The Regulatory Role of KIBRA and PTPN14 in Hippo Signaling and Beyond
Abstract
:1. Introduction
2. KIBRA and PTPN14
3. KIBRA and PTPN14 in Hippo Signaling
4. Other Interaction Partners and Functions of KIBRA and PTPN14
5. Expression and Involvement in Cancer Cell Signaling
6. Conclusions
Acknowledgments
Conflicts of Interest
References
- Chan, E.H.; Nousiainen, M.; Chalamalasetty, R.B.; Schafer, A.; Nigg, E.A.; Sillje, H.H. The ste20-like kinase Mst2 activates the human large tumor suppressor kinase lats1. Oncogene 2005, 24, 2076–2086. [Google Scholar] [CrossRef] [PubMed]
- Hau, J.C.; Erdmann, D.; Mesrouze, Y.; Furet, P.; Fontana, P.; Zimmermann, C.; Schmelzle, T.; Hofmann, F.; Chene, P. The tead4-yap/taz protein-protein interaction: Expected similarities and unexpected differences. ChemBioChem 2013, 14, 1218–1225. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Smolen, G.A.; Haber, D.A. Negative regulation of yap by lats1 underscores evolutionary conservation of the Drosophila hippo pathway. Cancer Res. 2008, 68, 2789–2794. [Google Scholar] [CrossRef] [PubMed]
- Visser, S.; Yang, X. Lats tumor suppressor: A new governor of cellular homeostasis. Cell Cycle 2010, 9, 3892–3903. [Google Scholar] [CrossRef] [PubMed]
- Vassilev, A.; Kaneko, K.J.; Shu, H.; Zhao, Y.; DePamphilis, M.L. Tead/tef transcription factors utilize the activation domain of yap65, a src/yes-associated protein localized in the cytoplasm. Genes. Dev. 2001, 15, 1229–1241. [Google Scholar] [CrossRef] [PubMed]
- Komuro, A.; Nagai, M.; Navin, N.E.; Sudol, M. Ww domain-containing protein yap associates with erbb-4 and acts as a co-transcriptional activator for the carboxyl-terminal fragment of erbb-4 that translocates to the nucleus. J. Biol. Chem. 2003, 278, 33334–33341. [Google Scholar] [CrossRef] [PubMed]
- Zaidi, S.K.; Sullivan, A.J.; Medina, R.; Ito, Y.; van Wijnen, A.J.; Stein, J.L.; Lian, J.B.; Stein, G.S. Tyrosine phosphorylation controls runx2-mediated subnuclear targeting of yap to repress transcription. EMBO J. 2004, 23, 790–799. [Google Scholar] [CrossRef] [PubMed]
- Yagi, R.; Kohn, M.J.; Karavanova, I.; Kaneko, K.J.; Vullhorst, D.; DePamphilis, M.L.; Buonanno, A. Transcription factor tead4 specifies the trophectoderm lineage at the beginning of mammalian development. Development 2007, 134, 3827–3836. [Google Scholar] [CrossRef] [PubMed]
- Zhao, B.; Ye, X.; Yu, J.; Li, L.; Li, W.; Li, S.; Yu, J.; Lin, J.D.; Wang, C.Y.; Chinnaiyan, A.M.; et al. Tead mediates yap-dependent gene induction and growth control. Genes Dev. 2008, 22, 1962–1971. [Google Scholar] [CrossRef] [PubMed]
- Alarcon, C.; Zaromytidou, A.I.; Xi, Q.; Gao, S.; Yu, J.; Fujisawa, S.; Barlas, A.; Miller, A.N.; Manova-Todorova, K.; Macias, M.J.; et al. Nuclear cdks drive smad transcriptional activation and turnover in bmp and tgf-beta pathways. Cell 2009, 139, 757–769. [Google Scholar] [CrossRef] [PubMed]
- Pan, D. The hippo signaling pathway in development and cancer. Dev. Cell 2010, 19, 491–505. [Google Scholar] [CrossRef] [PubMed]
- Hanahan, D.; Weinberg, R.A. Hallmarks of cancer: The next generation. Cell 2011, 144, 646–674. [Google Scholar] [CrossRef] [PubMed]
- Kremerskothen, J.; Plaas, C.; Büther, K.; Finger, I.; Veltel, S.; Matanis, T.; Liedtke, T.; Barnekow, A. Characterization of kibra, a novel ww domain-containing protein. Biochem. Biophys. Res. Commun. 2003, 300, 862–867. [Google Scholar] [CrossRef]
