Single Nucleotide Polymorphisms in the Promoter Region of MyoG Gene Affecting Growth Traits and Transcription Factor Binding Sites in Guizhou White Goat (Capra hircus)
Abstract
1. Introduction
2. Materials and Methods
2.1. Statement of Ethics
2.2. Animal Sources, Data Collection and DNA Extraction
2.3. Primer Design and PCR Amplification
2.4. SNPs Screening and Genotype Determination
2.5. Genotype, Allele Frequency and Association Analysis Between SNPs Loci and Growth Traits
2.6. Identification of Transcription Factor Binding Sites Before and After SNPs Mutation
3. Results
3.1. Detection of MyoG Gene PCR Products
3.2. SNP Identification in the Promoter Region of the MyoG Gene
3.3. Polymorphic Parameter, Genotype and Allele Frequencies for Different SNPs
3.4. Association of MyoG Gene Promoter Region Polymorphism and Growth Traits in Guizhou White Goats
3.5. SNPs in the Promoter Region of the MyoG Gene Cause Alterations in Transcription Factors
4. Discussion
4.1. Correlation Between MyoG Gene SNPs and Growth Traits of Caprinae
4.2. Effects of Transcription Factor Binding Sites Alteration in the Promoter Region on Transcriptional Regulation of MyoG Gene
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kopantseva, E.E.; Belyavsky, A.V. Key regulators of skeletal myogenesis. Mol. Biol. 2016, 50, 169–192. [Google Scholar] [CrossRef]
- Te Pas, M.F.W.; Soumillion, A.; Harders, F.L.; Verburg, F.J.; van den Bosch, T.J.; Galesloot, P.; Meuwissen, T.H. Influences of myogenin genotypes on birth weight, growth rate, carcass weight, backfat thickness, and lean weight of pigs. J. Anim. Sci. 1999, 77, 2352–2356. [Google Scholar] [CrossRef]
- Zhan, S.; Zhai, H.; Tang, M.; Xue, Y.; Li, D.; Wang, L.; Zhong, T.; Dai, D.; Cao, J.; Guo, J.; et al. Profiling and functional analysis of mRNAs during skeletal muscle differentiation in goats. Animals 2022, 12, 1048. [Google Scholar] [CrossRef]
- Wyszyńska-Koko, J.; Pierzchała, M.; Flisikowski, K.; Kamyczek, M.; Różycki, M.; Kurył, J. Polymorphisms in coding and regulatory regions of the porcine MYF6 and MYOG genes and expression of the MYF6 gene in m. longissimus dorsi versus productive traits in pigs. J. Appl. Genet. 2006, 47, 131–138. [Google Scholar] [CrossRef]
- Li, M.; Liu, Q.; Xie, S.; Fu, C.; Li, J.; Tian, C.; Li, X.; Li, C. LncRNA TCONS_00323213 promotes myogenic differentiation by interacting with PKNOX2 to upregulate MyoG in porcine satellite cells. Int. J. Mol. Sci. 2023, 24, 6773. [Google Scholar] [CrossRef]
- Verner, J.; Humpolíček, P.; Knoll, A. Impact of MYOD family genes on pork traits in Large White and Landrace pigs. J. Anim. Breed. Genet. 2007, 124, 81–85. [Google Scholar] [CrossRef]
- Bhuiyan, M.S.A.; Kim, N.K.; Cho, Y.M.; Yoon, D.; Kim, K.S.; Jeon, J.T.; Lee, J.H. Identification of SNPs in MYOD gene family and their associations with carcass traits in cattle. Livest. Sci. 2009, 126, 292–297. [Google Scholar] [CrossRef]
