.S.; Oh, K.B.; Kang, S.S. Antibacterial coumarins from Angelica gigas roots. Arch. Pharm. Res. 2003, 26, 449–452. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.B.; Xie, Y.H.; Sun, X.M. Development and characterization of polymorphic genic-SSR markers in Larix kaempferi. Molecules 2015, 20, 6060–6067. [Google Scholar] [CrossRef] [PubMed]
- Paux, E.; Sourdille, P.; Mackay, I.; Feuillet, C. Sequence-based marker development in wheat: Advances and applications to breeding. Biotechnol. Adv. 2012, 30, 1071–1088. [Google Scholar] [CrossRef] [PubMed]
- Park, Y.J.; Lee, J.K.; Kim, N.S. Simple sequence repeat polymorphisms (SSRPs) for evaluation of molecular diversity and germplasm classification of minor crops. Molecules 2009, 14, 4546–4569. [Google Scholar] [CrossRef] [PubMed]
- Moose, S.P.; Mumm, R.H. Molecular plant breeding as the foundation for 21st century crop improvement. Plant Physiol. 2008, 147, 969–977. [Google Scholar] [CrossRef] [PubMed]
- Tautz, D.; Renz, M. Simple sequences are ubiquitous repetitive components of eukaryotic genomes. Nucleic Acids Res. 1984, 12, 4127–4138. [Google Scholar] [CrossRef] [PubMed]
- Thomson, M.J. High-throughput SNP genotyping to accelerate crop improvement. Plant Breed. Biotechnol. 2014, 2, 195–212. [Google Scholar] [CrossRef]
- Saha, M.C.; Cooper, J.D.; Mian, M.A.; Chekhovskiy, K.; May, G.D. Tall fescue genomic SSR markers: Development and transferability across multiple grass species. Theor. Appl. Genet. 2006, 113, 1449–1458. [Google Scholar] [CrossRef] [PubMed]
- Aggarwal, R.K.; Hendre, P.S.; Varshney, R.K.; Bhat, P.R.; Krishnakumar, V.; Singh, L. Identification, characterization and utilization of EST-derived genic microsatellite markers for genome analyses of coffee and related species. Theor. Appl. Genet. 2007, 114, 359–372. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Fang, B.; Chen, J.; Zhang, X.; Luo, Z.; Huang, L.; Chen, X.; Li, Y. De novo assembly and characterization of root transcriptome using Illumina paired-end sequencing and development of cSSR markers in sweet potato (Ipomoea batatas). BMC Genom. 2010, 11, 726–739. [Google Scholar] [CrossRef] [PubMed]
- Liu, G.S.; Zhang, Y.G.; Tao, R.; Fang, J.G.; Dai, H.Y. Identification of apple cultivars on the basis of simple sequence repeat markers. Genet. Mol. Res. 2014, 13, 7377–7384. [Google Scholar] [CrossRef] [PubMed]
- Varshney, R.K.; Nayak, S.N.; May, G.D.; Jackson, S.A. Next-generation sequencing technologies and their implications for crop genetics and breeding. Trends Biotechnol. 2009, 27, 522–530. [Google Scholar] [CrossRef] [PubMed]
- Choi, S.A.; Kim, Y.J.; Kim, K.Y.; Kim, J.H.; Seong, R.S. The complete chloroplast genome sequence of the medicinal plant, Angelica gigas (Apiaceae). Mitochondrial DNA Part B 2016, 1, 307–308. [Google Scholar] [CrossRef]
- Kumar, P.; Gupta, V.K.; Misra, A.K.; Modi, D.R.; Pandey, B.K. Potential of molecular markers in plant biotechnology. Plant Omics 2009, 2, 141–162. [Google Scholar]
- Luo, R.; Liu, B.; Xie, Y.; Li, Z.; Huang, W.; Yuan, J.; He, G.; Chen, Y.; Pan, Q.; Liu, Y.; et al. SOAPdenovo2: An empirically improved memory-efficient short-read de novo assembler. GigaScience 2012, 1, 18. [Google Scholar] [CrossRef] [PubMed]
- Smit, A.F.A.; Hubley, R.; Green, P. RepeatMasker Open-4.0. Available online: http://www.repeatmasker.org (accessed on 15 September 2015).
