Factors Involved in Host Resilience to Enteric Infections in Pigs: Current Knowledge in Genetic, Immune, and Microbiota Determinants of Infection Resistance
Abstract
1. Introduction
2. Materials and Methods
2.1. Protocol Development
2.2. Search Strategy
2.3. Eligibility Criteria
2.4. Study Selection
3. Genetic Background as Basis of Infection Resistance in Enteric Pathogens
3.1. Enterotoxigenic E. coli
| Gene | Gene Name | Study Type | Function | Location | Pathogen | Reference |
|---|---|---|---|---|---|---|
| MUC4 | Mucin 4 | In Vivo | Coat the epithelial cells on the apical surfaces, providing one of the first lines of defence against pathogens | Chromosome 13 | ETEC F4 ab/ac | [34,35] |
| MUC13 | Mucin 13 | In Vivo | Chromosome 13 | ETEC F4 ab/ac | [36] | |
| MUC 20 | Mucin 20 | In Vivo | Chromosome 13 | ETEC F4 ab/ac | [37] | |
| TFRC | Transferrin receptor gene | In Vivo | Involved in transporting iron from the transferrin protein into the cell | Chromosome 13 | ETEC F4 ab/ac | [38] |
| CHCF1 | - | In Vivo | Genetic marker | Chromosome 13 | ETEC F4 ab/ac | [39] |
| ITGB5 | Integrin subunit beta-5 | In Vivo | Plays a role in bacterial adhesion | Chromosome 13 | ETEC F4 ab/ac | [40] |
| FUT1 | Alpha (1)—fucosyltransferase | In Vivo | Glycosphingolipid biosynthesis | Chromosome 6 | ETEC F18 | [41,42] |
| FUT2 | Alpha (2)—fucosyltransferase | In Vivo | Chromosome 6 | ETEC F18 | [43] |
3.2. Genetic Resistance of Pigs to Enteric Viruses
4. Host Immune Mechanisms Involved in Resistance Against Enteric Pathogens
4.1. Evidence of Overall Immune Resilience Against Enteric Bacteria
4.2. Immune Mechanisms of Host Resistance to Viral Enteric Infections in Pigs
4.3. The Role of Non-Coding RNAs in Immune-Mediated Disease Resistance
5. The Potential Ability of Commensal Beneficial Bacteria to Outcompete Intestinal Pathogens
5.1. Competitive Exclusion
5.2. Metabolites and Bacteriocins to Inhibit Pathogen Colonisation
5.3. The Stimulation of the Immune System by the Commensal Microbiota
6. Development of Disease Resilience in Pigs: Current Strategies and Future Prospects
6.1. Near-Future Approaches in Genome Editing, Immune Resilience, and Microbiome Profiling
6.2. Epigenomics Support in Disease Resilience
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| CpC | Clostridium perfringens type C |
| ETEC | Enterotoxigenic Escherichia coli |
| IL | Interleukin |
| NSP | Nonstructural Protein |
| PDCoV | Porcine Deltacoronavirus |
| PEDV | Porcine Epidemic Diarrhoea Virus |
| PRRSv | Porcine Reproductive and Respiratory Syndrome Virus |
| RV | Rotavirus |
| SADSCoV | Swine Acute Diarrhoea Syndrome Coronavirus |
| SNP | Single-Nucleotide Polymorphism |
| TGEV | Transmissible Gastroenteritis Virus |
| TLR | Toll-Like Receptor |
| VP | Viral Protein |
References
- Luppi, A.; D’Annunzio, G.; Torreggiani, C.; Martelli, P. Diagnostic Approach to Enteric Disorders in Pigs. Animals 2023, 13, 338. [Google Scholar] [CrossRef]
- Chander, Y.; Primus, A.; Oliveira, S.; Gebhart, C.J. Phenotypic and Molecular Characterization of a Novel Strongly Hemolytic Brachyspira Species, Provisionally Designated “Brachyspira hampsonii”. J. Vet. Diagn. Investig. 2012, 24, 903–910. [Google Scholar] [CrossRef]
- Martínez-Lobo, F.J.; Hidalgo, Á.; García, M.; Argüello, H.; Naharro, G.; Carvajal, A.; Rubio, P. First Identification of “Brachyspira hampsonii” in Wild European Waterfowl. PLoS ONE 2013, 8, e82626. [Google Scholar] [CrossRef]
- Kong, F.; Wang, Q.; Kenney, S.P.; Jung, K.; Vlasova, A.N.; Saif, L.J. Porcine Deltacoronaviruses: Origin, Evolution, Cross-Species Transmission and Zoonotic Potential. Pathogens 2022, 11, 79. [Google Scholar] [CrossRef] [PubMed]
- Hampson, D.J.; La, T.; Phillips, N.D. Emergence of Brachyspira Species and Strains: Reinforcing the Need for Surveillance. Porc. Health Manag. 2015, 1, 8. [Google Scholar] [CrossRef]
- Carvajal, A.; Argüello, H.; Martínez-Lobo, F.J.; Costillas, S.; Miranda, R.; G. de Nova, P.J.; Rubio, P. Porcine Epidemic Diarrhoea: New Insights into an Old Disease. Porc. Health Manag. 2015, 1, 12. [Google Scholar] [CrossRef]
- Schulz, L.L.; Tonsor, G.T. Assessment of the Economic Impacts of Porcine Epidemic Diarrhea Virus in the United States. J. Anim. Sci. 2015, 93, 5111–5118. [Google Scholar] [CrossRef] [PubMed]
- Van Boeckel, T.P.; Pires, J.; Silvester, R.; Zhao, C.; Song, J.; Criscuolo, N.G.; Gilbert, M.; Bonhoeffer, S.; Laxminarayan, R. Global Trends in Antimicrobial Resistance in Animals in Low- and Middle-Income Countries. Science 2019, 365, eaaw1944. [Google Scholar] [CrossRef] [PubMed]
- Carvajal, A.; Kramer, M.; Argüello, H. Salmonella Control in Swine: A Thoughtful Discussion of the Pre- and Post-Harvest Control Approaches in Industrialized Countries. Animals 2024, 14, 1035. [Google Scholar] [CrossRef]
- Ministério da Agricultura, Pecuária e Abastecimento (MAPA). Portaria Nº 171, de 13 de Dezembro de 2018. 2018. Available online: https://legislacao.regoola.io/portaria-no-171-de-13-de-dezembro-de-2018-mapa (accessed on 28 November 2025).
- Gens, K.D.; Singer, R.S.; Dilworth, T.J.; Heil, E.L.; Beaudoin, A.L. Antimicrobials in Animal Agriculture in the United States: A Multidisciplinary Overview of Regulation and Utilization to Foster Collaboration: On Behalf of the Society of Infectious Diseases Pharmacists. Open Forum Infect. Dis. 2022, 9, ofac542. [Google Scholar] [CrossRef]
- European Parliament; Council of the European Union. Regulation (EU) 2019/4 of the European Parliament and of the Council of 11 December 2018 on the Manufacture, Placing on the Market and Use of Medicated Feed. 2018. Available online: https://eur-lex.europa.eu/eli/reg/2019/4/oj/eng (accessed on 28 November 2025).
- European Parliament; Council of the European Union. Regulation (EU) 2019/6 of the European Parliament and of the Council of 11 December 2018 on Veterinary Medicinal Products. 2018. Available online: https://eur-lex.europa.eu/eli/reg/2019/6/oj/eng (accessed on 28 November 2025).
- European Commission. Commission Implementing Decision C(2017) 4529 Final, 26 June 2017. 2017. Available online: https://ec.europa.eu/health/documents/community-register/2017/20170626136754/dec_136754_en.pdf (accessed on 28 November 2025).
