Molecular and Cytogenetic Characterization of New Wheat—Dasypyrum breviaristatum Derivatives with Post-Harvest Re-Growth Habit
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials
2.2. Fluorescence in Situ Hybridization (FISH)
2.3. Molecular Marker Analysis
2.4. Agronomic Performance Observations
3. Results
3.1. FISH Karyotype of D. breviaristatum Chromosomes in TDH-2
3.2. FISH of D2150 and D2146
3.3. Molecular Marker Analysis
Markers | Homoeologous Relationship | Primer Sequences | Enzymes | Dasypyrum Specific Bands |
---|---|---|---|---|
TNAC 1485 a | 5AS,5BS, 5DS | F: CCCAAGTTCACTAACTTCGTTG | Taq I | 5VbL |
R: AAATAGTCCTGCATATCTCCTGT | ||||
TNAC 1497 a | 5AS,5BS, 5DS | F: ATCAAACCTGACGGTGTTCAG | Taq I | 5VbS |
R: CATGCAGACTACAGGTCCAGA | ||||
TNAC1503 a | 5AS,5BS, 5DS | F: TGAGGTTGGTTCTCATCTGGA | Taq I | 5VbS |
R: CGTTGGAAACAATCTGAATGG | ||||
TNAC1588 a | 5AS,5BS, 5DS | F: AAATCAGCAGGTGGCCAGTAT | Taq I | 5VbS |
R: AAATGGCGCACCATACTCAAG | ||||
TNAC1540 a | 5AL,5BL, 5DL | F: AACCTCAAGCACTGTCAGCAT | Hea III | 5VbL |
R: TTGCAGATCCTCTCAATCTCG | ||||
TNAC 1554 a | 5AL,5BL, 5DL | F: TTGCTAGCTCAGCACAGTTTG | Taq I | 5VbL |
R: TTCTTGGTCACTCTGAGCGTA | ||||
TNAC1559 a | 5AL,5BL, 5DL | F: AAACAAGGCCCTGAAACACTT | Hea III | 5VbL |
R: CATTGTCAGGCTATGGGACAT | ||||
TNAC 1567 a | 5AL,5BL, 5DL | F: ATGTTGGCTTTATACCAATGC | Taq I | 5VbL |
R: AGGTGCGGCTTCACTATCTTT | ||||
TNAC 1618 a | 5AL,5BL, 5DL | F: GTTGGCTGTTGATGGTAAGGA | Taq I | 5VbL |
R: GGAGGCCACCAACTAATGTTT | ||||
BE445873 b | 5AL,5BL,5DL | F: ATCTCGACAAAGATCAAGCA | - | 5VbL |
R: CGAGAAGTTCCATCTCATTG | ||||
BE445380 b | 5AL,5BL | F: GCTACCACAGTTGCTACAGG | - | 5VbL |
R: ATCGACGTAACACGAATCAC | ||||
BE604833 b | 5AL | F: GCAGATTCACCCACTCTGTA | - | 5VbL |
R: ATACGCGGTCACATCATAAA | ||||
BE443610 b | 5AL,5BL,5DL | F: ACCAATGAAGGACCATCTCT | - | 5VbL |
R; CATTTCTCAGCTTGTCCAAC |
3.4. Agronomic Traits Observation
Genotype | Plant Height (cm) | Length of Spike (cm) | No. of Spikelet | No. of Spikes | 1000-Kernel Weight (g) | Re-Growth Score |
---|---|---|---|---|---|---|
MY11 | 86.5 ± 1.2a | 10.5 ± 0.5b | 20.6 ± 0.2a | 4.2 ± 0.2b | 40.4 ± 1.0a | 0 |
TDH-2 | 70.0 ± 4.8b | 14.2 ± 0.5a | 16 .8 ± 0.3b | 7.5 ± 0.5a | 16.5 ± 0.6c | 86 |
D2146 | 65.0 ± 3.0b | 10.0 ± 0.4b | 15 .0 ± 1.5b | 3.0 ± 0.5b | 31.7 ± 1.7b | 56 |
D2150 | 77.3 ± 3.5ab | 11.0 ± 0.5b | 19.1 ± 1.5a | 3.9 ± 0.5b | 39.7 ± 0.8a | 78 |
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Gradzielewska, A. The genus Dasypyrum-part 1. The taxonomy and relationships within Dasypyrum and with Triticeae species. Euphytica 2006, 152, 429–440. [Google Scholar] [CrossRef]
- Liu, C.; Li, G.R.; Sunish, S.; Jia, J.Q.; Yang, Z.J.; Friebe, B.; Gill, B.S. Genome relationships in the genus Dasypyrum: Evidence from molecular phylogenetic analysis and in situ hybridization. Plant Syst. Evol. 2010, 288, 149–156. [Google Scholar] [CrossRef]
