Genomics of Complex Neurodevelopmental Disorders with Variable Epilepsy Phenotypes: A Clinical Review of Dup15q Syndrome
Abstract
1. Introduction
2. Genomic Mechanisms Underlying CNDD with Epilepsy
3. Variable Clinical Spectrum of Epilepsy in CNDD
4. Dup15q Syndrome: An Illustrative Example of Phenotypic Pleiotropy
4.1. Genomic Basis
4.2. Clinical Features
4.2.1. Developmental Features
4.2.2. Epilepsy Characteristics
4.2.3. Hypotonia
4.3. Therapeutic Response
5. Broader Implications for CNDD Management
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| CNDD | Complex neurodevelopmental disorders |
| ASD/ID | Autism Spectrum Disorder/Intellectual Disability |
| GDD | Global Developmental Delay |
| IESS | Infantile Epileptic Spasm Syndrome |
| LGS | Lennox–Gastaut Syndrome |
| DEE | Developmental and Epileptic Encephalopathy |
| ASM | Anti-Seizure Medication |
| Dup15q | Chromosome 15q duplication |
| Idic15 | Pseudoisodicentric or isodicentric chromosome 15 duplication |
| Int15 | interstitial chromosome 15 duplication |
| mTOR | Mammalian target for rapamycin |
| GATOR complex | GTPase activating protein (GAP) activity toward recombinant activating genes (RAGs) complex |
| MCD | Malformation of Cortical Development |
| SCN1A | Sodium voltage-gated channel alpha subunit 1 |
| MECP2 | Methyl-CpG binding protein 2 |
| KCNQ2/ KCNQ3 | Voltage-gated potassium channel subunits 2 and 3 |
| UBE3A | Ubiquitin protein ligase E3A |
| ARX | Aristaless-related homeobox, X-linked |
| STXBP1 | Syntaxin-binding protein 1 |
| PWACR | Prader–Willi Angelman Critical Region |
| GABRB3 | Beta-3 subunit of the GABA-A receptor |
| GABRA5 | Alpha-5 subunit of the GABA-A receptor |
| GABRG3 | Gamma-3 subunit of the GABA-A receptor |
| SUDEP | Sudden Unexpected Death in Epilepsy Patients |
| 5HT1A | Serotonin or 5-hydroxytryptamine 1A |
References
- Straub, L.; Bateman, B.T.; Hernandez-Diaz, S.; York, C.; Lester, B.; Wisner, K.L.; McDougle, C.J.; Pennell, P.B.; Gray, K.J.; Zhu, Y.; et al. Neurodevelopmental Disorders Among Publicly or Privately Insured Children in the United States. JAMA Psychiatry 2022, 79, 232–242. [Google Scholar] [CrossRef]
- Cioni, G.; Inguaggiato, E.; Sgandurra, G. Early intervention in neurodevelopmental disorders: Underlying neural mechanisms. Dev. Med. Child Neurol. 2016, 58, 61–66. [Google Scholar] [CrossRef] [PubMed]
- Totsika, V.; Liew, A.; Absoud, M.; Adnams, C.; Emerson, E. Mental health problems in children with intellectual disability. Lancet Child Adolesc. Health 2022, 6, 432–444. [Google Scholar] [CrossRef]
- Siegel, M.; McGuire, K.; Veenstra-VanderWeele, J.; Stratigos, K.; King, B.; American Academy of Child and Adolescent Psychiatry (AACAP) Committee on Quality Issues (CQI); Bellonci, C.; Hayek, M.; Keable, H.; Rockhill, C.; et al. Practice Parameter for the Assessment and Treatment of Psychiatric Disorders in Children and Adolescents With Intellectual Disability (Intellectual Developmental Disorder). J. Am. Acad. Child Adolesc. Psychiatry 2020, 59, 468–496. [Google Scholar] [CrossRef]
- Besterman, A.D.; Adams, D.J.; Wong, N.R.; Schneider, B.N.; Mehta, S.; DiStefano, C.; Wilson, R.B.; Martinez-Agosto, J.A.; Jeste, S.S. Genomics-informed neuropsychiatric care for neurodevelopmental disorders: Results from a multidisciplinary clinic. Genet. Med. 2025, 27, 101333. [Google Scholar] [CrossRef]
- Lance, H.; Rodan, J.S.; Chen, E.; Geleske, T.; Council on Genetics. Genetic Evaluation of the Child with Intellectual Disability or Global Developmental Delay: Clinical Report. Pediatrics 2025, 156, e2025072219. [Google Scholar] [CrossRef]
