Association Study of the Heat Shock Protein 90 Alpha (HSP90AA1) Gene Polymorphisms with Schizophrenia in a Polish Population
Abstract
1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. SNP Selection Criteria and Genotyping
2.3. Statistical Analysis
3. Results
3.1. Case-Control Study
3.2. Clinical Correlations in Cases
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Owen, M.J.; Sawa, A.; Mortensen, P.B. Schizophrenia. Lancet 2016, 388, 86–97. [Google Scholar] [CrossRef] [PubMed]
- Guerrin, C.G.J.; Doorduin, J.; Sommer, I.E.; de Vries, E.F.J. The dual hit hypothesis of schizophrenia: Evidence from animal models. Neurosci. Biobehav. Rev. 2021, 131, 1150–1168. [Google Scholar] [CrossRef] [PubMed]
- McCutcheon, R.A.; Reis Marques, T.; Howes, O.D. Schizophrenia-An Overview. JAMA Psychiatry 2020, 77, 201–210. [Google Scholar] [CrossRef] [PubMed]
- Schizophrenia Working Group of the Psychiatric Genomics Consortium. Biological insights from 108 schizophrenia-associated genetic loci. Nature 2014, 511, 421–427. [Google Scholar] [CrossRef]
- Pardiñas, A.F.; Holmans, P.; Pocklington, A.J.; Escott-Price, V.; Ripke, S.; Carrera, N.; Legge, S.E.; Bishop, S.; Cameron, D.; Hamshere, M.L.; et al. Common schizophrenia alleles are enriched in mutation-intolerant genes and in regions under strong background selection. Nat. Genet. 2018, 50, 381–389. [Google Scholar] [CrossRef]
- Trubetskoy, V.; Pardiñas, A.F.; Qi, T.; Panagiotaropoulou, G.; Awasthi, S.; Bigdeli, T.B.; Bryois, J.; Chen, C.Y.; Dennison, C.A.; Hall, L.S.; et al. Mapping genomic loci implicates genes and synaptic biology in schizophrenia. Nature 2022, 604, 502–508. [Google Scholar] [CrossRef]
- Liu, J.; Li, M.; Luo, X.J.; Su, B. Systems-level analysis of risk genes reveals the modular nature of schizophrenia. Schizophr. Res. 2018, 201, 261–269. [Google Scholar] [CrossRef]
- Kato, H.; Kimura, H.; Kushima, I.; Takahashi, N.; Aleksic, B.; Ozaki, N. The genetic architecture of schizophrenia: Review of large-scale genetic studies. J. Hum. Genet. 2023, 68, 175–182. [Google Scholar] [CrossRef]
- Hoter, A.; El-Sabban, M.E.; Naim, H.Y. The HSP90 Family: Structure, Regulation, Function and Implications in Health and Disease. Int. J. Mol. Sci. 2018, 19, 2560. [Google Scholar] [CrossRef]
- Zuehlke, A.D.; Beebe, K.; Neckers, L.; Prince, T. Regulation and function of the human HSP90AA1 gene. Gene 2015, 570, 8–16. [Google Scholar] [CrossRef]
- Bohush, A.; Bieganowski, P.; Filipek, A. Hsp90 and Its Co-Chaperones in Neurodegenerative Diseases. Int. J. Mol. Sci. 2019, 20, 4976. [Google Scholar] [CrossRef] [PubMed]
- Loones, M.T.; Chang, Y.; Morange, M. The distribution of heat shock proteins in the nervous system of the unstressed mouse embryo suggests a role in neuronal and non-neuronal differentiation. Cell Stress Chaperones 2000, 5, 291–305. [Google Scholar] [CrossRef]
- Miller, D.J.; Fort, P.E. Heat Shock Proteins Regulatory Role in Neurodevelopment. Front. Neurosci. 2018, 12, 821. [Google Scholar] [CrossRef] [PubMed]
- Maiti, S.; Picard, D. Cytosolic Hsp90 Isoform-Specific Functions and Clinical Significance. Biomolecules 2022, 12, 1166. [Google Scholar] [CrossRef] [PubMed]
- Brown, A.S. The environment and susceptibility to schizophrenia. Prog. Neurobiol. 2011, 93, 23–58. [Google Scholar] [CrossRef]
- Eyles, D.W. How do established developmental risk-factors for schizophrenia change the way the brain develops? Transl. Psychiatry 2021, 11, 158. [Google Scholar] [CrossRef]