- Liu, Y.; Espinosa, C.D.; Abelilla, J.J.; Casas, G.A.; Lagos, L.V.; Lee, S.A.; Kwon, W.B.; Mathai, J.K.; Navarro, D.M.D.L.; Jaworski, N.W.; et al. Non-Antibiotic Feed Additives in Diets for Pigs: A Review. Anim. Nutr. 2018, 4, 113–125. [Google Scholar] [CrossRef]
- Liu, H.Y.; Zhu, C.; Zhu, M.; Yuan, L.; Li, S.; Gu, F.; Hu, P.; Chen, S.; Cai, D. Alternatives to Antibiotics in Pig Production: Looking through the Lens of Immunophysiology. Stress Biol. 2024, 4, 113–125. [Google Scholar] [CrossRef]
- Burkard, C.; Opriessnig, T.; Mileham, A.J.; Stadejek, T.; Ait-Ali, T.; Lillico, S.G.; Bruce, C.; Whitelaw, A.; Archibald, A.L. Pigs lacking the scavenger receptor cysteine-rich domain 5 of CD163 are resistant to porcine reproductive and respiratory syndrome virus 1 infection. J. Virol. 2018, 92, e00415-18. [Google Scholar] [CrossRef]
- Xie, Z.; Pang, D.; Yuan, H.; Jiao, H.; Lu, C.; Wang, K.; Yang, Q.; Li, M.; Chen, X.; Yu, T.; et al. Genetically Modified Pigs Are Protected from Classical Swine Fever Virus. PLoS Pathog. 2018, 14, e1007193. [Google Scholar] [CrossRef]
- Stokes, C.R. The Development and Role of Microbial-Host Interactions in Gut Mucosal Immune Development. J. Anim. Sci. Biotechnol. 2017, 8, 12. [Google Scholar] [CrossRef] [PubMed]
- Patil, Y.; Gooneratne, R.; Ju, X.H. Interactions between Host and Gut Microbiota in Domestic Pigs: A Review. Gut Microbes 2020, 11, 310–334. [Google Scholar] [CrossRef] [PubMed]
- Doeschl-Wilson, A.; Knap, P.W.; Opriessnig, T.; More, S.J. Review: Livestock Disease Resilience: From Individual to Herd Level. Animal 2021, 15, 100286. [Google Scholar] [CrossRef] [PubMed]
- Luppi, A. Swine Enteric Colibacillosis: Diagnosis, Therapy and Antimicrobial Resistance. Porc. Health Manag. 2017, 3, 16. [Google Scholar] [CrossRef]
- García-Meniño, I.; García, V.; Mora, A.; Díaz-Jiménez, D.; Flament-Simon, S.C.; Alonso, M.P.; Blanco, J.E.; Blanco, M.; Blanco, J. Swine Enteric Colibacillosis in Spain: Pathogenic Potential of Mcr-1 ST10 and ST131 E. coli Isolates. Front. Microbiol. 2018, 9, 2659. [Google Scholar] [CrossRef]
- Fairbrother, J.M.; Nadeau, É.; Gyles, C.L. Escherichia Coli in Postweaning Diarrhea in Pigs: An Update on Bacterial Types, Pathogenesis, and Prevention Strategies. Anim. Health Res. Rev. 2005, 6, 17–39. [Google Scholar] [CrossRef]
- Dubreuil, J.D.; Isaacson, R.E.; Schifferli, D.M. Animal Enterotoxigenic Escherichia Coli. EcoSal Plus 2016, 7, 1–47. [Google Scholar] [CrossRef]
- Van den Broeck, W.; Cox, E.; Oudega, B.; Goddeeris, B.M. The F4 Fimbrial Antigen of Escherichia coli and Its Receptors. Vet. Microbiol. 2000, 71, 223–244. [Google Scholar] [CrossRef]
- Bijlsma, I.G.; de Nijs, A.; van der Meer, C.; Frik, J.F. Different Pig Phenotypes Affect Adherence of Escherichia coli to Jejunal Brush Borders by K88ab, K88ac, or K88ad Antigen. Infect. Immun. 1982, 37, 891–894. [Google Scholar] [CrossRef]
- Billey, L.O.; Erickson, A.K.; Francis, D.H. Multiple Receptors on Porcine Intestinal Epithelial Cells for the Three Variants of Escherichia coli K88 Fimbrial Adhesin. Vet. Microbiol. 1998, 59, 203–212. [Google Scholar] [CrossRef] [PubMed]
- Python, P.; Jörg, H.; Neuenschwander, S.; Hagger, C.; Stricker, C.; Bürgi, E.; Bertschinger, H.U.; Stranzinger, G.; Vögeli, P. Fine-mapping of the Intestinal Receptor Locus for Enterotoxigenic Escherichia coli F4ac on Porcine Chromosome 13. Anim. Genet. 2002, 33, 441–447. [Google Scholar] [CrossRef] [PubMed]
- Python, P.; Jörg, H.; Neuenschwander, S.; Asai-Coakwell, M.; Hagger, C.; Bürgi, E.; Bertschinger, H.U.; Stranzinger, G.; Vögeli, P. Inheritance of the F4ab, F4ac and F4ad E. coli Receptors in Swine and Examination of Four Candidate Genes for F4acR. J. Anim. Breed. Gen. 2005, 122, 5–14. [Google Scholar] [CrossRef] [PubMed]
- Jørgensen, C.B.; Cirera, S.; Anderson, S.I.; Archibald, A.L.; Raudsepp, T.; Chowdhary, B.; Edfors-Lilja, I.; Andersson, L.; Fredholm, M. Linkage and Comparative Mapping of the Locus Controlling Susceptibility towards E.coli F4ab/Ac Diarrhoea in Pigs. Cytogenet. Genome Res. 2003, 102, 157–162. [Google Scholar] [CrossRef]
- Fu, W.-X.; Liu, Y.; Lu, X.; Niu, X.-Y.; Ding, X.-D.; Liu, J.-F.; Zhang, Q. A Genome-Wide Association Study Identifies Two Novel Promising Candidate Genes Affecting Escherichia coli F4ab/F4ac Susceptibility in Swine. PLoS ONE 2012, 7, e32127. [Google Scholar] [CrossRef]
- Sinha, R.; Sahoo, N.R.; Shrivastava, K.; Kumar, P.; Qureshi, S.; De, U.K.; Kumar, A.; Kumar, G.V.P.P.S.R.; Bhushan, B. Resistance to ETEC F4/F18–Mediated Piglet Diarrhoea: Opening the Gene Black Box. Trop. Anim. Health Prod. 2019, 51, 1307–1320. [Google Scholar] [CrossRef]
- Sterndale, S.O.; Miller, D.W.; Mansfield, J.P.; Kim, J.C.; O’Dea, M.; Pluske, J.R. Technical Note: Novel Delivery Methods for an Enterotoxigenic Escherichia coli Infection Model in MUC4-Locus Sequenced Weaner Pigs1. J. Anim. Sci. 2019, 97, 4503–4508. [Google Scholar] [CrossRef]
- Matsumoto, H.; Miyagawa, M.; Takahashi, S.; Shima, R.; Oosumi, T. Improvement of the Enterotoxigenic Escherichia coli Infection Model for Post-Weaning Diarrhea by Controlling for Bacterial Adhesion, Pig Breed and MUC4 Genotype. Vet. Sci. 2020, 7, 106. [Google Scholar] [CrossRef]
- Zhang, B.; Ren, J.; Yan, X.; Huang, X.; Ji, H.; Peng, Q.; Zhang, Z.; Huang, L. Investigation of the Porcine MUC13 Gene: Isolation, Expression, Polymorphisms and Strong Association with Susceptibility to Enterotoxigenic Escherichia coli F4ab/Ac. Anim. Genet. 2008, 39, 258–266. [Google Scholar] [CrossRef] [PubMed]
- Schroyen, M.; Stinckens, A.; Verhelst, R.; Geens, M.; Cox, E.; Niewold, T.; Buys, N. Susceptibility of Piglets to Enterotoxigenic Escherichia coli Is Not Related to the Expression of MUC13 and MUC20. Anim. Genet. 2012, 43, 324–327. [Google Scholar] [CrossRef]
- Schroyen, M.; Goddeeris, B.M.; Stinckens, A.; Verhelst, R.; Janssens, S.; Cox, E.; Georges, M.; Niewold, T.; Buys, N. The Effect of Enterotoxigenic Escherichia Coli F4ab,Ac on Early-Weaned Piglets: A Gene Expression Study. Vet. Immunol. Immunopathol. 2013, 152, 87–92. [Google Scholar] [CrossRef]