- Wennmann, D.O.; Schmitz, J.; Wehr, M.C.; Krahn, M.P.; Koschmal, N.; Gromnitza, S.; Schulze, U.; Weide, T.; Chekuri, A.; Skryabin, B.V.; et al. Evolutionary and molecular facts link the wwc protein family to hippo signaling. Mol. Biol. Evol. 2014, 31, 1710–1723. [Google Scholar] [CrossRef] [PubMed]
- Smith, A.L.; Mitchell, P.J.; Shipley, J.; Gusterson, B.A.; Rogers, M.V.; Crompton, M.R. Pez: A novel human cdna encoding protein tyrosine phosphatase- and ezrin-like domains. Biochem. Biophys. Res. Commun. 1995, 209, 959–965. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.; Zheng, Y.; Dong, J.; Klusza, S.; Deng, W.M.; Pan, D. Kibra functions as a tumor suppressor protein that regulates hippo signaling in conjunction with merlin and expanded. Dev. Cell 2010, 18, 288–299. [Google Scholar] [CrossRef] [PubMed]
- Meignin, C.; Alvarez-Garcia, I.; Davis, I.; Palacios, I.M. The salvador-warts-hippo pathway is required for epithelial proliferation and axis specification in Drosophila. Curr. Biol. 2007, 17, 1871–1878. [Google Scholar] [CrossRef] [PubMed]
- Polesello, C.; Tapon, N. Salvador-warts-hippo signaling promotes Drosophila posterior follicle cell maturation downstream of notch. Curr. Biol. 2007, 17, 1864–1870. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.; Poulton, J.; Huang, Y.C.; Deng, W.M. The hippo pathway promotes notch signaling in regulation of cell differentiation, proliferation, and oocyte polarity. PLoS ONE 2008, 3, e1761. [Google Scholar] [CrossRef] [PubMed]
- Xiao, L.; Chen, Y.; Ji, M.; Dong, J. Kibra regulates hippo signaling activity via interactions with large tumor suppressor kinases. J. Biol. Chem. 2011, 286, 7788–7796. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Iyer, J.; Chowdhury, A.; Ji, M.; Xiao, L.; Yang, S.; Chen, Y.; Tsai, M.Y.; Dong, J. Kibra regulates aurora kinase activity and is required for precise chromosome alignment during mitosis. J. Biol. Chem. 2012, 287, 34069–34077. [Google Scholar] [CrossRef] [PubMed]
- Ji, M.; Yang, S.; Chen, Y.; Xiao, L.; Zhang, L.; Dong, J. Phospho-regulation of kibra by cdk1 and cdc14 phosphatase controls cell-cycle progression. Biochem. J. 2012, 447, 93–102. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Yang, N.; Figel, S.A.; Wilson, K.E.; Morrison, C.D.; Gelman, I.H.; Zhang, J. Ptpn14 interacts with and negatively regulates the oncogenic function of yap. Oncogene 2013, 32, 1266–1273. [Google Scholar] [CrossRef] [PubMed]
- Michaloglou, C.; Lehmann, W.; Martin, T.; Delaunay, C.; Hueber, A.; Barys, L.; Niu, H.; Billy, E.; Wartmann, M.; Ito, M.; et al. The tyrosine phosphatase ptpn14 is a negative regulator of yap activity. PLoS ONE 2013, 8, e61916. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Huang, J.; Wang, X.; Yuan, J.; Li, X.; Feng, L.; Park, J.I.; Chen, J. Ptpn14 is required for the density-dependent control of yap1. Genes Dev. 2012, 26, 1959–1971. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.M.; Nagatomo, I.; Suzuki, E.; Mizuno, T.; Kumagai, T.; Berezov, A.; Zhang, H.; Karlan, B.; Greene, M.I.; Wang, Q. Yap modifies cancer cell sensitivity to egfr and survivin inhibitors and is negatively regulated by the non-receptor type protein tyrosine phosphatase 14. Oncogene 2013, 32, 2220–2229. [Google Scholar] [CrossRef] [PubMed]
- Poernbacher, I.; Baumgartner, R.; Marada, S.K.; Edwards, K.; Stocker, H. Drosophila pez acts in hippo signaling to restrict intestinal stem cell proliferation. Curr. Biol. 2012, 22, 389–396. [Google Scholar] [CrossRef] [PubMed]