- Sousa, L.P.B., Jr.; Meira, A.N.; Azevedo, H.C.; Muniz, E.N.; Coutinho, L.L.; Mourão, G.B.; Leão, A.G.; Pedrosa, V.B.; Pinto, L.F.B. Variants in myostatin and MyoD family genes are associated with meat quality traits in Santa Inês sheep. Anim. Biotechnol. 2022, 33, 201–213. [Google Scholar] [CrossRef]
- Li, J.Y.; Wang, X.L.; Zhang, Y.F.; Bai, J.Y.; Li, G.; Lei, Y.; Dong, Z.H.; Chen, Y.; Fan, H.D.; Wang, L.W.; et al. Polymorphism of MyoG gene intron II and its association with growth traits in sheep. China Anim. Husb. Vet. Med. 2022, 49, 1364–1373. [Google Scholar] [CrossRef]
- Trukhachev, V.; Skripkin, V.; Telegina, E.; Yatsyk, O.; Golovanova, N.; Krivoruchko, A. Associations between newly discovered polymorphisms of the MyoD1 gene and body parameters in Stavropol breed rams. Bulg. J. Vet. Med. 2018, 21, 28–39. [Google Scholar] [CrossRef]
- Sun, W.; Wang, P.; Ding, J.T.; Ma, Y.H.; Guan, W.J.; Chu, M.X.; Li, B.C.; Wu, W.Z.; Chen, L. Development changes of gene expression of Myostatin and Myogenin genes and their association analysis with carcass traits in Hu sheep. Sci. Agric. Sin. 2010, 43, 5129–5136. [Google Scholar] [CrossRef]
- Mukherjee, A.; Gali, J.; Kar, I.; Datta, S.; Roy, M.; Acharya, A.P.; Patra, A.K. Candidate genes and proteins regulating bull semen quality: A review. Trop. Anim. Health Prod. 2023, 55, 212. [Google Scholar] [CrossRef]
- Xu, H.Q. Local Livestock and Poultry Genetic Resources in Guizhou, 1st ed.; China Agriculture Press: Beijing, China, 2019. [Google Scholar]
- Ruan, Y.; Dai, L.; Huang, J.; Xiao, M.; Xu, J.; An, D.; Chen, J.; Chen, X. A novel nonsynonymous SNP in the OLR1 gene associated with litter size in Guizhou white goats. Theriogenology 2023, 200, 1–10. [Google Scholar] [CrossRef]
- Shi, S.Y.; Li, L.J.; Zhang, Z.J.; Wang, E.Y.; Wang, J.; Xu, J.W.; Liu, H.B.; Wen, Y.F.; He, H.; Lei, C.Z.; et al. Copy number variation of MYLK4 gene and its growth traits of Capra hircus (goat). Anim. Biotechnol. 2020, 31, 532–537. [Google Scholar] [CrossRef]
- Han, M.; Wang, X.; Du, H.; Cao, Y.; Zhao, Z.; Niu, S.; Bao, X.; Rong, Y.; Ao, X.; Guo, F.; et al. Genome-wide association study identifies candidate genes affecting body conformation traits of Zhongwei goat. BMC Genom. 2025, 26, 37. [Google Scholar] [CrossRef]
- Easa, A.A.; Selionova, M.; Aibazov, M.; Mamontova, T.; Sermyagin, A.; Belous, A.; Abdelmanova, A.; Deniskova, T.; Zinovieva, N. Identification of genomic regions and candidate genes associated with body weight and body conformation traits in Karachai goats. Genes 2022, 13, 1773. [Google Scholar] [CrossRef]
- Sun, X.; Niu, Q.; Jiang, J.; Wang, G.; Zhou, P.; Li, J.; Chen, C.; Liu, L.; Xu, L.; Ren, H. Identifying candidate genes for litter size and three morphological traits in Youzhou Dark goats based on genome-wide SNP markers. Genes 2023, 14, 1183. [Google Scholar] [CrossRef]