- Rydal, M.P.; Gambino, M.; Jørgensen, C.B.; Poulsen, L.L.; Brøndsted, L.; Nielsen, J.P. Pilot Study on CHCF1 Genotype in a Pig Challenge Model for Enterotoxigenic Escherichia coli F4ab/Ac Associated Post-Weaning Diarrhea. BMC Vet. Res. 2022, 18, 382. [Google Scholar] [CrossRef]
- Wang, W.; Liu, Y.; Tang, H.; Yu, Y.; Zhang, Q. ITGB5 Plays a Key Role in Escherichia coli F4ac-Induced Diarrhea in Piglets. Front. Immunol. 2019, 10, 2834. [Google Scholar] [CrossRef]
- Bao, W.B.; Ye, L.; Zhu, J.; Pan, Z.Y.; Zhu, G.Q.; Huang, X.G.; Wu, S.L. Polymorphism of M307 of the FUT1 Gene and Its Relationship with Some Immune Indexes in Sutai Pigs (Duroc × Meishan). Biochem. Genet. 2011, 49, 665–673. [Google Scholar] [CrossRef]
- Welch, M.W.; Cross, A.J.; Diaz, I.D.P.S.; Johnson, D.C.; Parr, E.; Rathje, T.A.; Borg, R.C.; Boler, D.D. Maintained Growth Performance and Reduced Mortality of Genetically Resistant Nursery Pigs after an Experimental Virulent F18 Enterotoxigenic Escherichia coli Challenge. Transl. Anim. Sci. 2025, 9, txaf004. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.; Feng, H.; Cao, Y.; Huang, Y.; Dai, C.; Wu, S.; Bao, W. New Insight into the Molecular Mechanism of the FUT2 Regulating Escherichia coli F18 Resistance in Weaned Piglets. Int. J. Mol. Sci. 2018, 19, 3301. [Google Scholar] [CrossRef] [PubMed]
- Rasschaert, K.; Verdonck, F.; Goddeeris, B.M.; Duchateau, L.; Cox, E. Screening of Pigs Resistant to F4 Enterotoxigenic Escherichia coli (ETEC) Infection. Vet. Microbiol. 2007, 123, 249–253. [Google Scholar] [CrossRef] [PubMed]
- Fontanesi, L.; Bertolini, F.; Dall’Olio, S.; Buttazzoni, L.; Gallo, M.; Russo, V. Analysis of Association Between the MUC4 g.8227C>G Polymorphism and Production Traits in Italian Heavy Pigs Using a Selective Genotyping Approach. Anim. Biotechnol. 2012, 23, 147–155. [Google Scholar] [CrossRef]
- Goetstouwers, T.; Van Poucke, M.; Coppieters, W.; Nguyen, V.U.; Melkebeek, V.; Coddens, A.; Van Steendam, K.; Deforce, D.; Cox, E.; Peelman, L.J. Refined Candidate Region for F4ab/Ac Enterotoxigenic Escherichia coli Susceptibility Situated Proximal to MUC13 in Pigs. PLoS ONE 2014, 9, e105013. [Google Scholar] [CrossRef]
- Hu, D.; Rampoldi, A.; Bratus-Neuenschwander, A.; Hofer, A.; Bertschinger, H.U.; Vögeli, P.; Neuenschwander, S. Effective Genetic Markers for Identifying the Escherichia coli F4ac Receptor Status of Pigs. Anim. Genet. 2019, 50, 136–142. [Google Scholar] [CrossRef]
- Ji, H.; Ren, J.; Yan, X.; Huang, X.; Zhang, B.; Zhang, Z.; Huang, L. The Porcine MUC20 Gene: Molecular Characterization and Its Association with Susceptibility to Enterotoxigenic Escherichia coli F4ab/Ac. Mol. Biol. Rep. 2011, 38, 1593–1601. [Google Scholar] [CrossRef]
- Augustino, S.M.A.; Xu, Q.; Liu, X.; Liu, L.; Zhang, Q.; Yu, Y. Transcriptomic Study of Porcine Small Intestine Epithelial Cells Reveals Important Genes and Pathways Associated With Susceptibility to Escherichia coli F4ac Diarrhea. Front. Genet. 2020, 11, 68. [Google Scholar] [CrossRef]
- Rydal, M.P.; Jørgensen, C.B.; Gambino, M.; Poulsen, L.L.; Nielsen, J.P. Complete Association between CHCF1 Genotype and Enterotoxigenic Escherichia coli F4ab-Associated Post-Weaning Diarrhea in a Pig Challenge Trial. Vet. Microbiol. 2023, 282, 109771. [Google Scholar] [CrossRef]
- Rydal, M.P.; Poulsen, L.L.; Nielsen, J.P. The Early-Life Fecal Microbiota Is Associated with Litter of Origin but Not with Susceptibility to ETEC F4ab-Mediated Post-Weaning Diarrhea in CHCF1 Genotyped Pigs. PLoS ONE 2025, 20, e0323875. [Google Scholar] [CrossRef]
- Nagy, B.; Whipp, S.C.; Imberechts, H.; Bertschinger, H.U.; Dean-Nystrom, E.A.; Casey, T.A.; Salajka, E. Biological Relationship between F18ab and F18ac Fimbriae of Enterotoxigenic and Verotoxigenic Escherichia coli from Weaned Pigs with Oedema Disease or Diarrhoea. Microb. Pathog. 1997, 22, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Meijerink, E.; Fries, R.; Vögeli, P.; Masabanda, J.; Wigger, G.; Stricker, C.; Neuenschwander, S.; Bertschinger, H.U.; Stranzinger, G. Two α(1,2) Fucosyltransferase Genes on Porcine Chromosome 6q11 Are Closely Linked to the Blood Group Inhibitor (S) and Escherichia coli F18 Receptor (ECF18R) Loci. Mamm. Genome 1997, 8, 736–741. [Google Scholar] [CrossRef] [PubMed]
- Meijerink, E.; Neuenschwander, S.; Fries, R.; Dinter, A.; Bertschinger, H.U.; Stranzinger, G.; Vögeli, P. A DNA Polymorphism Influencing α(1,2)Fucosyltransferase Activity of the Pig FUT1 Enzyme Determines Susceptibility of Small Intestinal Epithelium to Escherichia coli F18 Adhesion. Immunogenetics 2000, 52, 129–136. [Google Scholar] [CrossRef] [PubMed]
- Bao, W.B.; Ye, L.; Pan, Z.Y.; Zhu, J.; Du, Z.D.; Zhu, G.Q.; Huang, X.G.; Wu, S.L. The Effect of Mutation at M307 in FUT1 Gene on Susceptibility of Escherichia coli F18 and Gene Expression in Sutai Piglets. Mol. Biol. Rep. 2012, 39, 3131–3136. [Google Scholar] [CrossRef]
- Wu, Z.; Fan, H.; Jin, J.; Gao, S.; Huang, R.; Wu, S.; Bao, W. Insight into Mechanisms of Pig LncRNA FUT3-AS1 Regulating E. coli F18-Bacterial Diarrhea. PLoS Pathog. 2022, 18, e1010584. [Google Scholar] [CrossRef]
- Bertolini, F.; Harding, J.C.S.; Mote, B.; Ladinig, A.; Plastow, G.S.; Rothschild, M.F. Genomic Investigation of Piglet Resilience Following Porcine Epidemic Diarrhea Outbreaks. Anim. Genet. 2017, 48, 228–232. [Google Scholar] [CrossRef] [PubMed]
- Yuan, H.; Yang, L.; Zhang, Y.; Xiao, W.; Wang, Z.; Tang, X.; Ouyang, H.; Pang, D. Current Status of Genetically Modified Pigs That are Resistant to Virus Infection. Viruses 2022, 14, 417. [Google Scholar] [CrossRef]
- Kamau, A.N.; Yu, J.E.; Park, E.S.; Rho, J.R.; Hong, E.J.; Shin, H.J. Strenuous Expression of Porcine Epidemic Diarrhea Virus ORF3 Protein Suggests Host Resistance. Vet. Microbiol. 2024, 297, 110193. [Google Scholar] [CrossRef] [PubMed]