- Stanke, M.; Steinkamp, R.; Waack, S.; Waack, B. AUGUSTUS: A web server for gene finding in eukaryotes. Nucleic Acids Res. 2004, 32, 309–312. [Google Scholar] [CrossRef] [PubMed]
- Jones, P.; Binns, D.; Chang, H.-Y.; Fraser, M.; Li, W.; McAnulla, C.; McWilliam, H.; Maslen, J.; Mitchell, A.; Nuka, G.; et al. InterProScan 5: Genome-scale protein function classification. Bioinformatics 2014, 30, 1236–1240. [Google Scholar] [CrossRef] [PubMed]
- Temnykh, S.; DeClerck, G.; Lukashova, A.; Lipovich, L.; Cartinhour, S.; McCouch, S. Computational and experimental analysis of microsatellites in rice (Oryza sativa L.): frequency, length variation, transposon associations, and genetic marker potential. Genome research 2001, 11, 1441–1452. [Google Scholar] [CrossRef] [PubMed]
- Rozen, S.; Skaletsky, H. Primer3 on the WWW for general users and for biologist programmers. Methods Mol. Biol. 2000, 132, 365–386. [Google Scholar] [PubMed]
- Liu, K.; Muse, S.V. PowerMarker: An integrated analysis environment for genetic marker analysis. Bioinformatics 2005, 21, 2128–2129. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Tamura, K.; Nei, M. MEGA: molecular evolutionary genetics analysis software for microcomputers. Bioinformatics 1994, 10, 189–191. [Google Scholar] [CrossRef]
- Cavagnaro, P.F.; Senalik, D.A.; Yang, L.; Simon, P.W.; Harkins, T.T.; Kodria, C.D.; Huang, S.; Weng, Y. Genome-wide characterization of simple sequence repeats in cucumber (Cucumis sativus L.). BMC Genom. 2010, 11, 569–586. [Google Scholar] [CrossRef] [PubMed]
- Zhu, H.; Senalik, D.; Mccown, B.H.; Zeldin, E.L.; Speers, J.; Hyman, J.; Bassil, N.; Hummer, K.; Simon, P.W.; Zalapa, J.E. Mining and validation of pyrosequenced simple sequence repeats (SSRs) from American cranberry (Vaccinium macrocarpon Ait.). Theor. Appl. Genet. 2011, 124, 87–96. [Google Scholar] [CrossRef] [PubMed]
- Shendure, J.; Ji, H. Next-generation DNA sequencing. Nat. Biotechnol. 2008, 26, 1135–1145. [Google Scholar] [CrossRef] [PubMed]