- Schneider, K.K.; Frings, C.; Meyer, J.; Schote, A.B. The role of the glucocorticoid receptor gene (NR3C1) for the processing of aversive stimuli. Neurosci. Res. 2016, 107, 8–13. [Google Scholar] [CrossRef]
- Baker, J.D.; Ozsan, I.; Rodriguez Ospina, S.; Gulick, D.; Blair, L.J. Hsp90 Heterocomplexes Regulate Steroid Hormone Receptors: From Stress Response to Psychiatric Disease. Int. J. Mol. Sci. 2018, 20, 79. [Google Scholar] [CrossRef]
- Mikulska, J.; Juszczyk, G.; Gawrońska-Grzywacz, M.; Herbet, M. HPA Axis in the Pathomechanism of Depression and Schizophrenia: New Therapeutic Strategies Based on Its Participation. Brain Sci. 2021, 11, 1298. [Google Scholar] [CrossRef]
- Sidera, K.; Samiotaki, M.; Yfanti, E.; Panayotou, G.; Patsavoudi, E. Involvement of cell surface HSP90 in cell migration reveals a novel role in the developing nervous system. J. Biol. Chem. 2004, 279, 45379–45388. [Google Scholar] [CrossRef]
- Benitez, M.J.; Sanchez-Ponce, D.; Garrido, J.J.; Wandosell, F. Hsp90 activity is necessary to acquire a proper neuronal polarization. Biochim. Biophys. Acta 2014, 1843, 245–252. [Google Scholar] [CrossRef]
- Ishima, T.; Iyo, M.; Hashimoto, K. Neurite outgrowth mediated by the heat shock protein Hsp90α: A novel target for the antipsychotic drug aripiprazole. Transl. Psychiatry 2012, 2, e170. [Google Scholar] [CrossRef]
- Okusha, Y.; Lang, B.J.; Murshid, A.; Borges, T.J.; Holton, K.M.; Clark-Matott, J.; Doshi, S.; Ikezu, T.; Calderwood, S.K. Extracellular Hsp90α stimulates a unique innate gene profile in microglial cells with simultaneous activation of Nrf2 and protection from oxidative stress. Cell Stress Chaperones 2022, 27, 461–478. [Google Scholar] [CrossRef]
- Föcking, M.; Dicker, P.; English, J.A.; Schubert, K.O.; Dunn, M.J.; Cotter, D.R. Common proteomic changes in the hippocampus in schizophrenia and bipolar disorder and particular evidence for involvement of cornu ammonis regions 2 and 3. Arch. Gen. Psychiatry 2011, 68, 477–488. [Google Scholar] [CrossRef] [PubMed]
- Chan, M.K.; Tsang, T.M.; Harris, L.W.; Guest, P.C.; Holmes, E.; Bahn, S. Evidence for disease and antipsychotic medication effects in post-mortem brain from schizophrenia patients. Mol. Psychiatry 2011, 16, 1189–1202. [Google Scholar] [CrossRef]
- Brandão-Teles, C.; de Almeida, V.; Cassoli, J.S.; Martins-de-Souza, D. Biochemical Pathways Triggered by Antipsychotics in Human [corrected] Oligodendrocytes: Potential of Discovering New Treatment Targets. Front. Pharmacol. 2019, 10, 186. [Google Scholar]
- Kaneta, H.; Ukai, W.; Tsujino, H.; Furuse, K.; Kigawa, Y.; Tayama, M.; Ishii, T.; Hashimoto, E.; Kawanishi, C. Antipsychotics promote GABAergic interneuron genesis in the adult rat brain: Role of heat-shock protein production. J. Psychiatr. Res. 2017, 92, 108–118. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Yao, Y.G.; Luo, X.J. SZDB: A Database for Schizophrenia Genetic Research. Schizophr. Bull. 2017, 43, 459–471. [Google Scholar] [CrossRef]
- Kay, S.R.; Opler, L.A.; Lindenmayer, J.P. Reliability and validity of the positive and negative syndrome scale for schizophrenics. Psychiatry Res. 1988, 23, 99–110. [Google Scholar] [CrossRef]
- van der Gaag, M.; Hoffman, T.; Remijsen, M.; Hijman, R.; de Haan, L.; van Meijel, B.; van Harten, P.N.; Valmaggia, L.; de Hert, M.; Cuijpers, A.; et al. The five-factor model of the Positive and Negative Syndrome Scale II: A ten-fold cross-validation of a revised model. Schizophr. Res. 2006, 85, 280–287. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2021; Available online: https://www.R-project.org/ (accessed on 13 June 2025).