- Whitworth, K.M.; Rowland, R.R.R.; Petrovan, V.; Sheahan, M.; Cino-Ozuna, A.G.; Fang, Y.; Hesse, R.; Mileham, A.; Samuel, M.S.; Wells, K.D.; et al. Resistance to Coronavirus Infection in Amino Peptidase N-Deficient Pigs. Transgenic Res. 2019, 28, 21–32. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.Y.; Wang, F.; Wu, Z.C.; Wu, S.L.; Bao, W. Bin Regulatory Effect of Methylation of the Porcine AQP3 Gene Promoter Region on Its Expression Level and Porcine Epidemic Diarrhea Virus Resistance. Genes 2020, 11, 1167. [Google Scholar] [CrossRef]
- Wang, H.; Bi, Z.; Dai, K.; Li, P.; Huang, R.; Wu, S.; Bao, W. A Functional Variant in the Aquaporin-3 Promoter Modulates Its Expression and Correlates With Resistance to Porcine Epidemic Virus Infection in Porcine Intestinal Epithelial Cells. Front. Microbiol. 2022, 13, 877644. [Google Scholar] [CrossRef]
- Qu, H.; Zong, Q.; Wang, H.; Wu, S.; Cai, D.; Bao, W. C/EBPα Epigenetically Modulates TFF1 Expression via MC-6 Methylation in the Jejunum Inflammation Induced by a Porcine Coronavirus. Front. Immunol. 2022, 13, 881289. [Google Scholar] [CrossRef]
- Silva-Ayala, D.; López, T.; Gutiérrez, M.; Perrimon, N.; López, S.; Arias, C.F.; Estes, M.K. Genome-Wide RNAi Screen Reveals a Role for the ESCRT Complex in Rotavirus Cell Entry. Proc. Natl. Acad. Sci. USA 2013, 110, 10270–10275. [Google Scholar] [CrossRef]
- Torres-Flores, J.M.; Silva-Ayala, D.; Espinoza, M.A.; López, S.; Arias, C.F. The Tight Junction Protein JAM-A Functions as Coreceptor for Rotavirus Entry into MA104 Cells. Virology 2015, 475, 172–178. [Google Scholar] [CrossRef] [PubMed]
- Delmas, B.; Gelfi, J.; Kut, E.; Sjöström, H.; Noren, O.; Laude, H. Determinants essential for the transmissible gastroenteritis virus-receptor interaction reside within a domain of aminopeptidase N that is distinct from the enzymatic site. J. Virol. 1994, 68, 5216–5224. [Google Scholar] [CrossRef] [PubMed]
- Ren, X.; Li, G.; Liu, B. Binding Characterization of Determinants in Porcine Aminopeptidase N, the Cellular Receptor for Transmissible Gastroenteritis Virus. J. Biotechnol. 2010, 150, 202–206. [Google Scholar] [CrossRef]
- Sun, D.; Shi, H.; Chen, J.; Guo, D.; Liu, Q.; He, X.; Bao, J.; Wang, Y.; Qiu, H.; Feng, L. Virus-Binding Activity of the Truncated C Subunit of Porcine Aminopeptidase N Expressed in Escherichia coli. Biotechnol. Lett. 2012, 34, 533–539. [Google Scholar] [CrossRef]
- Luo, L.; Wang, S.; Zhu, L.; Fan, B.; Liu, T.; Wang, L.; Zhao, P.; Dang, Y.; Sun, P.; Chen, J.; et al. Aminopeptidase N-Null Neonatal Piglets Are Protected from Transmissible Gastroenteritis Virus but Not Porcine Epidemic Diarrhea Virus. Sci. Rep. 2019, 9, 13186. [Google Scholar] [CrossRef]
- Xu, K.; Zhou, Y.; Mu, Y.; Liu, Z.; Hou, S.; Xiong, Y.; Fang, L.; Ge, C.; Wei, Y.; Zhang, X.; et al. CD163 and PAPN Double-Knockout Pigs Are Resistant to PRRSV and TGEV and Exhibit Decreased Susceptibility to PDCoV While Maintaining Normal Production Performance. eLife 2020, 9, e57132. [Google Scholar] [CrossRef]
- Wang, S.; Xu, C.; Shi, J.; Wang, H.; Wu, S.; Bao, W. Regulatory Effect and Mechanism of APN Gene on Porcine Epidemic Diarrhea Virus Resistance. Gene 2021, 775, 145448. [Google Scholar] [CrossRef]
- Li, W.; Luo, R.; He, Q.; van Kuppeveld, F.J.M.; Rottier, P.J.M.; Bosch, B.J. Aminopeptidase N Is Not Required for Porcine Epidemic Diarrhea Virus Cell Entry. Virus Res. 2017, 235, 6–13. [Google Scholar] [CrossRef] [PubMed]
- Verkman, A.S. Aquaporins at a Glance. J. Cell Sci. 2011, 124, 2107–2112. [Google Scholar] [CrossRef]
- Stoian, A.; Rowland, R.R.R.; Petrovan, V.; Sheahan, M.; Samuel, M.S.; Whitworth, K.M.; Wells, K.D.; Zhang, J.; Beaton, B.; Cigan, M.; et al. The Use of Cells from ANPEP Knockout Pigs to Evaluate the Role of Aminopeptidase N (APN) as a Receptor for Porcine Deltacoronavirus (PDCoV). Virology 2020, 541, 136–140. [Google Scholar] [CrossRef] [PubMed]
- Yin, L.; Chen, J.; Li, L.; Guo, S.; Xue, M.; Zhang, J.; Liu, X.; Feng, L.; Liu, P. Aminopeptidase N Expression, Not Interferon Responses, Determines the Intestinal Segmental Tropism of Porcine Deltacoronavirus. J. Virol. 2020, 94, e00442-20. [Google Scholar] [CrossRef]
- Yang, Y.-L.; Liu, J.; Wang, T.-Y.; Chen, M.; Wang, G.; Yang, Y.-B.; Geng, X.; Sun, M.-X.; Meng, F.; Tang, Y.-D.; et al. Aminopeptidase N Is an Entry Co-Factor Triggering Porcine Deltacoronavirus Entry via an Endocytotic Pathway. J. Virol. 2021, 95, e0094421. [Google Scholar] [CrossRef]
- Ciarlet, M.; Estes, M.K. Human and Most Animal Rotavirus Strains Do Not Require the Presence of Sialic Acid on the Cell Surface for Efficient Infectivity. J. Gen. Virol. 1999, 80, 943–948. [Google Scholar] [CrossRef] [PubMed]
- Kuhlenschmidt, T.B.; Hanafin, W.P.; Gelberg, H.B.; Kuhlenschmidt, M.S. Sialic acid dependence and independence of group A rotaviruses. Adv. Exp. Med. Biol. 1999, 473, 309–317. [Google Scholar] [PubMed]
- Guo, Y.; Candelero-Rueda, R.A.; Saif, L.J.; Vlasova, A.N. Infection of Porcine Small Intestinal Enteroids with Human and Pig Rotavirus A Strains Reveals Contrasting Roles for Histo-Blood Group Antigens and Terminal Sialic Acids. PLoS Pathog. 2021, 17, e1009237. [Google Scholar] [CrossRef]
- Kim, I.S.; Trask, S.D.; Babyonyshev, M.; Dormitzer, P.R.; Harrison, S.C. Effect of Mutations in VP5* Hydrophobic Loops on Rotavirus Cell Entry. J. Virol. 2010, 84, 6200–6207. [Google Scholar] [CrossRef]
- Guo, Y.; Wentworth, D.E.; Stucker, K.M.; Halpin, R.A.; Lam, H.C.; Marthaler, D.; Saif, L.J.; Vlasova, A.N. Amino Acid Substitutions in Positions 385 and 393 of the Hydrophobic Region of VP4 May Be Associated with Rotavirus Attenuation and Cell Culture Adaptation. Viruses 2020, 12, 408. [Google Scholar] [CrossRef]
- Cui, T.; Theuns, S.; Xie, J.; Nauwynck, H.J. Porcine Rotavirus Mainly Infects Primary Porcine Enterocytes at the Basolateral Surface. Vet. Res. 2019, 50, 110. [Google Scholar] [CrossRef]
- Van den Broeck, W.; Cox, E.; Goddeeris, B.M. Receptor-dependent immune responses in pigs after oral immunization with F4 fimbriae. Infect. Immun. 1999, 67, 520–526. [Google Scholar] [CrossRef]