- Baum, B.R.; Edwards, T.; Johnson, D.A. What does the nr5S DNA multigene family tell us about the genomic relationship between Dasypyrum breviaristatum and D. villosum (Triticeae: Poaceae)? Mol. Genet. Genom. 2014, 289, 553–565. [Google Scholar] [CrossRef] [PubMed]
- Gradzielewska, A. The genus Dasypyrum-part 2. Dasypyrum villosum-a wild species used in wheat improvement. Euphytica 2006, 152, 441–454. [Google Scholar]
- De Pace, C.; Vaccino, P.; Cionini, P.G.; Pasquini, M.; Bizzarri, M.; Qualset, C.O. Dasypyrum. In Wild Crop Relatives, Genomic and Breeding Resources, Cereals; Kole, C., Ed.; Springer-Verlag: Heidelberg, Germany, 2011; pp. 185–292. [Google Scholar]
- Chen, P.D.; Qi, L.L.; Zhang, S.Z.; Liu, D.J. Development and molecular cytogenetic analysis of wheat—Haynaldia 6VS/6AL translocation lines specifying resistance to powdery mildew. Theor. Appl. Genet. 1995, 91, 1125–1128. [Google Scholar] [CrossRef] [PubMed]
- Yildirim, A.; Jones, S.S.; Murray, T.D. Mapping a gene conferring resistance to Pseudocercosporella herpotrichoides on chromosome 4V of Dasypyrum villosum in a wheat background. Genome 1998, 41, 1–6. [Google Scholar] [CrossRef]
- Qi, L.L.; Pumphrey, M.O.; Friebe, B.; Zhang, P.; Qian, C.; Bowden, R.L.; Rouse, M.N.; Jin, Y.; Gill, B.S. A novel Robertsonian translocation event leads to transfer of a stem rust resistance gene (Sr52) effective against race Ug99 from Dasypyrum villosum into bread wheat. Theor. Appl. Genet. 2011, 123, 159–167. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.J.; Li, G.R.; Feng, J.; Jiang, H.R.; Ren, Z.L. Molecular cytogenetic characterization and disease resistance observation of wheat—Dasypyrum breviaristatum partial amphiploid and its derivatives. Hereditas 2005, 142, 80–85. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Li, G.; Yan, H.; Zhou, J.; Hu, L.; Lei, M.; Ran, L.; Yang, Z. Molecular and cytogenetic identification of new wheat—D. breviaristatum additions conferring resistance to stem rust and powdery mildew. Breed. Sci. 2011, 61, 366–372. [Google Scholar] [CrossRef] [PubMed]
- Li, G.R.; Zhao, J.M.; Li, D.H.; Yang, E.N.; Huang, Y.F.; Liu, C.; Yang, Z.J. A novel wheat—Dasypyrum breviaristatum substitution line with stripe rust resistance. Cytogenet. Genome Res. 2014, 143, 280–287. [Google Scholar] [PubMed]
- Friebe, B.; Jiang, J.; Raupp, W.J.; McIntosh, R.A.; Gill, B.S. Characterization of wheat-alien translocations conferring resistance to diseases and pests: Current status. Euphytica 1996, 91, 59–87. [Google Scholar] [CrossRef]
- Jiang, J.; Friebe, B.; Gill, B.S. Recent advances in alien gene transfer in wheat. Euphytica 1994, 73, 199–212. [Google Scholar] [CrossRef]
- Friebe, B.; Cermeno, M.C.; Zeller, F.J. C-banding polymorphism and the analysis of nucleolar activity in Dasypyrum villosum (L.) Candargy, its added chromosomes to hexaploid wheat and the amphiploid Triticum dicoccum-D. villosum. Theor. Appl. Genet. 1987, 73, 337–342. [Google Scholar] [PubMed]