- Ekblom, R.; Galindo, J. Applications of next generation sequencing in molecular ecology of non-model organisms. Heredity 2011, 107, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Zalapa, J.E.; Cuevas, H.; Zhu, H.; Steffan, S.; Senalik, D.; Zeldin, E.; Mccown, B.; Harbut, R.; Simon, P. Using next-generation sequencing approaches to isolate simple sequence repeat (SSR) loci in the plant. Am. J. Bot. 2012, 99, 193–208. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Wen, C.; Zhao, H.; Liu, Q.; Yang, J.; Liu, L.; Wang, Y. Development of polymorphic genic SSR markers by transcriptome sequencing in the welsh onion (Allium fistulosum L.). Appl. Sci. 2015, 5, 1050–1063. [Google Scholar] [CrossRef]
- Wei, X.; Wang, L.; Zhang, Y.; Qi, X.; Wang, X.; Ding, X.; Zhang, J.; Zhang, X. Development of simple sequence repeat (SSR) markers of sesame (Sesamum indicum) from a genome survey. Molecules 2014, 19, 5150–5162. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Cheng, T.; Zhu, T.; Jiang, D.; Zhou, S.; Jin, L.; Yuan, Q.; Huang, L. Isolation and characterization of 18 polymorphic microsatellite markers for the “Female Ginseng” Angelica sinensis (Apiaceae) and cross-species amplification. Biochem. Syst. Ecol. 2015, 61, 488–492. [Google Scholar] [CrossRef]
MV | HV | GLV | JLV | SLV | |
---|---|---|---|---|---|
Total Reads | 351,885,410 | 153,890,676 | 112,354,576 | 139,011,848 | 142,791,294 |
Total Bases | 35,540,426,410 | 15,542,958,276 | 11,347,812,176 | 14,040,196,648 | 14,421,920,694 |
Number of Scaffolds | 395,007 | 541,229 | 468,810 | 526,114 | 546,442 |
Assembled genome size (bp) | 804,583,850 | 298,362,936 | 242,460,776 | 273,337,815 | 298,605,080 |
Marker | GenBank No. | Motif | Primer Sequence | Annealing Temperature (°C) | Allele Size (bp) |
---|---|---|---|---|---|
YL-AGN tri0110 | KX138563 | (AAT) 5 | F:FAM-TATGTCGGCAACACATGC | 58 | 177–186 |
R:GTTTGGCTAGGCTAGACTAATGTGGGT | |||||
YL-AGN tri0221 | KX138564 | (ACC) 7 | F:FAM-CGACACCAGTGTTGATCCAT | 58 | 179–194 |
R:GTTTGTATCGAGTCCATAACGCTCAG | |||||
YL-AGN tri0303 | KX138565 | (AGC) 5 | F:FAM-AGGCGATAGAATCCCCAA | 58 | 157–175 |
R:GTTTCGAGAAACAAAGCTTCAGGG | |||||
YL-AGN tri0336 | KX138566 | (AGG) 8 | F:FAM-GTGGTGTTCTTTTCTCCACG | 58 | 185–203 |
R:GTTTCTTGTCGTCTTCTCGTCTCTCT | |||||
YL-AGN tri0359 | KX138567 | (AGT) 8 | F:FAM-CGTCGGCTAGTAACTGCAAA | 58 | 188–194 |
R:GTTTATGTCGCGGTGATTTACG | |||||
YL-AGN tri0379 | KX138568 | (ATA) 15 | F:FAM-GCTGTTCTGGCGTATGTACTTC | 58 | 161–191 |
R:GTTTACTCCCAACAAACACTGCTC | |||||
YL-AGN tri0537 | KX138569 | (ATG) 7 | F:FAM-GGTCCTCAGCTTTCTCAGAATC | 58 | 175–217 |