- Kich, J.D.; Uthe, J.J.; Benavides, M.V.; Cantão, M.E.; Zanella, R.; Tuggle, C.K.; Bearson, S.M.D. TLR4 Single Nucleotide Polymorphisms (SNPs) Associated with Salmonella Shedding in Pigs. J. Appl. Genet. 2014, 55, 267–271. [Google Scholar] [CrossRef] [PubMed]
- Shinkai, H.; Suzuki, R.; Akiba, M.; Okumura, N.; Uenishi, H. Porcine Toll-like Receptors: Recognition of Salmonella enterica Serovar Choleraesuis and Influence of Polymorphisms. Mol. Immunol. 2011, 48, 1114–1120. [Google Scholar] [CrossRef]
- Wu, Z.; Xia, R.; Yin, X.; Huo, Y.; Zhu, G.; Wu, S.; Bao, W.B. Proteomic Analysis of Duodenal Tissue from Escherichia coli F18-Resistant and -Susceptible Weaned Piglets. PLoS ONE 2015, 10, e0127164. [Google Scholar] [CrossRef]
- Huang, X.; Yang, Q.; Yan, Z.; Wang, P.; Shi, H.; Li, J.; Shang, X.; Gun, S. Combined Analysis of RRBS DNA Methylome and Transcriptome Reveal Novel Candidate Genes Related to Porcine Clostridium Perfringens Type C-Induced Diarrhea. Front. Genet. 2022, 13, 803477. [Google Scholar] [CrossRef]
- Muneta, Y.; Arai, N.; Yakabe, Y.; Eguchi, M.; Shibahara, T.; Sakuma, A.; Shinkai, H.; Uenishi, H.; Hirose, K.; Akiba, M. In Vivo Effect of a TLR5 SNP (C1205T) on Salmonella Enterica Serovar Typhimurium Infection in Weaned, Specific Pathogen-Free Landrace Piglets. Microbiol. Immunol. 2018, 62, 380–387. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Gan, L.N.; Qin, W.Y.; Sun, S.Y.; Zhu, G.Q.; Wu, S.L.; Bao, W.B. Differential Expression of Toll-like Receptor 4 Signaling Pathway Genes in Escherichia coli F18-Resistant and—Sensitive Meishan Piglets. Pol. J. Vet. Sci. 2016, 19, 303–308. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.; Liu, Y.; Dong, W.; Zhu, G.Q.; Wu, S.; Bao, W. CD14 in the TLRs Signaling Pathway Is Associated with the Resistance to E. coli F18 in Chinese Domestic Weaned Piglets. Sci. Rep. 2016, 6, 24611. [Google Scholar] [CrossRef]
- Dai, C.; Yang, L.; Jin, J.; Wang, H.; Wu, S.; Bao, W. Regulation and Molecular Mechanism of TLR5 on Resistance to Escherichia coli F18 in Weaned Piglets. Animals 2019, 9, 735. [Google Scholar] [CrossRef] [PubMed]
- Hyland, K.A.; Kohrt, L.; Vulchanova, L.; Murtaugh, M.P. Mucosal Innate Immune Response to Intragastric Infection by Salmonella enterica Serovar Choleraesuis. Mol. Immunol. 2006, 43, 1890–1899. [Google Scholar] [CrossRef]
- Volf, J.; Stepanova, H.; Matiasovic, J.; Kyrova, K.; Sisak, F.; Havlickova, H.; Leva, L.; Faldyna, M.; Rychlik, I. Salmonella enterica Serovar Typhimurium and Enteritidis Infection of Pigs and Cytokine Signalling in Palatine Tonsils. Vet. Microbiol. 2012, 156, 127–135. [Google Scholar] [CrossRef]
- Posthaus, H.; Kittl, S.; Tarek, B.; Bruggisser, J. Clostridium perfringens Type C Necrotic Enteritis in Pigs: Diagnosis, Pathogenesis, and Prevention. J. Vet. Diag. Investig. 2020, 32, 203–212. [Google Scholar] [CrossRef]
- Shi, H.; Huang, X.; Yan, Z.; Yang, Q.; Wang, P.; Li, S.; Sun, W.; Gun, S. Effect of Clostridium perfringens Type C on TLR4/MyD88/NF-ΚB Signaling Pathway in Piglet Small Intestines. Microb. Pathog. 2019, 135, 103567. [Google Scholar] [CrossRef] [PubMed]
- Kommadath, A.; Bao, H.; Arantes, A.S.; Plastow, G.S.; Tuggle, C.K.; Bearson, S.M.D.; Guan, L.L.; Stothard, P. Gene Co-Expression Network Analysis Identifies Porcine Genes Associated with Variation in Salmonella Shedding. BMC Genom. 2014, 15, 452. [Google Scholar] [CrossRef]
- Wessling-Resnick, M. Nramp1 and Other Transporters Involved in Metal Withholding during Infection. J. Biol. Chem. 2015, 290, 18984–18990. [Google Scholar] [CrossRef]
- Cunrath, O.; Bumann, D. Host Resistance Factor SLC11A1 Restricts Salmonella Growth Through Magnesium Deprivation. Science 2019, 366, 995–999. [Google Scholar] [CrossRef]
- Wu, Z.-F.; Luo, W.-H.; Yang, G.-F.; Zhang, X.-Q. Genomic Organization and Polymorphisms Detected by Denaturing High-Performance Liquid Chromatography of Porcine SLC11A1 Gene. DNA Seq. 2007, 18, 327–333. [Google Scholar] [CrossRef]
- Thompson, M.R.; Kaminski, J.J.; Kurt-Jones, E.A.; Fitzgerald, K.A. Pattern Recognition Receptors and the Innate Immune Response to Viral Infection. Viruses 2011, 3, 920–940. [Google Scholar] [CrossRef]
- Li, D.; Wu, M. Pattern Recognition Receptors in Health and Diseases. Signal Transduct. Target. Ther. 2021, 6, 291. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Xu, Y.; Jiang, S.; Sun, S.; Zhang, J.; Luo, J.; Cao, Q.; Zheng, W.; Meurens, F.; Chen, N.; et al. Multiple Porcine Innate Immune Signaling Pathways Are Involved in the Anti-PEDV Response. Viruses 2023, 15, 1629. [Google Scholar] [CrossRef]
- Amici, C.; La Frazia, S.; Brunelli, C.; Balsamo, M.; Angelini, M.; Santoro, M.G. Inhibition of Viral Protein Translation by Indomethacin in Vesicular Stomatitis Virus Infection: Role of EIF2α Kinase PKR. Cell Microbiol. 2015, 17, 1391–1404. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.; Lin, S.; Li, J.; Deng, S.; Zhang, J.; Wang, S. Modulation of Innate Antiviral Immune Response by Porcine Enteric Coronavirus. Front. Microbiol. 2022, 13, 845137. [Google Scholar] [CrossRef]
- Schneider, W.M.; Chevillotte, M.D.; Rice, C.M. Interferon-Stimulated Genes: A Complex Web of Host Defenses. Annu. Rev. Immunol. 2014, 32, 513–545. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.; Yang, J.; He, H.; Wu, J.; Yu, H.; Li, S.; Yang, N.; Huang, X.; Wang, C.; Zhang, T.; et al. IFIT3 Inhibits Transmissible Gastroenteritis Virus (TGEV) Infection by Promoting the Phosphorylation of TBK1 and STAT1, Which Enhances the Innate Immune Response. Virology 2025, 609, 110574. [Google Scholar] [CrossRef]
- Nguyen, K.B.; Cousens, L.P.; Doughty, L.A.; Pien, G.C.; Durbin, J.E.; Biron, C.A. Interferon α/β-mediated inhibition and promotion of interferon γ: STAT1 resolves a paradox. Nat. Immunol. 2000, 1, 70–76. [Google Scholar] [CrossRef]
- Wang, F.; Wang, S.Q.; Wang, H.F.; Wu, Z.C.; Bao, W.B.; Wu, S.L. Effects of Porcine Epidemic Diarrhea Virus Infection on Toll-like Receptor Expression and Cytokine Levels in Porcine Intestinal Epithelial Cells. Pol. J. Vet. Sci. 2020, 23, 119–126. [Google Scholar] [CrossRef]