- Rexach, J.; Lee, H.; Martinez-Agosto, J.A.; Németh, A.H.; Fogel, B.L. Clinical application of next-generation sequencing to the practice of neurology. Lancet Neurol. 2019, 18, 492–503. [Google Scholar] [CrossRef]
- Collins, F.S. Medical and Societal Consequences of the Human Genome Project. N. Engl. J. Med. 1999, 341, 28–37. [Google Scholar] [CrossRef] [PubMed]
- Marinakis, N.M.; Svingou, M.; Veltra, D.; Kekou, K.; Sofocleous, C.; Tilemis, F.N.; Kosma, K.; Tsoutsou, E.; Fryssira, H.; Traeger-Synodinos, J. Phenotype-driven variant filtration strategy in exome sequencing toward a high diagnostic yield and identification of 85 novel variants in 400 patients with rare Mendelian disorders. Am. J. Med. Genet. Part A 2021, 85, 2561–2571. [Google Scholar] [CrossRef] [PubMed]
- Oliver, K.L.; Scheffer, I.E.; Bennett, M.F.; Grinton, B.E.; Bahlo, M.; Berkovic, S.F. Genes4Epilepsy: An epilepsy gene resource. Epilepsia 2023, 64, 1368–1375. [Google Scholar] [CrossRef]
- Guerrini, R.; Balestrini, S.; Wirrell, E.C.; Walker, M.C. Monogenic Epilepsies: Disease Mechanisms, Clinical Phenotypes, and Targeted Therapies. Neurology 2021, 97, 817–831. [Google Scholar] [CrossRef]
- Iffland, P.H., 2nd; Carson, V.; Bordey, A.; Crino, P.B. GATOR opathies: The role of amino acid regulatory gene mutations in epilepsy and cortical malformations. Epilepsia 2019, 60, 2163–2173. [Google Scholar] [CrossRef] [PubMed]
- Iffland, P.H., 2nd; Baybis, M.; Barnes, A.E.; Leventer, R.J.; Lockhart, P.J.; Crino, P.B. DEPDC5 and NPRL3 modulate cell size, filopodial outgrowth, and localization of mTOR in neural progenitor cells and neurons. Neurobiol. Dis. 2018, 114, 184–193. [Google Scholar] [CrossRef] [PubMed]
- Gerasimenko, A.; Baldassari, S.; Baulac, S. mTOR pathway: Insights into an established pathway for brain mosaicism in epilepsy. Neurobiol. Dis. 2023, 182, 106144. [Google Scholar] [CrossRef] [PubMed]
- Oyrer, J.; Maljevic, S.; Scheffer, I.E.; Berkovic, S.F.; Petrou, S.; Reid, C.A. Ion Channels in Genetic Epilepsy: From Genes and Mechanisms to Disease-Targeted Therapies. Pharmacol. Rev. 2018, 70, 142–173. [Google Scholar] [CrossRef]
- Gu, B.; Carstens, K.E.; Judson, M.C.; Dalton, K.A.; Rougié, M.; Clark, E.P.; Dudek, S.M.; Philpot, B.D. Ube3a reinstatement mitigates epileptogenesis in Angelman syndrome model mice. J. Clin. Investig. 2019, 129, 163–168. [Google Scholar] [CrossRef]
- Van Loo, K.M.J.; Carvill, G.L.; Becker, A.J.; Conboy, K.; Goldman, A.M.; Kobow, K.; Lopes-Cendes, I.; Reid, C.A.; van Vliet, E.A.; Henshall, D.C. Epigenetic genes and epilepsy—Emerging mechanisms and clinical applications. Nat. Rev. Neurol. 2022, 18, 530–543. [Google Scholar] [CrossRef]
- Dezsi, G.; Ozturk, E.; Salzberg, M.R.; Morris, M.; O’Brien, T.J.; Jones, N.C. Environmental enrichment imparts disease-modifying and transgenerational effects on genetically-determined epilepsy and anxiety. Neurobiol. Dis. 2016, 93, 129–136. [Google Scholar] [CrossRef]
- Berg, A.T.; Berkovic, S.F.; Brodie, M.J.; Buchhalter, J.; Cross, J.H.; van Emde Boas, W.; Engel, J.; French, J.; Glauser, T.A.; Mathern, G.W.; et al. Revised terminology and concepts for organization of seizures and epilepsies: Report of the ILAE Commission on Classification and Terminology, 2005–2009. Epilepsia 2010, 51, 676–685. [Google Scholar] [CrossRef]
- van Hugte, E.J.H.; Lewerissa, E.I.; Wu, K.M.; Scheefhals, N.; Parodi, G.; van Voorst, T.W.; Puvogel, S.; Kogo, N.; Keller, J.M.; Frega, M.; et al. SCN1A-deficient excitatory neuronal networks display mutation-specific phenotypes. Brain 2023, 146, 5153–5167. [Google Scholar] [CrossRef]