- Singh, J.K.; Hutt, D.M.; Tait, B.; Guy, N.C.; Sivils, J.C.; Ortiz, N.R.; Payan, A.N.; Komaragiri, S.K.; Owens, J.J.; Culbertson, D.; et al. Management of Hsp90-Dependent Protein Folding by Small Molecules Targeting the Aha1 Co-Chaperone. Cell Chem. Biol. 2020, 27, 292–305.e6. [Google Scholar] [CrossRef]
- Fan, X.; Sun, L.; Qin, Y.; Liu, Y.; Wu, S.; Du, L. The Role of HSP90 Molecular Chaperones in Depression: Potential Mechanisms. Mol. Neurobiol. 2025, 62, 708–717. [Google Scholar] [CrossRef] [PubMed]
- Panagiotakopoulos, L.; Neigh, G.N. Development of the HPA axis: Where and when do sex differences manifest? Front. Neuroendocrinol. 2014, 35, 285–302. [Google Scholar] [CrossRef] [PubMed]
- Kokras, N.; Hodes, G.E.; Bangasser, D.A.; Dalla, C. Sex differences in the hypothalamic-pituitary-adrenal axis: An obstacle to antidepressant drug development? Br. J. Pharmacol. 2019, 176, 4090–4106. [Google Scholar] [CrossRef] [PubMed]
- Herman, J.; Parikh, R.; Herman, J.P. Sex and Stress: Corticocolimbic Glucocorticoid Signaling Dynamics. Psychoneuroendocrinology 2024, 160, 106739. [Google Scholar] [CrossRef]
- Uhart, M.; Chong, R.Y.; Oswald, L.; Lin, P.I.; Wand, G.S. Gender differences in hypothalamic-pituitary-adrenal (HPA) axis reactivity. Psychoneuroendocrinology 2006, 31, 642–652. [Google Scholar] [CrossRef]
- Hoenicka, J.; Garrido, E.; Martínez, I.; Ponce, G.; Aragüés, M.; Rodríguez-Jiménez, R.; España-Serrano, L.; Alvira-Botero, X.; Santos, J.L.; Rubio, G.; et al. Gender-specific COMT Val158Met polymorphism association in Spanish schizophrenic patients. Am. J. Med. Genet. B Neuropsychiatr. Genet. 2010, 153B, 79–85. [Google Scholar] [CrossRef]
- Jemli, A.; Inoubli, O.; Trifa, F.; Mechri, A.; Zaafrane, F.; Gaha, L.; Jrad, B.B. IFNGR2 genetic polymorphism associated with sex-specific paranoid schizophrenia risk. Nord. J. Psychiatry 2017, 71, 42–47. [Google Scholar] [CrossRef]
- Suchanek-Raif, R.; Raif, P.; Kowalczyk, M.; Paul-Samojedny, M.; Kucia, K.; Merk, W.; Kowalski, J. Polymorphic Variants of TNFR2 Gene in Schizophrenia and Its Interaction with -308G/A TNF-α Gene Polymorphism. Mediators Inflamm. 2018, 2018, 8741249. [Google Scholar] [CrossRef]
- Zhu, X.; Li, R.; Kang, G.; Kang, Q.; Rao, W.; Yang, M.; Cao, B.; Zhang, M.; Sun, Y.; Wang, Y.; et al. CACNA1C Polymorphism (rs2283291) Is Associated with Schizophrenia in Chinese Males: A Case-Control Study. Dis. Markers 2019, 2019, 8062397. [Google Scholar] [CrossRef]
- Han, H.; Xia, X.; Zheng, H.; Zhao, C.; Xu, Y.; Tao, J.; Wang, X. The Gene Polymorphism of VMAT2 Is Associated with Risk of Schizophrenia in Male Han Chinese. Psychiatry Investig. 2020, 17, 1073–1078. [Google Scholar] [CrossRef]