- Linde-Laursen, I.B.; Frederiksen, S. Comparison of the Giemsa C-banded karyotypes of Dasypyrum villosum (2×) and D. breviaristatum (4×) from Greece. Hereditas 1991, 114, 237–244. [Google Scholar] [CrossRef]
- Zhang, W.; Zhang, R.; Feng, Y.; Bie, T.; Chen, P. Distribution of highly repeated DNA sequences in Haynaldia villosa and its application in the identification of alien chromatin. Chin. Sci. Bull. 2013, 58, 890–897. [Google Scholar] [CrossRef]
- Grosso, V.; Farina, A.; Gennaro, A.; Giorgi, D.; Lucretti, S. Flow sorting and molecular cytogenetic identification of individual chromosomes of Dasypyrum villosum L. (H. villosa) by a single DNA probe. PLoS ONE 2012, 7, e50151. [Google Scholar] [CrossRef] [PubMed]
- Galasso, I.; Blanco, A.; Katsiotis, A.; Pignone, D.; Heslop-Harrison, H.S. Genomic organization and phylogenetic relationships in the genus Dasypyrum analysed by Southern and in situ hybridization of total genomic and cloned DNA probes. Chromosoma 1997, 106, 53–61. [Google Scholar] [CrossRef] [PubMed]
- Glover, J.D.; Reganold, J.P.; Bell, L.W.; Borevitz, J.; Brummer, E.C.; Buckler, E.S.; Cox, C.M.; Cox, T.S.; Crews, T.E.; Culman, S.W.; et al. Increased food and ecosystem security via perennial grains. Science 2010, 328, 1638–1639. [Google Scholar] [CrossRef] [PubMed]
- Cai, X.; Jones, S.S.; Murray, T.D. Molecular cytogenetic characterization of Thinopyrum genomes conferring perennial growth habit in wheat-Thinopyrum amphiploids. Plant Breed. 2001, 120, 21–26. [Google Scholar] [CrossRef]
- Larkin, P.J.; Newell, M.T.; Hayes, R.C.; Aktar, J.; Norton, M.R.; Moroni, S.J.; Wade, L.J. Progress in developing perennial wheats for grain and grazing. Crop Pasture Sci. 2014, 65, 1147–1164. [Google Scholar] [CrossRef]
- Jiang, H.R.; Dai, D.Q.; Sun, D.F.; Xiao, S.H. New artificial genetic resources of wheat: Several polyploids of Triticum-Dasypyrum. Sci. Agric. Sin. 1992, 25, 89. [Google Scholar]
- Tang, Z.X.; Yang, Z.J.; Fu, S.L. Oligonucleotides replacing the roles of repetitive sequences pAs1, pSc119.2, pTa-535, pTa71, CCS1, and pAWRC.1 for FISH analysis. J. Appl. Genet. 2014, 55, 313–318. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.J.; Liu, C.; Feng, J.; Li, G.R.; Deng, K.J.; Zhou, J.P.; Ren, Z.L. Studies on genome relationship and species-specific PCR marker for Dasypyrum breviaristatum in Triticeae. Hereditas 2006, 143, 47–54. [Google Scholar] [CrossRef] [PubMed]
- Fu, S.; Yang, M.; Fei, Y.; Tan, F.; Ren, Z.; Yan, B.; Zhang, H.; Tang, Z. Alterations and abnormal mitosis of wheat chromosomes induced by wheat-rye monosomic addition lines. PLoS ONE 2013, 8, e70483. [Google Scholar] [CrossRef] [PubMed]
- Ishikawa, G.; Nakamura, T.; Ashida, T.; Saito, M.; Nasuda, S.; Endo, T.; Wu, J.; Matsumoto, T. Localization of anchor loci representing five hundred annotated rice genes to wheat chromosomes using PLUG markers. Theor. Appl. Genet. 2009, 118, 499–514. [Google Scholar] [CrossRef] [PubMed]