- Luppe, J.; Sticht, H.; Lecoquierre, F.; Goldenberg, A.; Gorman, K.M.; Molloy, B.; Agolini, E.; Novelli, A.; Briuglia, S.; Kuismin, O.; et al. Heterozygous and homozygous variants in STX1A cause a neurodevelopmental disorder with or without epilepsy. Eur. J. Hum. Genet. 2023, 31, 345–352. [Google Scholar] [CrossRef]
- Mastrangelo, M.; Petrucci, S.; Lentini, G.; Fabiani, M.; Piane, M.; Pisani, F. Genome-Wide Insights and Polygenic Risk Scores in Common Epilepsies: A Narrative Review. Am. J. Med. Genet. Part B Neuropsychiatr. Genet. 2025, 198, 76–87. [Google Scholar] [CrossRef]
- DiStefano, C.; Wilson, R.B.; Hyde, C.; Cook, E.H.; Thibert, R.L.; Reiter, L.T.; Vogel-Farley, V.; Hipp, J.; Jeste, S. Behavioral characterization of dup15q syndrome: Toward meaningful endpoints for clinical trials. Am. J. Med. Genet. Part A 2020, 182, 71–84. [Google Scholar] [CrossRef] [PubMed]
- Conant, K.D.; Finucane, B.; Cleary, N.; Martin, A.; Muss, C.; Delany, M.; Murphy, E.K.; Rabe, O.; Luchsinger, K.; Spence, S.J.; et al. A survey of seizures and current treatments in 15q duplication syndrome. Epilepsia 2014, 55, 396–402. [Google Scholar] [CrossRef] [PubMed]
- Battaglia, A. The inv dup (15) or idic (15) syndrome (Tetrasomy 15q). Orphanet J. Rare Dis. 2008, 3, 30. [Google Scholar] [CrossRef]
- Elamin, M.; Dumarchey, A.; Stoddard, C.; Robinson, T.M.; Cowie, C.; Gorka, D.; Chamberlain, S.J.; Levine, E.S. The role of UBE3A in the autism and epilepsy-related Dup15q syndrome using patient-derived, CRISPR-corrected neurons. Stem Cell Rep. 2023, 18, 884–898. [Google Scholar] [CrossRef]
- Friedman, D.; Thaler, A.; Thaler, J.; Rai, S.; Cook, E.; Schanen, C.; Devinsky, O. Mortality in isodicentric chromosome 15 syndrome: The role of SUDEP. Epilepsy Behav. 2016, 61, 1–5. [Google Scholar] [CrossRef]
- Battaglia, A.; Parrini, B.; Tancredi, R. The behavioral phenotype of the idic(15) syndrome. Am. J. Med. Genet. Part C Semin. Med. Genet. 2010, 154, 448–455. [Google Scholar] [CrossRef]
- Fink, J.J.; Schreiner, J.D.; Bloom, J.E.; James, J.; Baker, D.S.; Robinson, T.M.; Lieberman, R.; Loew, L.M.; Chamberlain, S.J.; Levine, E.S. Hyperexcitable Phenotypes in Induced Pluripotent Stem Cell-Derived Neurons From Patients With 15q11-q13 Duplication Syndrome, a Genetic Form of Autism. Biol. Psychiatry 2021, 90, 756–765. [Google Scholar] [CrossRef]
- Lopez, S.J.; Laufer, B.I.; Beitnere, U.; Berg, E.L.; Silverman, J.L.; O’Geen, H.; Segal, D.J.; LaSalle, J.M. Imprinting effects of UBE3A loss on synaptic gene networks and Wnt signaling pathways. Hum. Mol. Genet. 2019, 28, 3842–3852. [Google Scholar] [CrossRef] [PubMed]
- Matricardi, S.; Darra, F.; Spalice, A.; Basti, C.; Fontana, E.; Dalla Bernardina, B.; Elia, M.; Giordano, L.; Accorsi, P.; Cusmai, R.; et al. Electroclinical findings and long-term outcomes in epileptic patients with inv dup (15). Acta Neurol. Scand. 2018, 137, 575–581. [Google Scholar] [CrossRef]
- Boronat, S.; Mehan, W.A.; Shaaya, E.A.; Thibert, R.L.; Caruso, P. Hippocampal abnormalities in magnetic resonance imaging (MRI) of 15q duplication syndromes. J. Child Neurol. 2015, 30, 333–338. [Google Scholar] [CrossRef]
- Lusk, L.; Vogel-Farley, V.; DiStefano, C.; Jeste, S. Maternal 15q Duplication Syndrome. In GeneReviews®; Adam, M.P., Feldman, J., Mirzaa, G.M., Eds.; University of Washington: Seattle, WA, USA, 2016; pp. 1993–2025. [Google Scholar]
- Wilson, R.B.; Elashoff, D.; Gouelle, A.; Smith, B.A.; Wilson, A.M.; Dickinson, A.; Safari, T.; Hyde, C.; Jeste, S.S. Quantitative Gait Analysis in Duplication 15q Syndrome and Nonsyndromic ASD. Autism Res. 2020, 13, 1102–1110. [Google Scholar] [CrossRef]