- Suchanek-Raif, R.; Raif, P.; Kowalczyk, M.; Paul-Samojedny, M.; Zielińska, A.; Kucia, K.; Merk, W.; Kowalski, J. An Analysis of Five TrkB Gene Polymorphisms in Schizophrenia and the Interaction of Its Haplotype with rs6265 BDNF Gene Polymorphism. Dis. Markers 2020, 2020, 4789806. [Google Scholar] [CrossRef]
- Kirschke, E.; Goswami, D.; Southworth, D.; Griffin, P.R.; Agard, D.A. Glucocorticoid receptor function regulated by coordinated action of the Hsp90 and Hsp70 chaperone cycles. Cell 2014, 157, 1685–1697. [Google Scholar] [CrossRef]
- Morishima, Y.; Mehta, R.K.; Yoshimura, M.; Lau, M.; Southworth, D.R.; Lawrence, T.S.; Pratt, W.B.; Nyati, M.K.; Osawa, Y. Chaperone Activity and Dimerization Properties of Hsp90α and Hsp90β in Glucocorticoid Receptor Activation by the Multiprotein Hsp90/Hsp70-Dependent Chaperone Machinery. Mol. Pharmacol. 2018, 94, 984–991. [Google Scholar] [CrossRef] [PubMed]
- Sinclair, D.; Fillman, S.G.; Webster, M.J.; Weickert, C.S. Dysregulation of glucocorticoid receptor co-factors FKBP5, BAG1 and PTGES3 in prefrontal cortex in psychotic illness. Sci. Rep. 2013, 3, 3539. [Google Scholar] [CrossRef] [PubMed]
- Cherian, K.; Schatzberg, A.F.; Keller, J. HPA axis in psychotic major depression and schizophrenia spectrum disorders: Cortisol, clinical symptomatology and cognition. Schizophr. Res. 2019, 213, 72–79. [Google Scholar] [CrossRef]
- Pariante, C.M. Risk factors for development of depression and psychosis. Glucocorticoid receptors and pituitary implications for treatment with antidepressant and glucocorticoids. Ann. N. Y. Acad. Sci. 2009, 1179, 144–152. [Google Scholar] [CrossRef] [PubMed]
- Anacker, C.; Zunszain, P.A.; Carvalho, L.A.; Pariante, C.M. The glucocorticoid receptor: Pivot of depression and of antidepressant treatment? Psychoneuroendocrinology 2011, 36, 415–425. [Google Scholar] [CrossRef]
- Menke, A.; Klengel, T.; Rubel, J.; Brückl, T.; Pfister, H.; Lucae, S.; Uhr, M.; Holsboer, F.; Binder, E.B. Genetic variation in FKBP5 associated with the extent of stress hormone dysregulation in major depression. Genes Brain Behav. 2013, 12, 289–296. [Google Scholar] [CrossRef]
- Szczepankiewicz, A.; Leszczyńska-Rodziewicz, A.; Pawlak, J.; Narozna, B.; Rajewska-Rager, A.; Wilkosc, M.; Zaremba, D.; Maciukiewicz, M.; Twarowska-Hauser, J. FKBP5 polymorphism is associated with major depression but not with bipolar disorder. J. Affect. Disord. 2014, 164, 33–37. [Google Scholar] [CrossRef]