- Fang, Y.; Yuan, J.; Wang, Z.; Wang, H.; Xiao, J.; Yang, Z.; Zhang, R.; Qi, Z.; Xu, W.; Hu, L.; et al. Development of T. aestivum L.-H. californicum alien chromosome lines and assignment of homoeologous groups of Hordeum californicum chromosomes. J. Genet. Genomics 2014, 41, 439–447. [Google Scholar] [CrossRef] [PubMed]
- Hu, L.J.; Li, G.R.; Zeng, Z.X.; Chang, Z.J.; Liu, C.; Zhou, J.P.; Yang, Z.J. Molecular cytogenetic identification of a new wheat-Thinopyrum substitution line with stripe rust resistance. Euphytica 2011, 177, 169–177. [Google Scholar] [CrossRef]
- Lammer, D.; Cai, X.; Arterburn, M.; Chatelain, J.; Murray, T.; Jones, S. A single chromosome addition from Thinopyrum elongatum confers a polycarpic, perennial habit to annual wheat. J. Exp. Bot. 2004, 55, 1715–1720. [Google Scholar] [CrossRef] [PubMed]
- Hu, L.J.; Liu, C.; Zeng, Z.X.; Li, G.R.; Song, X.J.; Yang, Z.J. Genomic rearrangement between wheat and Thinopyrum elongatum revealed by mapped functional molecular markers. Genes Genom. 2012, 34, 67–75. [Google Scholar] [CrossRef]
- Li, G.; Lang, T.; Dai, G.; Li, D.; Li, C.; Song, X.; Yang, Z. Precise identification of two wheat-Thinopyrum intermedium substitutions reveals the compensation and rearrangement between wheat and Thinopyrum chromosomes. Mol. Breed. 2015, 35. [Google Scholar] [CrossRef]
- Li, J.; Endo, T.R.; Saito, M.; Ishikawa, G.; Nakamura, T.; Nasuda, S. Homoeologous relationship of rye chromosome arms as detected with wheat PLUG markers. Chromosoma 2013, 122, 555–564. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P.; Li, W.; Friebe, B.; Gill, B.S. Simultaneous painting of three genomes in hexaploid wheat by BAC-FISH. Genome 2004, 47, 979–987. [Google Scholar] [CrossRef] [PubMed]
- Mukai, Y. In situ hybridization. In Plant Chromosomes: Laboratory Method; Fukui, K., Nakayama, S., Eds.; CRC Press: Boca Raton, FL, USA, 1996; pp. 155–170. [Google Scholar]
- Schwarzacher, T. DNA, chromosomes, and in situ hybridization. Genome 2003, 46, 953–962. [Google Scholar] [CrossRef] [PubMed]
- Cuadrado, A.; Jouve, N. Chromosomal detection of simple sequence repeats (SSRs) using nondenaturing FISH (ND-FISH). Chromosoma 2010, 119, 495–503. [Google Scholar] [CrossRef] [PubMed]
- Cuadrado, A.; Golczyk, H.; Jouve, N. A novel, simple and rapid nondenaturing FISH (ND-FISH) technique for the detection of plant telomeres. Potential used and possible target structures detected. Chromosome Res. 2009, 17, 755–762. [Google Scholar] [CrossRef] [PubMed]
- Danilova, T.V.; Friebe, B.; Gill, B.S. Single-copy gene fluorescence in situ hybridization and genome analysis: Acc-2 loci mark evolutionary chromosomal rearrangements in wheat. Chromosoma 2012, 121, 597–611. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, T.; Heslop-Harrison, J.S. High-resolution mapping of repetitive DNA by in situ hybridization: Molecular and chromosomal features of prominent dispersed and discretely localized DNA families from the wild beet species Beta procumbens. Plant Mol. Biol. 1996, 30, 1099–1113. [Google Scholar] [CrossRef] [PubMed]