R:GTTTCCTGATATCTCCCTGCAATC | |||||
YL-AGN tri0638 | KX138594 | (ATT) 7 | F:PET-AGCATAGGATCCAGCTTGTG | 58 | 134–161 |
R:GTTTTTTCGAGATGGAGTCTCAGC | |||||
YL-AGN tri0685 | KX138570 | (CAC) 5 | F:FAM-AGTAAGCAAGTGATGCCGAG | 58 | 179–197 |
R:GTTTGGGGGTTTTGTAGTGGTTCA | |||||
YL-AGN tri0832 | KX138571 | (CCA) 5 | F:FAM-CCACTTTACTCCCCTGATAAGC | 58 | 163–184 |
R:GTTTTTCCTGCCAGCTCTGATTAC | |||||
YL-AGN tri0861 | KX138572 | (CCT) 5 | F:NED-CTGGTGGCTCTTAAGTTACTCG | 58 | 193–230 |
R:GTTTCGGTTACTACAGTACGTTGGTTGC | |||||
YL-AGN tri0889 | KX138573 | (CCT) 5 | F:NED-GACAAAGAAGCAGTGGCATC | 58 | 193–202 |
R:GTTTGAGATTACGACGAGCGAGAA | |||||
YL-AGN tri0953 | KX138595 | (CTG) 16 | F:PET-TGTTTGCACCAGCTCTCA | 58 | 180–209 |
R:GTTTCCACCTCAAGGTTCAATGAC | |||||
YL-AGN tri0955 | KX138596 | (CTG) 9 | F:PET-TAGCCAAGACCAGCTCAATC | 58 | 144–167 |
R:GTTTTACTGCTACAATGGCACACC | |||||
YL-AGN tri0957 | KX138574 | (CTG) 6 | F:NED-CAGTTCCGTTGTTCCAACTC | 58 | 188–203 |
R:GTTTGAAAGCGAACGAGAGATGAG | |||||
YL-AGN tri1043 | KX138575 | (GAA) 8 | F:NED-GCTGGATTATCACCTTCACG | 58 | 191–204 |
R:GTTTGAAGAGGTAATGTGGGGTGTAG | |||||
YL-AGN tri1092 | KX138597 | (GAA) 14 | F:PET-CTAGCTTTCCCATGTCTGAACC | 58 | 143–201 |
R:GTTTCATCCATGCACCAATGTC | |||||
YL-AGN tri1102 | KX138576 | (GAC) 5 | F:NED-ACTCAAAAGGACAAGTCCCC | 58 | 150–200 |
R:GTTTCCTTCCACTCTCTGGTTGTAGAC | |||||
YL-AGN tri1118 | KX138577 | (GAG) 5 | F:NED-AACTGATTGGGAGGAGTAGGAG | 58 | 168–183 |
R:GTTTCCTGAAAGAGTACTAACACCCG | |||||
YL-AGN tri1174 | KX138578 | (GAT) 6 | F:NED-AGCAACTAGCTCACTCACAACC | 58 | 196–210 |
R:GTTTAGACGAGTTAAGGGACTTGC | |||||
YL-AGN tri1211 | KX138579 | (GCA) 8 | F:NED-ATGCAACAATGTCTCGGC | 58 | 162–180 |
R:GTTTCAACTTGGGTTCTGCCCTAT | |||||
YL-AGN tri1262 | KX138580 | (GCT) 7 | F:NED-GTTACATTGAGTCCTCGTAGGG | 58 | 171–199 |
R:GTTTATCACGAACCAGAACCCA | |||||
YL-AGN tri1269 | KX138581 | (GCT) 5 | F:VIC-CCCTTGACACTCACTACTCTCA | 58 | 202–217 |
R:GTTTTTCTCTCTGCTACCCTTAGAGC | |||||
YL-AGN tri1276 | KX138598 | (GCT) 5 | F:PET-GATTGCTGCTGCTGAGTTG | 58 | 156–177 |
R:GTTTGAACTCTCCGATGGTGTTGTAG | |||||
YL-AGN tri1358 | KX138582 | (GTA) 6 | F:VIC-GACAGCCAGCCTTCTTCAT | 58 | 182–194 |
R:GTTTCCCTACATTGCGTTGATCC | |||||
YL-AGN tri1582 | KX138583 | (TCA) 8 | F:VIC-GGTACGGGAATATGAGACAGG | 58 | 183–206 |
R:GTTTGTGATCTTGCTGATGACGG | |||||
YL-AGN tri1708 | KX138584 | (TCT) 10 | F:VIC-GTGGTGCTGCCAATGTTT | 58 | 172–241 |