- Stamm, T.J.; Rampp, C.; Wiethoff, K.; Stingl, J.; Mössner, R.; Malley, G.O.; Ricken, R.; Seemüller, F.; Keck, M.; Fisher, R.; et al. The FKBP5 polymorphism rs1360780 influences the effect of an algorithm-based antidepressant treatment and is associated with remission in patients with major depression. J. Psychopharmacol. 2016, 30, 40–47. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Ba, Y.; Han, W.; Zhang, H.; Zhu, L.; Jiang, P. Association of heat shock protein polymorphisms with patient susceptibility to coronary artery disease comorbid depression and anxiety in a Chinese population. PeerJ 2021, 9, e11636. [Google Scholar] [CrossRef] [PubMed]
- Zou, Y.F.; Xu, J.H.; Gu, Y.Y.; Pan, F.M.; Tao, J.H.; Wang, D.G.; Xu, S.Q.; Xiao, H.; Chen, P.L.; Liu, S.; et al. Single nucleotide polymorphisms of HSP90AA1 gene influence response of SLE patients to glucocorticoids treatment. Springerplus 2016, 5, 222. [Google Scholar] [CrossRef]
- Lehoux, C.; Gobeil, M.H.; Lefebvre, A.A.; Maziade, M.; Roy, M.A. The five-factor structure of the PANSS: A critical review of its consistency across studies. Clin. Schizophr. Relat. Psychoses 2009, 3, 103–110. [Google Scholar] [CrossRef]
- Demyttenaere, K.; Anthonis, E.; Acsai, K.; Correll, C.U. Depressive Symptoms and PANSS Symptom Dimensions in Patients With Predominant Negative Symptom Schizophrenia: A Network Analysis. Front. Psychiatry 2022, 13, 795866. [Google Scholar] [CrossRef]
- Wilson, R.S.; Yung, A.R.; Morrison, A.P. Comorbidity rates of depression and anxiety in first episode psychosis: A systematic review and meta-analysis. Schizophr. Res. 2020, 216, 322–329. [Google Scholar] [CrossRef]
- Cassidy, R.M.; Yang, F.; Kapczinski, F.; Passos, I.C. Risk Factors for Suicidality in Patients With Schizophrenia: A Systematic Review, Meta-analysis, and Meta-regression of 96 Studies. Schizophr. Bull. 2018, 44, 787–797. [Google Scholar] [CrossRef]
- Pae, C.U.; Serretti, A.; Patkar, A.A.; Masand, P.S. Aripiprazole in the treatment of depressive and anxiety disorders: A review of current evidence. CNS Drugs 2008, 22, 367–388. [Google Scholar] [CrossRef]
- Reynolds, G.P.; McGowan, O.O. Schizophrenia, Depressive Symptoms, and Antipsychotic Drug Treatment. Int. J. Neuropsychopharmacol. 2021, 24, 253–255. [Google Scholar] [CrossRef]
- Kjelby, E.; Gjestad, R.; Fathian, F.; Sinkeviciute, I.; Alisauskiene, R.; Anda, L.; Løberg, E.M.; Reitan, S.K.; Joa, I.; Larsen, T.K.; et al. Antidepressive Effectiveness of Amisulpride, Aripiprazole and Olanzapine in Patients with Schizophrenia Spectrum Disorders: A Secondary Outcome Analysis of a Pragmatic, Randomized Trial (BeSt InTro). J. Clin. Psychopharmacol. 2023, 43, 246–258. [Google Scholar] [CrossRef]