- Wilson, K.E.; Li, Y.W.; Yang, N.; Shen, H.; Orillion, A.R.; Zhang, J. Ptpn14 forms a complex with kibra and lats1 proteins and negatively regulates the yap oncogenic function. J. Biol. Chem. 2014, 289, 23693–23700. [Google Scholar] [CrossRef] [PubMed]
- Moscat, J.; Diaz-Meco, M.T. The atypical protein kinase cs. Functional specificity mediated by specific protein adapters. EMBO Rep. 2000, 1, 399–403. [Google Scholar] [CrossRef] [PubMed]
- Buther, K.; Plaas, C.; Barnekow, A.; Kremerskothen, J. Kibra is a novel substrate for protein kinase czeta. Biochem. Biophys. Res. Commun. 2004, 317, 703–707. [Google Scholar] [CrossRef] [PubMed]
- Yoshihama, Y.; Sasaki, K.; Horikoshi, Y.; Suzuki, A.; Ohtsuka, T.; Hakuno, F.; Takahashi, S.; Ohno, S.; Chida, K. Kibra suppresses apical exocytosis through inhibition of apkc kinase activity in epithelial cells. Curr. Biol. 2011, 21, 705–711. [Google Scholar] [CrossRef] [PubMed]
- Jin, A.; Neufeld, T.P.; Choe, J. Kibra and apkc regulate starvation-induced autophagy in Drosophila. Biochem. Biophys. Res. Commun. 2015, 468, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Rayala, S.K.; den Hollander, P.; Manavathi, B.; Talukder, A.H.; Song, C.; Peng, S.; Barnekow, A.; Kremerskothen, J.; Kumar, R. Essential role of kibra in co-activator function of dynein light chain 1 in mammalian cells. J. Biol. Chem. 2006, 281, 19092–19099. [Google Scholar] [CrossRef] [PubMed]
- Rayala, S.K.; den Hollander, P.; Balasenthil, S.; Yang, Z.; Broaddus, R.R.; Kumar, R. Functional regulation of oestrogen receptor pathway by the dynein light chain 1. EMBO Rep. 2005, 6, 538–544. [Google Scholar] [CrossRef] [PubMed]
- Traer, C.J.; Rutherford, A.C.; Palmer, K.J.; Wassmer, T.; Oakley, J.; Attar, N.; Carlton, J.G.; Kremerskothen, J.; Stephens, D.J.; Cullen, P.J. Snx4 coordinates endosomal sorting of tfnr with dynein-mediated transport into the endocytic recycling compartment. Nat. Cell Biol. 2007, 9, 1370–1380. [Google Scholar] [CrossRef] [PubMed]
- Hilton, H.N.; Stanford, P.M.; Harris, J.; Oakes, S.R.; Kaplan, W.; Daly, R.J.; Ormandy, C.J. Kibra interacts with discoidin domain receptor 1 to modulate collagen-induced signalling. Biochim. Biophys. Acta 2008, 1783, 383–393. [Google Scholar] [CrossRef] [PubMed]
- Duning, K.; Schurek, E.M.; Schluter, M.; Bayer, M.; Reinhardt, H.C.; Schwab, A.; Schaefer, L.; Benzing, T.; Schermer, B.; Saleem, M.A.; et al. Kibra modulates directional migration of podocytes. J. Am. Soc. Nephrol. 2008, 19, 1891–1903. [Google Scholar] [CrossRef] [PubMed]
- Chen, N.P.; Uddin, B.; Voit, R.; Schiebel, E. Human phosphatase cdc14a is recruited to the cell leading edge to regulate cell migration and adhesion. Proc. Natl. Acad. Sci. USA 2016, 113, 990–995. [Google Scholar] [CrossRef] [PubMed]
- Mavuluri, J.; Beesetti, S.; Surabhi, R.; Kremerskothen, J.; Venkatraman, G.; Rayala, S.K. Phosphorylation dependent regulation of DNA damage response of adaptor protein kibra in cancer cells. Mol. Cell Biol. 2016, 36, 1354–1365. [Google Scholar] [CrossRef] [PubMed]
- Guske, K.; Schmitz, B.; Schelleckes, M.; Duning, K.; Kremerskothen, J.; Pavenstadt, H.J.; Brand, S.M.; Brand, E. Tissue-specific differences in the regulation of kibra gene expression involve transcription factor tcf7l2 and a complex alternative promoter system. J. Mol. Med. (Berl.) 2014, 92, 185–196. [Google Scholar] [CrossRef] [PubMed]