R:GTTTGAAGATGTCGGCAGATCAGT | |||||
YL-AGN tri1849 | KX138585 | (TGG) 7 | F:VIC-GTCCAATGATTCTGCTGCTC | 60.5 | 174–183 |
R:GTTTATATACTGGGAGTGTTGCGGAG | |||||
YL-AGN tri1920 | KX138586 | (TTA) 8 | F:VIC-TACAGTCGAGTTCTGGACACAC | 58 | 179–200 |
R:GTTTCTTTCTCCGTGAACATGTCG | |||||
YL-AGN tetra2116 | KX138587 | (AGAT) 9 | F:VIC-GTCACTAAAACACGAGACTGCC | 58 | 179–250 |
R:GTTTCCAGAACTCGTTCCGAATC | |||||
YL-AGN tetra2173 | KX138588 | (ATTT) 5 | F:VIC-AGGCATGCACTACTCCTCTATC | 58 | 179–191 |
R:GTTTATCTCGCAGCTATGAGACTACC | |||||
YL-AGN tetra2208 | KX138589 | (GATA) 6 | F:VIC-GCTGGGTTTAGGTTTCTGGA | 60.5 | 157–177 |
R:GTTTACCGCAAACACCTAGTACTCC | |||||
YL-AGN tetra2275 | KX138590 | (TGTA) 7 | F:PET-CATCATCTTGCAAGGTCCAC | 58 | 164–188 |
R:GTTTTCTCCCAAACTGGTACTCTG | |||||
YL-AGN Hexa2350 | KX138591 | (AGAATC) 6 | F:PET-GCTAGCAATAGCAGGTTGAC | 58 | 193–210 |
R:GTTTATAGACCTGGTTTCGGGC | |||||
YL-AGN Hexa2367 | KX138592 | (GATCTC) 5 | F:PET-ACGTGACCACCATATTGC | 58 | 187–199 |
R:GTTTGTGGACACTGTTTCGTCACTG | |||||
YL-AGN Hexa2374 | KX138593 | (TCATGC) 5 | F:PET-GGCAGACGTTCTGGTTTTC | 58 | 164–176 |
R:GTTTCCGTGAGTGGTAGGGAAATA |
No. | Marker | MAF | NG | NA | HE | HO | PIC |
---|---|---|---|---|---|---|---|
1 | YL-AGNtri0110 | 0.47 | 7 | 4 | 0.68 | 0.67 | 0.63 |
2 | YL-AGNtri0221 | 0.25 | 11 | 6 | 0.80 | 0.63 | 0.77 |
3 | YL-AGNtri0303 | 0.50 | 8 | 5 | 0.67 | 0.50 | 0.62 |
4 | YL-AGNtri0336 | 0.34 | 11 | 5 | 0.77 | 0.50 | 0.73 |
5 | YL-AGNtri0359 | 0.57 | 4 | 3 | 0.56 | 0.33 | 0.48 |
6 | YL-AGNtri0379 | 0.28 | 10 | 7 | 0.78 | 0.44 | 0.75 |
7 | YL-AGNtri0537 | 0.53 | 9 | 7 | 0.67 | 0.56 | 0.64 |
8 | YL-AGNtri0638 | 0.33 | 9 | 5 | 0.75 | 0.40 | 0.71 |
9 | YL-AGNtri0685 | 0.44 | 10 | 7 | 0.73 | 0.69 | 0.70 |
10 | YL-AGNtri0832 | 0.38 | 8 | 7 | 0.76 | 0.19 | 0.73 |
11 | YL-AGNtri0861 | 0.31 | 9 | 10 | 0.84 | 0.50 | 0.82 |
12 | YL-AGNtri0889 | 0.59 | 4 | 3 | 0.53 | 0.19 | 0.44 |
13 | YL-AGNtri0953 | 0.31 | 13 | 10 | 0.82 | 0.75 | 0.81 |
14 | YL-AGNtri0955 | 0.44 | 8 | 5 | 0.72 | 0.69 | 0.68 |
15 | YL-AGNtri0957 | 0.31 | 9 | 5 | 0.75 | 0.44 | 0.71 |
16 | YL-AGNtri1043 | 0.63 | 7 | 5 | 0.56 | 0.44 | 0.52 |
17 | YL-AGNtri1092 | 0.22 | 15 | 11 | 0.87 | 0.63 | 0.86 |
18 | YL-AGNtri1102 | 0.34 | 11 | 8 | 0.79 | 0.44 | 0.77 |
19 | YL-AGNtri1118 | 0.34 | 9 | 4 | 0.71 | 0.69 | 0.66 |