- Chen, S.F.; Shen, Y.C. 5-HT1A C-1019G (rs6295) Predicts Aripiprazole Treatment Response Specifically for Cognitive and Depressive Symptoms in Schizophrenia. J. Clin. Psychopharmacol. 2017, 37, 114–118. [Google Scholar] [CrossRef]
- Marín, O. Interneuron dysfunction in psychiatric disorders. Nat. Rev. Neurosci. 2012, 13, 107–120. [Google Scholar] [CrossRef] [PubMed]
- Taylor, S.F.; Tso, I.F. GABA abnormalities in schizophrenia: A methodological review of in vivo studies. Schizophr. Res. 2015, 167, 84–90. [Google Scholar] [CrossRef] [PubMed]
- Godfrey, K.E.M.; Gardner, A.C.; Kwon, S.; Chea, W.; Muthukumaraswamy, S.D. Differences in excitatory and inhibitory neurotransmitter levels between depressed patients and healthy controls: A systematic review and meta-analysis. J. Psychiatr. Res. 2018, 105, 33–44. [Google Scholar] [CrossRef] [PubMed]
- Fogaça, M.V.; Duman, R.S. Cortical GABAergic Dysfunction in Stress and Depression: New Insights for Therapeutic Interventions. Front. Cell. Neurosci. 2019, 13, 87. [Google Scholar] [CrossRef]
- Kalia, N.; Sharma, A.; Kaur, M.; Kamboj, S.S.; Singh, J. A comprehensive in silico analysis of non-synonymous and regulatory SNPs of human MBL2 gene. SpringerPlus 2016, 5, 811. [Google Scholar] [CrossRef]
- Deng, N.; Zhou, H.; Fan, H.; Yuan, Y. Single nucleotide polymorphisms and cancer susceptibility. Oncotarget 2017, 8, 110635–110649. [Google Scholar] [CrossRef]
- Zeng, Z.; Bromberg, Y. Predicting Functional Effects of Synonymous Variants: A Systematic Review and Perspectives. Front. Genet. 2019, 10, 914. [Google Scholar] [CrossRef]
- Vihinen, M. When a Synonymous Variant Is Nonsynonymous. Genes 2022, 13, 1485. [Google Scholar] [CrossRef]
SNP | Genotype/ Allele | Total | χ2 | p | Females | χ2 | p | Males | χ2 | p |
---|---|---|---|---|---|---|---|---|---|---|
SCZ/Control n(%) | SCZ/Control n(%) | SCZ/Control n(%) | ||||||||
rs8005905 | A/A | 341(83.4)/556(81.9) | 0.42 | 0.81 | 141(85.5)/261(81.6) | 1.78 | 0.41 | 200(82.0)/295(82.2) | 0.14 | 0.93 |
A/T | 66(16.1)/119(17.5) | 24(14.5)/57(17.8) | 42(17.2)/62(17.3) | |||||||
T/T | 2(0.5)/4(0.6) | 0/2(0.60) | 2(0.8)/2(0.6) | |||||||
A | 748(91.4)/1231(90.6) | 0.30 | 0.58 | 306(92.7)/579(90.5) | 1.12 | 0.30 | 442(90.6)/652(90.8) | 0 | 0.97 | |
T | 70(8.6)/127(9.4) | 24(7.3)/61(9.5) | 46(9.4)/66(9.2) | |||||||
rs10873531 | A/A | 323(79.0)/534(78.6) | 0.06 | 0.97 | 135(81.8)/249(77.8) | 1.12 | 0.57 | 188(77.0)/285(79.4) | 0.55 | 0.76 |
A/G | 82(20.0)/139(20.5) | 28(17.0)/67(20.9) | 54(22.1)/72(20.1) | |||||||
G/G | 4(1.0)/6(0.9) | 2(1.2)/4(1.2) | 2(0.8)/2(0.6) | |||||||
A | 728(89.0)/1207(88.9) | 0 | 0.99 | 298(90.3)/565(88.3) | 0.71 | 0.40 | 430(88.1)/642(89.4) | 0.37 | 0.54 | |