- Ncube, K.T.; Nephawe, K.A.; Mpofu, T.J.; Monareng, N.J.; Mofokeng, M.M.; Mtileni, B. Genomic advancements in assessing growth performance, meat quality, and carcass characteristics of goats in Sub-Saharan Africa: A systematic review. Int. J. Mol. Sci. 2025, 26, 2323. [Google Scholar] [CrossRef]
- Wang, Z.; Lv, Q.; Li, W.; Huang, W.; Gong, G.; Yan, X.; Liu, B.; Chen, O.; Wang, N.; Zhang, Y.; et al. Chromosome-level genome assembly of the cashmere goat. Sci. Data 2024, 11, 1107. [Google Scholar] [CrossRef]
- An, Q.; Zeng, L.; Wang, W.; Yang, J.; Meng, J.; Zhao, Y.; Song, X. Identification of FASN gene polymorphisms, expression and their relationship with body size traits in Guizhou White goat (Capra hircus) with different genders. Genes 2024, 15, 656. [Google Scholar] [CrossRef]
- Zhang, Z.; Xu, F.; Zhang, Y.; Li, W.; Yin, Y.; Zhu, C.; Du, L.; Elsayed, A.K.; Li, B. Cloning and expression of MyoG gene from Hu sheep and identification of its myogenic specificity. Mol. Biol. Rep. 2014, 41, 1003–1013. [Google Scholar] [CrossRef]
- Xue, H.L.; Zhou, Z.X. Effects of the MyoG gene on the partial growth traits in pigs. Acta Genet. Sin. 2006, 33, 992–997. [Google Scholar] [CrossRef]
- Anton, I.; Zsolnai, A.; Komlósi, I.; Király, A.; Fésüs, L. Effect of MYOG genotypes on growth rate and production traits in Hungarian large white pigs. Acta Vet. Hung. 2006, 54, 393–397. [Google Scholar] [CrossRef]
- Soumillion, A.; Erkens, J.H.F.; Lenstra, J.A.; Rettenberger, G.; Te Pas, M.F.W. Genetic variation in the porcine myogenin gene locus. Mamm. Genome 1997, 8, 564–568. [Google Scholar] [CrossRef]
- Beever, J.E.; Fisher, S.R.; Lewin, H.A. Polymorphism identification in the ACADM, AT3, IL10, MYOG and TSHB genes of cattle. Anim. Genet. 1997, 28, 373–374. [Google Scholar] [CrossRef]
- Wei, D.; Zhang, J.; Raza, S.H.A.; Song, Y.; Jiang, C.; Song, X.; Wu, H.; Alotaibi, M.A.; Albiheyri, R.; Al-Zahrani, M.; et al. Interaction of MyoD and MyoG with Myoz2 gene in bovine myoblast differentiation. Res. Vet. Sci. 2022, 152, 569–578. [Google Scholar] [CrossRef]
- Sousa, L.P.B., Jr.; Meira, A.N.; Azevedo, H.C.; Muniz, E.N.; Coutinho, L.L.; Mourão, G.B.; Pedrosa, V.B.; Pinto, L.F.B. Polymorphismsin MyoD1, MyoG, MyF5, MyF6, and MSTN genes in Santa Inês sheep. Pesqui. Agropecu. Bras. 2019, 54, e01132. [Google Scholar] [CrossRef]
- Wang, X.; Bai, J.Y.; Yang, Y.B.; Lei, X.Q.; Pang, Y.Z.; Li, H.W.; Wang, H.L.; Tang, Y.L.; Shao, J.H.; Yin, H.Y. Study on the polymorphism of MyoG exon 2 and MyoD 5′ Flanking region of Small tail han sheep. J. Henan Agric. Sci. 2017, 26, 138–141. [Google Scholar] [CrossRef]
- Han, Y.C.; Sun, Y.G.; Chen, Z. Single nucleotide polymorphism of MyoG gene in Tibetan sheep populations and its association with body measurement traits. J. Anim. Ecol. 2016, 37, 19–23. [Google Scholar] [CrossRef]
- Liu, Z.Z.; Gong, Y.F.; Fu, Z.X.; Zhang, C.S.; Zhang, W.X.; Song, Y.; Ma, Y.H. Genetic variation of goat MyoG gene intron II and its genetic effects on body weight. Acta Vet. Zootech. Sin. 2011, 42, 1015–1021. [Google Scholar]