- Diamond, M.S.; Farzan, M. The Broad-Spectrum Antiviral Functions of IFIT and IFITM Proteins. Nat. Rev. Immunol. 2013, 13, 46–57. [Google Scholar] [CrossRef] [PubMed]
- Kumar, D.; Shepherd, F.K.; Springer, N.L.; Mwangi, W.; Marthaler, D.G. Rotavirus Infection in Swine: Genotypic Diversity, Immune Responses, and Role of Gut Microbiome in Rotavirus Immunity. Pathogens 2022, 11, 1078. [Google Scholar] [CrossRef]
- Yuan, C.; Zhao, X.; Feng, Y.; Chen, L.; Lin, Y.; Li, T.; Song, Q. Comparison of B Cells’ Immune Response Induced by PEDV Virulent and Attenuated Strains. Front. Microbiol. 2024, 15, 1344344. [Google Scholar] [CrossRef]
- Kawai, T.; Takahashi, K.; Sato, S.; Coban, C.; Kumar, H.; Kato, H.; Ishii, K.J.; Takeuchi, O.; Akira, S. IPS-1, an Adaptor Triggering RIG-I- and Mda5-Mediated Type I Interferon Induction. Nat. Immunol. 2005, 6, 981–988. [Google Scholar] [CrossRef] [PubMed]
- Sato, M.; Suemori, H.; Hata, N.; Asagiri, M.; Ogasawara, K.; Nakao, K.; Nakaya, T.; Katsuki, M.; Noguchi, S.; Tanaka, N.; et al. Distinct and essential roles of transcription factors IRF-3 and IRF-7 in response to viruses for IFN-α/β gene induction. Immunity 2000, 13, 539–548. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Ran, L.; Yan, T.; Niu, Z.; Kan, Z.; Zhang, Y.; Yang, Y.; Xie, L.; Huang, S.; Yu, Q.; et al. Anti-TGEV Miller Strain Infection Effect of Lactobacillus Plantarum Supernatant Based on the JAK-STAT1 Signaling Pathway. Front. Microbiol. 2019, 10, 2540. [Google Scholar] [CrossRef]
- He, H.; Wang, W.; Li, L.; Zhang, X.; Shi, H.; Chen, J.; Shi, D.; Xue, M.; Feng, L. Activation of the NLRP1 Inflammasome and Its Role in Transmissible Gastroenteritis Coronavirus Infection. J. Virol. 2023, 97, e0058923. [Google Scholar] [CrossRef]
- Akira, S.; Uematsu, S.; Takeuchi, O. Pathogen Recognition and Innate Immunity. Cell 2006, 124, 783–801. [Google Scholar] [CrossRef]
- Lazear, H.M.; Schoggins, J.W.; Diamond, M.S. Shared and Distinct Functions of Type I and Type III Interferons. Immunity 2019, 50, 907–923. [Google Scholar] [CrossRef] [PubMed]
- Deng, X.; Buckley, A.C.; Pillatzki, A.; Lager, K.M.; Faaberg, K.S.; Baker, S.C. Inactivating three interferon antagonists attenuates pathogenesis of an enteric coronavirus. J. Virol. 2020, 94, e00565-20. [Google Scholar] [CrossRef]
- Li, S.; Yang, J.; Zhu, Z.; Zheng, H. Porcine Epidemic Diarrhea Virus and the Host Innate Immune Response. Pathogens 2020, 9, 367. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Wu, Y.; Chen, J.; Shi, H.; Ji, Z.; Zhang, X.; Shi, D.; Liu, J.; Tian, J.; Wang, X.; et al. Innate immune evasion of porcine epidemic diarrhea virus through degradation of the FBXW7 protein via the ubiquitin–proteasome pathway. J. Virol. 2022, 96, e00889-21. [Google Scholar] [CrossRef] [PubMed]
- Zong, Q.; Qu, H.; Zheng, X.; Wang, H.; Wu, S.; Yin, Z.; Bao, W. Hypomethylated Interferon Regulatory Factor 8 Recruits Activating Protein-2α to Attenuate Porcine Epidemic Diarrhea Virus Infection in Porcine Jejunum. Front. Immunol. 2023, 14, 1187144. [Google Scholar] [CrossRef]
- Ding, T.; Cheng, T.; Zhu, X.; Xiao, W.; Xia, S.; Fang, L.; Fang, P.; Xiao, S. Exosomes Mediate the Antibody-Resistant Intercellular Transmission of Porcine Epidemic Diarrhea Virus. Vet. Microbiol. 2023, 284, 109834. [Google Scholar] [CrossRef]
- Huang, H.; Lei, X.; Zhao, C.; Qin, Y.; Li, Y.; Zhang, X.; Li, C.; Lan, T.; Zhao, B.; Sun, W.; et al. Porcine Deltacoronavirus Nsp5 Antagonizes Type I Interferon Signaling by Cleaving IFIT3. J. Virol. 2024, 98, e0168223. [Google Scholar] [CrossRef]
- Huang, H.X.; Zhao, C.C.; Lei, X.X.; Zhang, X.Y.; Li, Y.Y.; Lan, T.; Zhao, B.P.; Lu, J.Y.; Sun, W.C.; Lu, H.J.; et al. Swine Acute Diarrhoea Syndrome Coronavirus (SADS-CoV) Nsp5 Antagonizes Type I Interferon Signaling by Cleaving DCP1A. Front. Immunol. 2023, 14, 1196031. [Google Scholar] [CrossRef]
- Li, Z.; Fang, P.; Duan, P.; Chen, J.; Fang, L.; Xiao, S. Porcine Deltacoronavirus Infection Cleaves HDAC2 to Attenuate Its Antiviral Activity. J. Virol. 2022, 96, e0102722. [Google Scholar] [CrossRef]
- Liu, Y.; Liang, Q.Z.; Lu, W.; Yang, Y.L.; Chen, R.; Huang, Y.W.; Wang, B. A Comparative Analysis of Coronavirus Nucleocapsid (N) Proteins Reveals the SADS-CoV N Protein Antagonizes IFN-β Production by Inducing Ubiquitination of RIG-I. Front. Immunol. 2021, 12, 688758. [Google Scholar] [CrossRef]
- Hakim, M.S.; Ding, S.; Chen, S.; Yin, Y.; Su, J.; van der Woude, C.J.; Fuhler, G.M.; Peppelenbosch, M.P.; Pan, Q.; Wang, W. TNF-α Exerts Potent Anti-Rotavirus Effects via the Activation of Classical NF-ΚB Pathway. Virus Res. 2018, 253, 28–37. [Google Scholar] [CrossRef]
- Herrera-Uribe, J.; Zaldívar-López, S.; Aguilar, C.; Luque, C.; Bautista, R.; Carvajal, A.; Claros, M.G.; Garrido, J.J. Regulatory Role of MicroRNA in Mesenteric Lymph Nodes after Salmonella Typhimurium Infection. Vet. Res. 2018, 49, 9. [Google Scholar] [CrossRef] [PubMed]
- Aguilar, C.; Cruz, A.R.; Rodrigues Lopes, I.; Maudet, C.; Sunkavalli, U.; Silva, R.J.; Sharan, M.; Lisowski, C.; Zaldívar-López, S.; Garrido, J.J.; et al. Functional Screenings Reveal Different Requirements for Host MicroRNAs in Salmonella and Shigella Infection. Nat. Microbiol. 2019, 5, 192–205. [Google Scholar] [CrossRef]
- Gul, H.; Habib, G.; Khan, I.M.; Rahman, S.U.; Khan, N.M.; Wang, H.; Khan, N.U.; Liu, Y. Genetic Resilience in Chickens against Bacterial, Viral and Protozoal Pathogens. Front. Vet. Sci. 2022, 9, 1032983. [Google Scholar] [CrossRef]
- Wang, P.; Huang, X.; Yan, Z.; Yang, Q.; Sun, W.; Gao, X.; Luo, R.; Gun, S. Analyses of miRNA in the Ileum of Diarrheic Piglets Caused by Clostridium perfringens Type C. Microb. Pathog. 2019, 136, 103699. [Google Scholar] [CrossRef] [PubMed]
- Yan, Z.; Huang, X.; Sun, W.; Yang, Q.; Shi, H.; Jiang, T.; Li, S.; Wang, P.; Gun, S. Analyses of Long Non-Coding RNA and mRNA Profiling in the Spleen of Diarrheic Piglets Caused by Clostridium perfringens Type C. PeerJ 2018, 6, e5997. [Google Scholar] [CrossRef]