G | 90(11.0)/151(11.1) | 32(9.7)/75(11.7) | 58(11.9)/76(10.6) | |||||||
rs11621560 | A/A | 150(36.7)/272(40.0) | 1.93 | 0.38 | 66(40.0)/131(40.9) | 3.54 | 0.17 | 84(34.4)/141(39.3) | 1.83 | 0.40 |
A/C | 202(49.4)/306(45.1) | 80(48.5)/134(41.9) | 122(50.0)/172(47.9) | |||||||
C/C | 57(13.9)/101(14.9) | 19(11.5)/55(17.2) | 38(15.6)/46(12.8) | |||||||
A | 502(61.4)/850(62.6) | 0.27 | 0.60 | 212(64.2)/396(61.8) | 0.42 | 0.51 | 290(59.4)/454(63.2) | 1.62 | 0.20 | |
C | 316(38.6)/508(37.4) | 118(35.8)/244(38.2) | 198(40.6)/264(36.8) | |||||||
rs4947 | A/A | 268(65.5)/467(68.8) | 1.55 | 0.46 | 114(69.1)/222(69.4) | 0.40 | 0.82 | 154(63.1)/245(68.2) | 4.08 | 0.13 |
A/G | 125(30.6)/192(28.3) | 46(27.9)/85(26.6) | 79(32.4)/107(29.8) | |||||||
G/G | 16(3.9)/20(2.9) | 5(3.0)/13(4.1) | 11(4.5)/7(1.9) | |||||||
A | 661(80.8)/1126(82.9) | 1.41 | 0.24 | 274(83.0)/529(82.7) | 0 | 0.96 | 387(79.3)/597(83.1) | 2.61 | 0.11 | |
G | 157(19.2)/232(17.1) | 56(17.0)/111(17.3) | 101(20.7)/121(16.9) | |||||||
rs2298877 | C/C | 268(65.5)/466 (68.6) | 1.31 | 0.52 | 114(69.1)/222(69.4) | 0.63 | 0.73 | 154(63.1)/244(68.0) | 3.93 | 0.14 |
C/T | 125(30.6)/192(28.3) | 46(27.9)/84(26.2) | 79(32.4)/108(30.1) | |||||||
T/T | 16(3.9)/21(3.1) | 5(3.0)/14(4.4) | 11(4.5)/7(1.9) | |||||||
C | 661(80.8)/1124(82.8) | 1.20 | 0.27 | 274(83.0)/528(82.5) | 0.01 | 0.91 | 387(79.3)/596(83.0) | 2.41 | 0.12 | |
T | 157(19.2)/234(17.2) | 56(17.0)/112(17.5) | 101(20.7)/122(17.0) |
Haplotype | Total | Females | Males | ||||||
---|---|---|---|---|---|---|---|---|---|
Frequency | OR (95% CI) | p | Frequency | OR (95% CI) | p | Frequency | OR (95% CI) | p | |
A–A–A–A–C | 0.6162 | 1.00 | --- | 0.6211 | 1.00 | --- | 0.6127 | 1.00 | --- |
A–A–C–A–C | 0.1834 | 0.96 (0.76–1.21) | 0.74 | 0.1799 | 0.84 (0.59–1.20) | 0.33 | 0.1859 | 1.07 (0.78–1.47) | 0.66 |
T–G–C–G–T | 0.0880 | 0.89 (0.64–1.24) | 0.49 | 0.0843 | 0.68 (0.40–1.16) | 0.16 | 0.0910 | 1.08 (0.71–1.65) | 0.71 |
A–A–C–G–T | 0.0861 | 1.33 (0.98–1.81) | 0.07 | 0.0855 | 1.20 (0.75–1.90) | 0.44 | 0.0865 | 1.47 (0.97–2.22) | 0.07 |
A–G–C–A–C | 0.0186 | 1.35 (0.72–2.53) | 0.35 | 0.0213 | 1.17 (0.49–2.82) | 0.72 | 0.0165 | 1.67 (0.67–4.17) | 0.27 |
rare | 0.0077 | 2.40 (0.56–10.32) | 0.24 | 0.0079 | 1.52 (0.33–7.03) | 0.59 | 0.0075 | 4.13 (0.62–27.70) | 0.14 |
SNP | Model | Genotype | Total | Females | Males | ||||
---|---|---|---|---|---|---|---|---|---|
EMO Scores * | p | EMO Scores * | p | EMO Scores * | p | ||||
rs11621560 | Co-dominant | A/A | 21.64 (0.41) | 0.06 | 20.67 (0.49) | <0.05 | 22.40 (0.60) | 0.57 | |