- Singh, S.P.; Kumar, R.; Kumari, P.; Kumar, S.; Mitra, A. Characterization of 5′ upstream region and investigation of TTTTA deletion in 5′ UTR of myostatin (MSTN) gene in Indian goat breeds. Anim. Biotechnol. 2014, 25, 55–68. [Google Scholar] [CrossRef]
- Zhou, X.; Yan, Q.; Liu, L.; Chen, G.; Tang, S.; He, Z.; Tan, Z. Maternal undernutrition alters the skeletal muscle development and methylation of myogenic factors in goat offspring. Anim. Biosci. 2022, 35, 847–857. [Google Scholar] [CrossRef]
- Wei, L.; Xiao, W.; Chen, B.; Zou, Z.; Zhu, J.; Li, D.; Yu, J.; Yang, H. Single nucleotide polymorphisms in the MRFs gene family associated with growth in Nile tilapia. Mol. Biol. Rep. 2024, 51, 128. [Google Scholar] [CrossRef]
- Ren, H.; Wei, Z.; Li, X.; Wang, Q.; Chen, H.; Lan, X. Goat MyoD1: mRNA expression, InDel and CNV detection and their associations with growth traits. Gene 2023, 866, 147348. [Google Scholar] [CrossRef]
- Na, R.; Ni, W.; E, G.; Zeng, Y.; Han, Y.; Huang, Y. SNP screening of the MSTN gene and correlation analysis between genetic polymorphisms and growth traits in Dazu black goat. Anim. Biotechnol. 2021, 32, 558–565. [Google Scholar] [CrossRef]
- Pehlivan, E. Relationship between insulin-like growth factor-1 (IGF-1) concentrations and body trait measurements and climatic factors in prepubertal goat kids. Arch. Anim. Breed. 2019, 62, 241–248. [Google Scholar] [CrossRef]
- Zhang, G.; Tang, Y.; Zhang, T.; Wang, J.; Wang, Y. Expression profiles and association analysis with growth traits of the MyoG and Myf5 genes in the Jinghai yellow chicken. Mol. Biol. Rep. 2014, 41, 7331–7338. [Google Scholar] [CrossRef]
- Du, S.J.; Gao, J.; Anyangwe, V. Muscle-specific expression of myogenin in zebrafish embryos is controlled by multiple regulatory elements in the promoter. Comp. Biochem. Physiol. Part B Biochem. Mol. Biol. 2003, 134, 123–134. [Google Scholar] [CrossRef]
- Trukhachev, V.; Belyaev, V.; Kvochko, A.; Kulichenko, A.; Kovalev, D.; Pisarenko, S.; Volynkina, A.; Selionova, M.; Aybazov, M.; Shumaenko, S.; et al. Genes expression profiles in the loin muscle of manych merino sheep with different live weight. Bulg. J. Vet. Med. 2016, 19, 19–29. [Google Scholar] [CrossRef]
- Naicy, T.; Venkatachalapathy, R.T.; Aravindakshan, T.V.; Kurian, E. Association of a Cac8I polymorphism in the IGF1 gene with growth traits in Indian goats. J. Genet. Eng. Biotechnol. 2017, 15, 7–11. [Google Scholar] [CrossRef]
- Song, T.; Tan, Y.; Cuomu, R.; Liu, Y.; Ba, G.; Suo, L.; Wu, Y.; Cao, X.; Zeng, X. Polymorphisms and mRNA expression levels of IGF-1, FGF5, and KAP 1.4 in Tibetan cashmere goats. Genes 2023, 14, 711. [Google Scholar] [CrossRef]
- Vega, W.H.O.; Quirino, C.R.; Bartholazzi, A., Jr.; Rua, M.A.S.; Serapião, R.V.; Oliveira, C.S. Variants in the CYP19A1 gene can affect in vitro embryo production traits in cattle. J. Assist. Reprod. Genet. 2018, 35, 2233–2241. [Google Scholar] [CrossRef]