- Lockard, T.; Koh, S.; Thodeson, D.M. Dramatic Response to Neurostimulation in Children With Medically Intractable Epilepsy Related to Pseudoisodicentric Chromosome 15q Duplication: A Case Series. Pediatr. Neurol. 2025, 170, 129–132. [Google Scholar] [CrossRef] [PubMed]
- Verrotti, A.; Sertorio, F.; Matricardi, S.; Ferrara, P.; Striano, P. Electroclinical features of epilepsy in patients with InvDup(15). Seizure 2017, 47, 87–91. [Google Scholar] [CrossRef]
- Roy, B.; Han, J.; Hope, K.A.; Peters, T.L.; Palmer, G.; Reiter, L.T. An Unbiased Drug Screen for Seizure Suppressors in Duplication 15q Syndrome Reveals 5-HT(1A) and Dopamine Pathway Activation as Potential Therapies. Biol. Psychiatry 2020, 88, 698–709. [Google Scholar] [CrossRef]
- Demarest, S.; Jeste, S.; Agarwal, N.; Arkilo, D.; Asgharnejad, M.; Hsiao, S.; Thibert, R. Efficacy, safety, and tolerability of soticlestat as adjunctive therapy for the treatment of seizures in patients with Dup15q syndrome or CDKL5 deficiency disorder in an open-label signal-finding phase II study (ARCADE). Epilepsy Behav. 2023, 142, 109173. [Google Scholar] [CrossRef]
- Ghaloul-Gonzalez, L.; Parker, L.S.; Davis, J.M.; Vockley, J. Genomic sequencing: The case for equity of care in the era of personalized medicine. Pediatr. Res. 2025, 97, 1393–1398. [Google Scholar] [CrossRef] [PubMed]
- Tesi, B.; Boileau, C.; Boycott, K.M.; Canaud, G.; Caulfield, M.; Choukair, D.; Hill, S.; Spielmann, M.; Wedell, A.; Wirta, V.; et al. Precision medicine in rare diseases: What is next? J. Intern. Med. 2023, 294, 397–412. [Google Scholar] [CrossRef] [PubMed]
- McKnight, D.; Morales, A.; Hatchell, K.E.; Bristow, S.L.; Bonkowsky, J.L.; Perry, M.S.; Berg, A.T.; Borlot, F.; Esplin, E.D.; Moretz, C.; et al. Genetic Testing to Inform Epilepsy Treatment Management From an International Study of Clinical Practice. JAMA Neurol. 2022, 79, 1267–1276. [Google Scholar] [CrossRef]
- Choi, G.; Lee, S.; Yoo, S.; Do, J.T. MECP2 Dysfunction in Rett Syndrome: Molecular Mechanisms, Multisystem Pathology, and Emerging Therapeutic Strategies. Int. J. Mol. Sci. 2025, 26, 8277. [Google Scholar] [CrossRef] [PubMed]
- Hajtovic, S.; LoPresti, M.A.; Zhang, L.; Katlowitz, K.A.; Kizek, D.J.; Lam, S. The role of vagus nerve stimulation in genetic etiologies of drug-resistant epilepsy: A meta-analysis. J. Neurosurg. Pediatr. 2022, 29, 667–680. [Google Scholar] [CrossRef] [PubMed]
- Mishra, S.; Banerjee, S.; Tiwari, B.S.; Tiwari, A.K. Recent progress in CRISPR-Cas-system for neurological disorders. Prog. Mol. Biol. Transl. Sci. 2025, 210, 231–261. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Thodeson, D.; Lockard, T.; Koh, S. Genomics of Complex Neurodevelopmental Disorders with Variable Epilepsy Phenotypes: A Clinical Review of Dup15q Syndrome. Genes 2026, 17, 163. https://doi.org/10.3390/genes17020163
Thodeson D, Lockard T, Koh S. Genomics of Complex Neurodevelopmental Disorders with Variable Epilepsy Phenotypes: A Clinical Review of Dup15q Syndrome. Genes. 2026; 17(2):163. https://doi.org/10.3390/genes17020163
Chicago/Turabian StyleThodeson, Drew, Trevor Lockard, and Sookyong Koh. 2026. "Genomics of Complex Neurodevelopmental Disorders with Variable Epilepsy Phenotypes: A Clinical Review of Dup15q Syndrome" Genes 17, no. 2: 163. https://doi.org/10.3390/genes17020163
APA StyleThodeson, D., Lockard, T., & Koh, S. (2026). Genomics of Complex Neurodevelopmental Disorders with Variable Epilepsy Phenotypes: A Clinical Review of Dup15q Syndrome. Genes, 17(2), 163. https://doi.org/10.3390/genes17020163