A/C | 22.09 (0.34) | 21.80 (0.52) | 22.28 (0.45) | ||||||
C/C | 23.46 (0.69) | 23.79 (1.18) | 23.29 (0.87) | ||||||
Dominant | A/A | 21.64 (0.41) | 0.14 | 20.67 (0.49) | <0.05 | 22.40 (0.60) | 0.87 | ||
A/C-C/C | 22.39 (0.31) | 22.18 (0.48) | 22.52 (0.40) | ||||||
Recessive | A/A-A/C | 21.90 (0.26) | <0.05 | 21.29 (0.36) | <0.05 | 22.33 (0.36) | 0.30 | ||
C/C | 23.46 (0.69) | 23.79 (1.18) | 23.29 (0.87) | ||||||
Over-dominant | A/A-C/C | 22.14 (0.35) | 0.92 | 21.36 (0.48) | 0.54 | 22.68 (0.49) | 0.55 | ||
A/C | 22.09 (0.34) | 21.80 (0.52) | 22.28 (0.52) | ||||||
rs4947/rs2298877 | Co-dominant | A/A | C/C | 21.66 (0.30) | <0.05 | 21.13 (0.43) | 0.15 | 22.05 (0.42) | 0.19 |
A/G | C/T | 22.94 (0.44) | 22.67 (0.68) | 23.09 (0.57) | |||||
G/G | T/T | 23.38 (1.25) | 21.60 (0.68) | 24.18 (1.76) | |||||
Dominant | A/A | C/C | 21.66 (0.30) | <0.01 | 21.13 (0.42) | 0.06 | 22.05 (0.42) | 0.09 | |
A/G-G/G | C/T-T/T | 22.99 (0.41) | 22.57 (0.62) | 23.22 (0.54) | |||||
Recessive | A/A-A/G | C/C-C/T | 22.06 (0.25) | 0.30 | 21.57 (0.36) | 0.99 | 22.40 (0.34) | 0.26 | |
G/G | T/T | 23.38 (1.25) | 21.60 (0.68) | 24.18 (1.76) | |||||
Over-dominant | A/A-G/G | C/C-T/T | 21.75 (0.29) | <0.05 | 21.15 (0.41) | 0.05 | 22.19 (0.41) | 0.20 | |
A/G | C/T | 22.94 (0.44) | 22.67 (0.68) | 23.09 (0.57) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kowalczyk, M.; Owczarek, A.J.; Kucia, K.; Hasterok, M.; Suchanek-Raif, R.; Paul-Samojedny, M.; Lakomy, W.; Kowalski, J. Association Study of the Heat Shock Protein 90 Alpha (HSP90AA1) Gene Polymorphisms with Schizophrenia in a Polish Population. Genes 2025, 16, 1092. https://doi.org/10.3390/genes16091092
Kowalczyk M, Owczarek AJ, Kucia K, Hasterok M, Suchanek-Raif R, Paul-Samojedny M, Lakomy W, Kowalski J. Association Study of the Heat Shock Protein 90 Alpha (HSP90AA1) Gene Polymorphisms with Schizophrenia in a Polish Population. Genes. 2025; 16(9):1092. https://doi.org/10.3390/genes16091092
Chicago/Turabian StyleKowalczyk, Malgorzata, Aleksander J. Owczarek, Krzysztof Kucia, Maja Hasterok, Renata Suchanek-Raif, Monika Paul-Samojedny, Weronika Lakomy, and Jan Kowalski. 2025. "Association Study of the Heat Shock Protein 90 Alpha (HSP90AA1) Gene Polymorphisms with Schizophrenia in a Polish Population" Genes 16, no. 9: 1092. https://doi.org/10.3390/genes16091092
APA StyleKowalczyk, M., Owczarek, A. J., Kucia, K., Hasterok, M., Suchanek-Raif, R., Paul-Samojedny, M., Lakomy, W., & Kowalski, J. (2025). Association Study of the Heat Shock Protein 90 Alpha (HSP90AA1) Gene Polymorphisms with Schizophrenia in a Polish Population. Genes, 16(9), 1092. https://doi.org/10.3390/genes16091092