- Cosenza, G.; Iannaccone, M.; Pico, B.A.; Gallo, D.; Capparelli, R.; Pauciullo, A. Molecular characterisation, genetic variability and detection of a functional polymorphism influencing the promoter activity of OXT gene in goat and sheep. J. Dairy Res. 2017, 84, 165–169. [Google Scholar] [CrossRef]
- Mishra, C.; Kumar, S.; Panigrahi, M.; Yathish, H.M.; Chaudhary, R.; Chauhan, A.; Kumar, A.; Sonawane, A.A. Single nucleotide polymorphisms in 5′ upstream region of bovine TLR4 gene affecting expression profile and transcription factor binding sites. Anim. Biotechnol. 2018, 29, 119–128. [Google Scholar] [CrossRef]
- Wang, P.; Li, W.; Liu, Z.; He, X.; Lan, R.; Liu, Y.; Chu, M. Analysis of the association of two SNPs in the promoter regions of the PPP2R5C and SLC39A5 genes with litter size in Yunshang black goats. Animals 2022, 12, 2801. [Google Scholar] [CrossRef]
- Kwan, J.Z.J.; Nguyen, T.F.; Uzozie, A.C.; Budzynski, M.A.; Cui, J.; Lee, J.M.C.; Van Petegem, F.; Lange, P.F.; Teves, S.S. RNA Polymerase II transcription independent of TBP in murine embryonic stem cells. eLife 2023, 12, e83810. [Google Scholar] [CrossRef]
- Cormack, B.P.; Struhl, K. The TATA-binding protein is required for transcription by all three nuclear RNA polymerases in yeast cells. Cell 1992, 69, 685–696. [Google Scholar] [CrossRef]
- Foletta, V.C. Transcription factor AP-1, and the role of Fra-2. Immunol. Cell Biol. 1996, 74, 121–133. [Google Scholar] [CrossRef]
- Hwang, S.S.; Kim, L.K.; Lee, G.R.; Flavell, R.A. Role of OCT-1 and partner proteins in T cell differentiation. Biochim. Biophys. Acta (BBA)-Gene Regul. Mech. 2016, 1859, 825–831. [Google Scholar] [CrossRef]
- Guerrero-Santoro, J.; Khor, J.M.; Açıkbaş, A.H.; Jaynes, J.B.; Ettensohn, C.A. Analysis of the DNA-binding properties of Alx1, an evolutionarily conserved regulator of skeletogenesis in echinoderms. J. Biol. Chem. 2021, 297, 100901. [Google Scholar] [CrossRef]


| Mutation Site | Genotype Frequency 1 | Allele Frequency | χ2 | p-Value | PIC | Ne | Ho | He | |||
|---|---|---|---|---|---|---|---|---|---|---|---|
| g.–709C>T | CC | CT | TT | C | T | 1.23 | 0.54 | 0.36 | 1.92 | 0.52 | 0.48 |
| 0.38 (85) | 0.45 (100) | 0.17 (39) | 0.60 | 0.40 | |||||||
| g.–461G>T | GG | GT | TT | G | T | 1.24 | 0.27 | 0.12 | 1.15 | 0.87 | 0.13 |
| 0.86 (193) | 0.14 (31) | 0.00 (0) | 0.93 | 0.07 | |||||||
| g.–377G>T | GG | GT | TT | G | T | 489.92 | <0.01 | 0.29 | 1.53 | 0.65 | 0.35 |
| 0.65 (145) | 0.26 (58) | 0.09 (21) | 0.78 | 0.22 | |||||||
| g.–249G>A | GG | GA | AA | G | A | 186.12 | <0.01 | 0.13 | 1.16 | 0.86 | 0.14 |
| 0.85 (191) | 0.15 (33) | 0.00 (0) | 0.93 | 0.07 | |||||||
| SNP | Genotype | Body Weight (kg) | Body Length (cm) | Body Height (cm) | Chest Circumference (cm) | Cannon Circumference (cm) |
|---|---|---|---|---|---|---|