- Pickard, J.M.; Zeng, M.Y.; Caruso, R.; Núñez, G. Gut Microbiota: Role in Pathogen Colonization, Immune Responses, and Inflammatory Disease. Immunol. Rev. 2017, 279, 70–89. [Google Scholar] [CrossRef] [PubMed]
- Chavez-Arroyo, A.; Radlinski, L.C.; Bäumler, A.J. Principles of Gut Microbiota Assembly. Trends Microbiol. 2025, 33, 718–726. [Google Scholar] [CrossRef]
- Maragkoudakis, P.A.; Chingwaru, W.; Gradisnik, L.; Tsakalidou, E.; Cencic, A. Lactic Acid Bacteria Efficiently Protect Human and Animal Intestinal Epithelial and Immune Cells from Enteric Virus Infection. Int. J. Food Microbiol. 2010, 141, S91–S97. [Google Scholar] [CrossRef]
- Dong, W.; Ding, N.; Zhang, Y.; Tan, Z.; Ding, X.; Zhang, Q.; Jiang, L. Alterations of Suckling Piglet Jejunal Microbiota Due to Infection With Porcine Epidemic Diarrhea Virus and Protection Against Infection by Lactobacillus salivarius. Front. Vet. Sci. 2021, 8, 771411. [Google Scholar] [CrossRef]
- Chai, W.; Burwinkel, M.; Wang, Z.; Palissa, C.; Esch, B.; Twardziok, S.; Rieger, J.; Wrede, P.; Schmidt, M.F.G. Antiviral Effects of a Probiotic Enterococcus faecium Strain against Transmissible Gastroenteritis Coronavirus. Arch. Virol. 2013, 158, 799–807. [Google Scholar] [CrossRef]
- Choudhary, R.; Singh, K.S.; Bisht, S.; Kumar, S.; Mohanty, A.K.; Grover, S.; Kaushik, J.K. Host-Microbe Interaction and Pathogen Exclusion Mediated by an Aggregation-Prone Surface Layer Protein of Lactobacillus helveticus. Int. J. Biol. Macromol. 2023, 244, 125146. [Google Scholar] [CrossRef] [PubMed]
- Kandasamy, S.; Vlasova, A.N.; Fischer, D.; Kumar, A.; Chattha, K.S.; Rauf, A.; Shao, L.; Langel, S.N.; Rajashekara, G.; Saif, L.J. Differential Effects of Escherichia coli Nissle and Lactobacillus rhamnosus Strain GG on Human Rotavirus Binding, Infection, and B Cell Immunity. J. Immunol. 2016, 196, 1780–1789. [Google Scholar] [CrossRef] [PubMed]
- Argüello, H.; Estellé, J.; Leonard, F.C.; Crispie, F.; Cotter, P.D.; O’Sullivan, O.; Lynch, H.; Walia, K.; Duffy, G.; Lawlor, P.G.; et al. Influence of the Intestinal Microbiota on Colonization Resistance to Salmonella and the Shedding Pattern of Naturally Exposed Pigs. mSystems 2019, 4, e00021-19. [Google Scholar] [CrossRef]
- Bescucci, D.M.; Moote, P.E.; Polo, R.O.; Uwiera, R.R.E.; Inglis, G.D. Salmonella enterica Serovar Typhimurium Temporally Modulates the Enteric Microbiota and Host Responses To Overcome Colonization Resistance in Swine. Appl. Environ. Microbiol. 2020, 86, e01569-20. [Google Scholar] [CrossRef] [PubMed]
- Kempf, F.; Cordoni, G.; Chaussé, A.-M.; Drumo, R.; Brown, H.; Horton, D.L.; Paboeuf, F.; Denis, M.; Velge, P.; La Ragione, R.; et al. Inflammatory Responses Induced by the Monophasic Variant of Salmonella Typhimurium in Pigs Play a Role in the High Shedder Phenotype and Fecal Microbiota Composition. mSystems 2023, 8, e0085222. [Google Scholar] [CrossRef]
- Weese, J.S.; Wakeford, T.; Reid-Smith, R.; Rousseau, J.; Friendship, R. Longitudinal Investigation of Clostridium difficile Shedding in Piglets. Anaerobe 2010, 16, 501–504. [Google Scholar] [CrossRef]
- Proctor, A.; Cornick, N.A.; Wang, C.; Mooyottu, S.; Arruda, P.A.; Kobs, K.; Phillips, G.J. Neonatal Piglets Are Protected from Clostridioides difficile Infection by Age-Dependent Increase in Intestinal Microbial Diversity. Microbiol. Spectr. 2021, 9, e0124321. [Google Scholar] [CrossRef]
- Grześkowiak, Ł.; Dadi, T.H.; Zentek, J.; Vahjen, W. Developing Gut Microbiota Exerts Colonisation Resistance to Clostridium (Syn. Clostridioides) difficile in Piglets. Microorganisms 2019, 7, 218. [Google Scholar] [CrossRef] [PubMed]
- Sun, M.J.; Xing, J.H.; Yan, Q.S.; Zou, B.S.; Wang, Y.J.; Niu, T.M.; Yu, T.; Huang, H.B.; Zhang, D.; Zhang, S.M.; et al. The Acetic Acid Produced by Lactobacillus Species Regulates Immune Function to Alleviate PEDV Infection in Piglets. Probiotics Antimicrob. Proteins 2024, 17, 2962–2979. [Google Scholar] [CrossRef] [PubMed]
- Torres, M.D.T.; Wan, F.; de la Fuente-Nunez, C. Deep Learning Reveals Antibiotics in the Archaeal Proteome. Nat. Microbiol. 2025, 10, 2153–2167. [Google Scholar] [CrossRef]
- Leng, T.; de la Fuente-Nunez, C. The Gut’s Hidden Arsenal: A Genomics-Guided Atlas of Class II Bacteriocins. Cell Genom. 2025, 5, 101064. [Google Scholar] [CrossRef]
- Hu, J.; Ma, L.; Nie, Y.; Chen, J.; Zheng, W.; Wang, X.; Xie, C.; Zheng, Z.; Wang, Z.; Yang, T.; et al. A Microbiota-Derived Bacteriocin Targets the Host to Confer Diarrhea Resistance in Early-Weaned Piglets. Cell Host Microbe 2018, 24, 817–832.e8. [Google Scholar] [CrossRef]
- Zheng, D.; Liwinski, T.; Elinav, E. Interaction between Microbiota and Immunity in Health and Disease. Cell Res. 2020, 30, 492–506. [Google Scholar] [CrossRef]
- Wang, Y.; Yan, X.; Zhang, W.; Liu, Y.; Han, D.; Teng, K.; Ma, Y. Lactobacillus Casei Zhang Prevents Jejunal Epithelial Damage to Early-Weaned Piglets Induced by Escherichia coli K88 via Regulation of Intestinal Mucosal Integrity, Tight Junction Proteins and Immune Factor Expression. J. Microbiol. Biotechnol. 2019, 29, 863–876. [Google Scholar] [CrossRef] [PubMed]
- Luise, D.; Bertocchi, M.; Motta, V.; Salvarani, C.; Bosi, P.; Luppi, A.; Fanelli, F.; Mazzoni, M.; Archetti, I.; Maiorano, G.; et al. Bacillus sp. Probiotic Supplementation Diminish the Escherichia coli F4ac Infection in Susceptible Weaned Pigs by Influencing the Intestinal Immune Response, Intestinal Microbiota and Blood Metabolomics. J. Anim. Sci. Biotechnol. 2019, 10, 74. [Google Scholar] [CrossRef]
- Zelaya, H.; Alvarez, S.; Kitazawa, H.; Villena, J. Respiratory Antiviral Immunity and Immunobiotics: Beneficial Effects on Inflammation-Coagulation Interaction during Influenza Virus Infection. Front. Immunol. 2016, 7, 633. [Google Scholar] [CrossRef]
- Huang, Z.; Zhang, W.; Su, L.; Ma, G.; Guo, J.; Zhao, Y.; Huang, W.; Zhang, W.; El-Ashram, S.; Li, Z. Isolation of Limosilactobacillus reuteri Strain with Anti-Porcine Epidemic Diarrhea Virus from Swine Feces. Probiotics Antimicrob. Proteins 2025, 17, 123–137. [Google Scholar] [CrossRef]