- Ogata, M.; Takada, T.; Mori, Y.; Oh-hora, M.; Uchida, Y.; Kosugi, A.; Miyake, K.; Hamaoka, T. Effects of overexpression of ptp36, a putative protein tyrosine phosphatase, on cell adhesion, cell growth, and cytoskeletons in hela cells. J. Biol. Chem. 1999, 274, 12905–12909. [Google Scholar] [CrossRef] [PubMed]
- Ogata, M.; Takada, T.; Mori, Y.; Uchida, Y.; Miki, T.; Okuyama, A.; Kosugi, A.; Sawada, M.; Oh-hora, M.; Hamaoka, T. Regulation of phosphorylation level and distribution of ptp36, a putative protein tyrosine phosphatase, by cell-substrate adhesion. J. Biol. Chem. 1999, 274, 20717–20724. [Google Scholar] [CrossRef] [PubMed]
- Wadham, C.; Gamble, J.R.; Vadas, M.A.; Khew-Goodall, Y. Translocation of protein tyrosine phosphatase pez/ptpd2/ptp36 to the nucleus is associated with induction of cell proliferation. J. Cell Sci. 2000, 113, 3117–3123. [Google Scholar] [PubMed]
- Wadham, C.; Gamble, J.R.; Vadas, M.A.; Khew-Goodall, Y. The protein tyrosine phosphatase pez is a major phosphatase of adherens junctions and dephosphorylates beta-catenin. Mol. Biol. Cell. 2003, 14, 2520–2529. [Google Scholar] [CrossRef] [PubMed]
- Wyatt, L.; Wadham, C.; Crocker, L.A.; Lardelli, M.; Khew-Goodall, Y. The protein tyrosine phosphatase pez regulates tgfbeta, epithelial-mesenchymal transition, and organ development. J. Cell. Biol. 2007, 178, 1223–1235. [Google Scholar] [CrossRef] [PubMed]
- Basu-Roy, U.; Bayin, N.S.; Rattanakorn, K.; Han, E.; Placantonakis, D.G.; Mansukhani, A.; Basilico, C. Sox2 antagonizes the hippo pathway to maintain stemness in cancer cells. Nat. Commun. 2015. [Google Scholar] [CrossRef] [PubMed]
- Shinawi, T.; Hill, V.; Dagklis, A.; Baliakas, P.; Stamatopoulos, K.; Agathanggelou, A.; Stankovic, T.; Maher, E.R.; Ghia, P.; Latif, F. Kibra gene methylation is associated with unfavorable biological prognostic parameters in chronic lymphocytic leukemia. Epigenetics 2012, 7, 211–215. [Google Scholar] [CrossRef] [PubMed]
- Hartmann, E.M.; Campo, E.; Wright, G.; Lenz, G.; Salaverria, I.; Jares, P.; Xiao, W.; Braziel, R.M.; Rimsza, L.M.; Chan, W.C.; et al. Pathway discovery in mantle cell lymphoma by integrated analysis of high-resolution gene expression and copy number profiling. Blood 2010, 116, 953–961. [Google Scholar] [CrossRef] [PubMed]
- Moleirinho, S.; Chang, N.; Sims, A.H.; Tilston-Lunel, A.M.; Angus, L.; Steele, A.; Boswell, V.; Barnett, S.C.; Ormandy, C.; Faratian, D.; et al. Kibra exhibits mst-independent functional regulation of the hippo signaling pathway in mammals. Oncogene 2013, 32, 1821–1830. [Google Scholar] [CrossRef] [PubMed]
- Yoshihama, Y.; Izumisawa, Y.; Akimoto, K.; Satoh, Y.; Mizushima, T.; Satoh, K.; Chida, K.; Takagawa, R.; Akiyama, H.; Ichikawa, Y.; et al. High expression of kibra in low atypical protein kinase c-expressing gastric cancer correlates with lymphatic invasion and poor prognosis. Cancer Sci. 2013, 104, 259–265. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P.; Guo, A.; Possemato, A.; Wang, C.; Beard, L.; Carlin, C.; Markowitz, S.D.; Polakiewicz, R.D.; Wang, Z. Identification and functional characterization of p130cas as a substrate of protein tyrosine phosphatase nonreceptor 14. Oncogene 2013, 32, 2087–2095. [Google Scholar] [CrossRef] [PubMed]