| g.–709C>T | CC | 26.84 ± 1.08 b | 52.17 ± 1.11 | 58.58 ± 1.23 | 71.78 ± 1.31 b | 7.30 ± 0.15 |
| CT | 29.34 ± 1.06 a | 52.52 ± 1.06 | 59.19 ± 1.22 | 73.58 ± 1.37 a | 7.57 ± 0.14 | |
| TT | 27.69 ± 1.23 b | 52.41 ± 1.39 | 59.09 ± 1.40 | 71.26 ± 1.57 b | 7.25 ± 0.21 | |
| p-value | 0.015 | 0.960 | 0.848 | 0.023 | 0.234 | |
| g.–461G>T | GG | 28.74 ± 0.94 A | 52.47 ± 0.88 | 58.63 ± 1.45 | 71.49 ± 1.17 | 7.46 ± 0.17 |
| GT | 25.14 ± 1.34 B | 51.64 ± 1.59 | 59.19 ± 1.22 | 69.43 ± 1.73 | 7.56 ± 0.21 | |
| p-value | 0.001 | 0.588 | 0.465 | 0.162 | 0.566 | |
| g.–377G>T | GG | 28.26 ± 0.99 | 52.28 ± 0.99 | 54.88 ± 1.23 | 71.58 ± 1.27 | 7.44 ± 0.19 |
| GT | 28.14 ± 1.13 | 53.05 ± 1.09 | 55.38 ± 1.05 | 70.27 ± 1.67 | 7.51 ± 0.15 | |
| TT | 27.99 ± 2.41 | 52.39 ± 1.53 | 55.98 ± 1.42 | 69.43 ± 1.74 | 7.48 ± 0.13 | |
| p-value | 0.893 | 0.113 | 0.285 | 0.162 | 0.285 | |
| g.–249G>A | GG | 26.94 ± 2.24 | 57.39 ± 1.97 A | 55.81 ± 1.05 | 70.89 ± 1.98 | 7.40 ± 0.12 |
| AA | 24.78 ± 0.93 | 52.09 ± 1.07 B | 59.42 ± 2.09 | 71.50 ± 1.29 | 7.52 ± 0.31 | |
| p-value | 0.376 | 0.008 | 0.914 | 0.739 | 0.566 | |
| Mutation Location | Nucleotide | Transcription Factors | Transcription Factor Binding Site Nucleotide Sequence | Transcription Factor Location |
|---|---|---|---|---|
| –709 | C | C/EBPalp SRF | tcttacCaaa tcttacCaaaaaagagaa | –715–(–706) –715–(–698) |
| T | TBP | Taaaaaagaga | –709–(–699) | |
| –461 | G | PU.1 | gagGaag | –464–(–458) |
| T | AP-1 | tatgagTaag | –467–(–458) | |
| –377 | G | SP1 | cccccaccccacccG | –391–(–377) |
| T | OCT-1 | Ttcttctttg | –377–(–368) | |
| –249 | G | ELA1 | Gtcag | –249–(–245) |
| A | ALX1 | ctaAtcagatta | –252–(–241) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Song, X.; Long, H.; Meng, J.; Zhao, Y.; Wu, Z.; An, Q. Single Nucleotide Polymorphisms in the Promoter Region of MyoG Gene Affecting Growth Traits and Transcription Factor Binding Sites in Guizhou White Goat (Capra hircus). Genes 2026, 17, 14. https://doi.org/10.3390/genes17010014
Song X, Long H, Meng J, Zhao Y, Wu Z, An Q. Single Nucleotide Polymorphisms in the Promoter Region of MyoG Gene Affecting Growth Traits and Transcription Factor Binding Sites in Guizhou White Goat (Capra hircus). Genes. 2026; 17(1):14. https://doi.org/10.3390/genes17010014
Chicago/Turabian StyleSong, Xingchao, Huaixin Long, Jinzhu Meng, Yuanyuan Zhao, Zhenyang Wu, and Qingming An. 2026. "Single Nucleotide Polymorphisms in the Promoter Region of MyoG Gene Affecting Growth Traits and Transcription Factor Binding Sites in Guizhou White Goat (Capra hircus)" Genes 17, no. 1: 14. https://doi.org/10.3390/genes17010014
APA StyleSong, X., Long, H., Meng, J., Zhao, Y., Wu, Z., & An, Q. (2026). Single Nucleotide Polymorphisms in the Promoter Region of MyoG Gene Affecting Growth Traits and Transcription Factor Binding Sites in Guizhou White Goat (Capra hircus). Genes, 17(1), 14. https://doi.org/10.3390/genes17010014