20 | YL-AGNtri1174 | 0.38 | 9 | 5 | 0.71 | 0.31 | 0.66 |
21 | YL-AGNtri1211 | 0.41 | 10 | 6 | 0.75 | 0.50 | 0.71 |
22 | YL-AGNtri1262 | 0.31 | 10 | 8 | 0.80 | 0.88 | 0.77 |
23 | YL-AGNtri1269 | 0.50 | 8 | 6 | 0.68 | 0.75 | 0.64 |
24 | YL-AGNtri1276 | 0.25 | 13 | 8 | 0.84 | 0.56 | 0.82 |
25 | YL-AGNtri1358 | 0.47 | 9 | 5 | 0.67 | 0.44 | 0.62 |
26 | YL-AGNtri1582 | 0.31 | 11 | 8 | 0.82 | 0.75 | 0.80 |
27 | YL-AGNtri1708 | 0.16 | 14 | 14 | 0.90 | 0.50 | 0.89 |
28 | YL-AGNtri1849 | 0.63 | 3 | 4 | 0.54 | 0.13 | 0.48 |
29 | YL-AGNtri1920 | 0.31 | 13 | 8 | 0.81 | 0.75 | 0.79 |
30 | YL-AGNtri2275 | 0.41 | 9 | 6 | 0.73 | 0.69 | 0.69 |
31 | YL-AGNtetra2116 | 0.22 | 13 | 14 | 0.88 | 0.75 | 0.87 |
32 | YL-AGNtetra2173 | 0.41 | 8 | 4 | 0.69 | 0.75 | 0.63 |
33 | YL-AGNtetra2208 | 0.41 | 7 | 5 | 0.67 | 0.25 | 0.61 |
34 | YL-AGNhexa2350 | 0.44 | 7 | 4 | 0.64 | 0.56 | 0.57 |
35 | YL-AGNhexa2367 | 0.46 | 6 | 4 | 0.64 | 0.38 | 0.57 |
36 | YL-AGNhexa2374 | 0.44 | 6 | 3 | 0.63 | 0.44 | 0.56 |
Mean | 0.39 | 9.1 | 6.4 | 0.73 | 0.53 | 0.69 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gil, J.; Um, Y.; Kim, S.; Kim, O.T.; Koo, S.C.; Reddy, C.S.; Kim, S.-C.; Hong, C.P.; Park, S.-G.; Kim, H.B.; et al. Development of Genome-Wide SSR Markers from Angelica gigas Nakai Using Next Generation Sequencing. Genes 2017, 8, 238. https://doi.org/10.3390/genes8100238
Gil J, Um Y, Kim S, Kim OT, Koo SC, Reddy CS, Kim S-C, Hong CP, Park S-G, Kim HB, et al. Development of Genome-Wide SSR Markers from Angelica gigas Nakai Using Next Generation Sequencing. Genes. 2017; 8(10):238. https://doi.org/10.3390/genes8100238
Chicago/Turabian StyleGil, Jinsu, Yurry Um, Serim Kim, Ok Tae Kim, Sung Cheol Koo, Chinreddy Subramanyam Reddy, Seong-Cheol Kim, Chang Pyo Hong, Sin-Gi Park, Ho Bang Kim, and et al. 2017. "Development of Genome-Wide SSR Markers from Angelica gigas Nakai Using Next Generation Sequencing" Genes 8, no. 10: 238. https://doi.org/10.3390/genes8100238
APA StyleGil, J., Um, Y., Kim, S., Kim, O. T., Koo, S. C., Reddy, C. S., Kim, S.-C., Hong, C. P., Park, S.-G., Kim, H. B., Lee, D. H., Jeong, B.-H., Chung, J.-W., & Lee, Y. (2017). Development of Genome-Wide SSR Markers from Angelica gigas Nakai Using Next Generation Sequencing. Genes, 8(10), 238. https://doi.org/10.3390/genes8100238