- Cuadrado, Á.; Schwarzacher, T. The chromosomal organization of simple sequence repeats in wheat and rye genomes. Chromosoma 1998, 107, 587–594. [Google Scholar] [CrossRef] [PubMed]
- Fu, S.; Chen, L.; Wang, Y.; Li, M.; Yang, Z.; Qiu, L.; Yan, B.; Ren, Z.; Tang, Z. Oligonucleotide probes for ND-FISH analysis to identify rye and wheat chromosomes. Sci. Rep. 2015, 5. [Google Scholar] [CrossRef] [PubMed]
- Han, Y.; Zhang, T.; Thammapichai, P.; Weng, Y.; Jiang, J. Chromosome-Specific Painting in Cucumis Species Using Bulked Oligonucleotides. Genetics 2015, 200, 771–779. [Google Scholar] [CrossRef] [PubMed]
- Li, G.R.; Liu, C.; Zeng, Z.X.; Jia, J.Q.; Zhang, T.; Zhou, J.P.; Ren, Z.L.; Yang, Z.J. Identification of α-gliadin genes in Dasypyrum in relation to evolution and breeding. Euphytica 2009, 165, 155–163. [Google Scholar] [CrossRef]
- Liu, C.; Qi, L.; Liu, W.; Zhao, W.; Wilson, J.; Friebe, B.; Gill, B.S. Development of a set of compensating Triticum aestivum-Dasypyrum villosum Robertsonian translocation lines. Genome 2011, 4, 836–844. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; Wang, X.; Chen, P. Molecular and cytogenetic characterization of a small alien-segment translocation line carrying the softness genes of Haynaldia villosa. Genome 2012, 55, 639–646. [Google Scholar] [CrossRef] [PubMed]
- Hayes, R.C.; Newell, M.T.; DeHaan, L.R.; Murphy, K.M.; Crane, S.; Norton, M.R.; Wade, L.J.; Newberry, M.; Fahim, M.; Jones, S.S.; et al. Perennial cereal crops: An initial evaluation of wheat derivatives. Field Crops Res. 2012, 133, 68–89. [Google Scholar] [CrossRef]
- Gazza, L.; Galassi, E.; Ciccoritti, R.; Cacciatori, P.; Pogna, N.E. Qualitative traits of perennial wheat lines derived from different Thinopyrum species. Genet. Resour. Crop Evol. 2015. [Google Scholar] [CrossRef]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, H.; Li, G.; Li, D.; Gao, D.; Zhang, J.; Yang, E.; Yang, Z. Molecular and Cytogenetic Characterization of New Wheat—Dasypyrum breviaristatum Derivatives with Post-Harvest Re-Growth Habit. Genes 2015, 6, 1242-1255. https://doi.org/10.3390/genes6041242
Zhang H, Li G, Li D, Gao D, Zhang J, Yang E, Yang Z. Molecular and Cytogenetic Characterization of New Wheat—Dasypyrum breviaristatum Derivatives with Post-Harvest Re-Growth Habit. Genes. 2015; 6(4):1242-1255. https://doi.org/10.3390/genes6041242
Chicago/Turabian StyleZhang, Hongjun, Guangrong Li, Donghai Li, Dan Gao, Jie Zhang, Ennian Yang, and Zujun Yang. 2015. "Molecular and Cytogenetic Characterization of New Wheat—Dasypyrum breviaristatum Derivatives with Post-Harvest Re-Growth Habit" Genes 6, no. 4: 1242-1255. https://doi.org/10.3390/genes6041242
APA StyleZhang, H., Li, G., Li, D., Gao, D., Zhang, J., Yang, E., & Yang, Z. (2015). Molecular and Cytogenetic Characterization of New Wheat—Dasypyrum breviaristatum Derivatives with Post-Harvest Re-Growth Habit. Genes, 6(4), 1242-1255. https://doi.org/10.3390/genes6041242