- Chang-Liao, W.P.; Lee, A.; Chiu, Y.H.; Chang, H.W.; Liu, J.R. Isolation of a Leuconostoc mesenteroides Strain With Anti-Porcine Epidemic Diarrhea Virus Activities From Kefir Grains. Front. Microbiol. 2020, 11, 1578. [Google Scholar] [CrossRef]
- Villena, J.; Vizoso-Pinto, M.G.; Kitazawa, H. Intestinal Innate Antiviral Immunity and Immunobiotics: Beneficial Effects against Rotavirus Infection. Front. Immunol. 2016, 7, 563. [Google Scholar] [CrossRef] [PubMed]
- Munyaka, P.M.; Kommadath, A.; Fouhse, J.; Wilkinson, J.; Diether, N.; Stothard, P.; Estellé, J.; Rogel-Gaillard, C.; Plastow, G.; Willing, B.P. Characterization of Whole Blood Transcriptome and Early-Life Fecal Microbiota in High and Low Responder Pigs before, and after Vaccination for Mycoplasma hyopneumoniae. Vaccine 2019, 37, 1743–1755. [Google Scholar] [CrossRef] [PubMed]
- Blanc, F.; Maroilley, T.; Revilla, M.; Lemonnier, G.; Leplat, J.-J.; Billon, Y.; Ravon, L.; Bouchez, O.; Bidanel, J.-P.; Bed’Hom, B.; et al. Influence of Genetics and the Pre-Vaccination Blood Transcriptome on the Variability of Antibody Levels after Vaccination against Mycoplasma hyopneumoniae in Pigs. Genet. Sel. Evol. 2021, 53, 24. [Google Scholar] [CrossRef] [PubMed]
- Borey, M.; Blanc, F.; Lemonnier, G.; Leplat, J.-J.; Jardet, D.; Rossignol, M.-N.; Ravon, L.; Billon, Y.; Bernard, M.; Estellé, J.; et al. Links between Fecal Microbiota and the Response to Vaccination against Influenza A Virus in Pigs. NPJ Vaccines 2021, 6, 92. [Google Scholar] [CrossRef]
- Larzul, C.; Estellé, J.; Borey, M.; Blanc, F.; Lemonnier, G.; Billon, Y.; Thiam, M.G.; Quinquis, B.; Galleron, N.; Jardet, D.; et al. Driving Gut Microbiota Enterotypes through Host Genetics. Microbiome 2024, 12, 116. [Google Scholar] [CrossRef]
- Jiang, Z.; Yang, M.; Su, W.; Mei, L.; Li, Y.; Guo, Y.; Li, Y.; Liang, W.; Yang, B.; Huang, Z.; et al. Probiotics in piglet: From gut health to pathogen defense mechanisms. Front. Immunol. 2024, 15, 1468873. [Google Scholar] [CrossRef]
- Zhou, L.; Zhou, H.; Wang, P.; Xu, H.; Wu, J.; Zhou, Y.; Feng, J.; Zheng, W. Construction of Engineered Probiotic That Adhere and Display Nanobody to Neutralize Porcine Reproductive and Respiratory Syndrome Virus. Arch. Microbiol. 2024, 206, 466. [Google Scholar] [CrossRef]
- Kao, D.; Wong, K.; Lee, C.; Steiner, T.; Franz, R.; McDougall, C.; Silva, M.; Schmidt, T.S.B.; Walter, J.; Loebenberg, R.; et al. Effects of Lyophilised Faecal Filtrate Compared with Lyophilised Donor Stool on Clostridioides difficile Recurrence: A Multicentre, Randomised, Double-Blinded, Non-Inferiority Trial. Lancet Gastroenterol. Hepatol. 2025, 10, 986–997. [Google Scholar] [CrossRef]
- Rahman, R.; Marcolla, C.S.; Willing, B.P. Fecal Microbiota Transplantation in Pigs: Current Status and Future Perspective. Anim. Microbiome 2025, 7, 76. [Google Scholar] [CrossRef]
- Criscione, C.D. Genetic Epidemiology of Ascaris. In Ascaris: The Neglected Parasite; Elsevier: Amsterdam, The Netherlands, 2013; pp. 203–230. [Google Scholar]
- Chase-Topping, M.; Plastow, G.; Dekkers, J.; Li, Y.; Fang, Y.; Gerdts, V.; Van Kessel, J.; Harding, J.; Opriessnig, T.; Doeschl-Wilson, A. The WUR0000125 PRRS Resilience SNP Had No Apparent Effect on Pigs’ Infectivity and Susceptibility in a Novel Transmission Trial. Genet. Sel. Evol. 2023, 55, 51. [Google Scholar] [CrossRef] [PubMed]
- Pooley, C.M.; Marion, G.; Prentice, J.; Pong-Wong, R.; Bishop, S.C.; Doeschl-Wilson, A. SIRE 2.0: A Novel Method for Estimating Polygenic Host Effects Underlying Infectious Disease Transmission, and Analytical Expressions for Prediction Accuracies. Genet. Sel. Evol. 2025, 57, 17. [Google Scholar] [CrossRef] [PubMed]
- Hulst, A.D.; de Jong, M.C.M.; Bijma, P. Why Genetic Selection to Reduce the Prevalence of Infectious Diseases Is Way More Promising than Currently Believed. Genetics 2021, 217, iyab024. [Google Scholar] [CrossRef] [PubMed]


| Gene | Gene Name | Study Type | Function | Location | Pathogen | Reference |
|---|---|---|---|---|---|---|
| APN | Amino peptidase N | In Vivo | Primary cellular receptor for TGEV | Chromosome 7 | TGEV | [60] |
| AQP3 | Acuaporin-3 | In Vivo | Water and glycerol transport and maintenance of epithelial barrier integrity | Chromosome 10 | PEDV | [61,62] |
| TFF1 | Trefoil Factor 1 | In Vivo | Required for the growth of porcine intestinal cells | Chromosome 13 | PEDV | [63] |
| JAM-A | Junctional Adhesion Molecule A | In Vitro | Tight-junction protein that regulates epithelial barrier integrity | Chromosome 4 | PRV | [64,65] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Ucero-Carretón, A.; Puente, H.; Ithurbide, M.; Estellé, J.; Carvajal, A.; Argüello, H. Factors Involved in Host Resilience to Enteric Infections in Pigs: Current Knowledge in Genetic, Immune, and Microbiota Determinants of Infection Resistance. Genes 2026, 17, 67. https://doi.org/10.3390/genes17010067
Ucero-Carretón A, Puente H, Ithurbide M, Estellé J, Carvajal A, Argüello H. Factors Involved in Host Resilience to Enteric Infections in Pigs: Current Knowledge in Genetic, Immune, and Microbiota Determinants of Infection Resistance. Genes. 2026; 17(1):67. https://doi.org/10.3390/genes17010067
Chicago/Turabian StyleUcero-Carretón, Alejandro, Héctor Puente, Marie Ithurbide, Jordi Estellé, Ana Carvajal, and Héctor Argüello. 2026. "Factors Involved in Host Resilience to Enteric Infections in Pigs: Current Knowledge in Genetic, Immune, and Microbiota Determinants of Infection Resistance" Genes 17, no. 1: 67. https://doi.org/10.3390/genes17010067
APA StyleUcero-Carretón, A., Puente, H., Ithurbide, M., Estellé, J., Carvajal, A., & Argüello, H. (2026). Factors Involved in Host Resilience to Enteric Infections in Pigs: Current Knowledge in Genetic, Immune, and Microbiota Determinants of Infection Resistance. Genes, 17(1), 67. https://doi.org/10.3390/genes17010067