- Cabodi, S.; Tinnirello, A.; Di Stefano, P.; Bisaro, B.; Ambrosino, E.; Castellano, I.; Sapino, A.; Arisio, R.; Cavallo, F.; Forni, G.; et al. P130cas as a new regulator of mammary epithelial cell proliferation, survival, and her2-neu oncogene-dependent breast tumorigenesis. Cancer Res. 2006, 66, 4672–4680. [Google Scholar] [CrossRef] [PubMed]
- Dorssers, L.C.; van Agthoven, T.; Dekker, A.; van Agthoven, T.L.; Kok, E.M. Induction of antiestrogen resistance in human breast cancer cells by random insertional mutagenesis using defective retroviruses: Identification of bcar-1, a common integration site. Mol. Endocrinol. 1993, 7, 870–878. [Google Scholar] [PubMed]
- Wang, L.J.; He, C.C.; Sui, X.; Cai, M.J.; Zhou, C.Y.; Ma, J.L.; Wu, L.; Wang, H.; Han, S.X.; Zhu, Q. Mir-21 promotes intrahepatic cholangiocarcinoma proliferation and growth in vitro and in vivo by targeting ptpn14 and pten. Oncotarget 2015, 6, 5932–5946. [Google Scholar] [CrossRef] [PubMed]
- Belle, L.; Ali, N.; Lonic, A.; Li, X.; Paltridge, J.L.; Roslan, S.; Herrmann, D.; Conway, J.R.; Gehling, F.K.; Bert, A.G.; et al. The tyrosine phosphatase ptpn14 (pez) inhibits metastasis by altering protein trafficking. Sci. Signal 2015. [Google Scholar] [CrossRef] [PubMed]
- Ramesh, M.; Krishnan, N.; Muthuswamy, S.K.; Tonks, N.K. A novel phosphatidic acid-protein-tyrosine phosphatase d2 axis is essential for erbb2 signaling in mammary epithelial cells. J. Biol. Chem. 2015, 290, 9646–9659. [Google Scholar] [CrossRef] [PubMed]
- Bonilla, X.; Parmentier, L.; King, B.; Bezrukov, F.; Kaya, G.; Zoete, V.; Seplyarskiy, V.B.; Sharpe, H.J.; McKee, T.; Letourneau, A.; et al. Genomic analysis identifies new drivers and progression pathways in skin basal cell carcinoma. Nat. Genet. 2016, 48, 398–406. [Google Scholar] [CrossRef] [PubMed]
- Niedergethmann, M.; Alves, F.; Neff, J.K.; Heidrich, B.; Aramin, N.; Li, L.; Pilarsky, C.; Grutzmann, R.; Allgayer, H.; Post, S.; et al. Gene expression profiling of liver metastases and tumour invasion in pancreatic cancer using an orthotopic scid mouse model. Br. J. Cancer 2007, 97, 1432–1440. [Google Scholar] [CrossRef] [PubMed]
- Schramm, A.; Koster, J.; Assenov, Y.; Althoff, K.; Peifer, M.; Mahlow, E.; Odersky, A.; Beisser, D.; Ernst, C.; Henssen, A.G.; et al. Mutational dynamics between primary and relapse neuroblastomas. Nat. Genet. 2015, 47, 872–877. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Shen, D.; Parsons, D.W.; Bardelli, A.; Sager, J.; Szabo, S.; Ptak, J.; Silliman, N.; Peters, B.A.; van der Heijden, M.S.; et al. Mutational analysis of the tyrosine phosphatome in colorectal cancers. Science 2004, 304, 1164–1166. [Google Scholar] [CrossRef] [PubMed]
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wilson, K.E.; Yang, N.; Mussell, A.L.; Zhang, J. The Regulatory Role of KIBRA and PTPN14 in Hippo Signaling and Beyond. Genes 2016, 7, 23. https://doi.org/10.3390/genes7060023
Wilson KE, Yang N, Mussell AL, Zhang J. The Regulatory Role of KIBRA and PTPN14 in Hippo Signaling and Beyond. Genes. 2016; 7(6):23. https://doi.org/10.3390/genes7060023
Chicago/Turabian StyleWilson, Kayla E., Nuo Yang, Ashley L. Mussell, and Jianmin Zhang. 2016. "The Regulatory Role of KIBRA and PTPN14 in Hippo Signaling and Beyond" Genes 7, no. 6: 23. https://doi.org/10.3390/genes7060023
APA StyleWilson, K. E., Yang, N., Mussell, A. L., & Zhang, J. (2016). The Regulatory Role of KIBRA and PTPN14 in Hippo Signaling and Beyond. Genes, 7(6), 23. https://doi.org/10.3390/genes7060023