Genotype-Phenotype Relationship in Hypertrophic Cardiomyopathy
Abstract
1. Introduction
2. Materials and Methods
2.1. Subsection Study Population and Data Collection
2.2. Study Outcomes
2.3. Genetic Testing
2.4. Statistical Analysis
3. Results
3.1. Demographic and Genetic Characterisation
3.2. Genotype–Phenotype Relationships
3.3. Clinical Outcomes
4. Discussion
Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ACC/AHA | American College of Cardiology Foundation/American Heart Association |
ACMG | American College of Medical Genetics and Genomics |
ANOVA | Analysis of Variance |
CI | Confidence interval |
CMRi | Cardiac magnetic resonance imaging |
ECG | Electrocardiogram |
ESC | European Society of Cardiology |
HCM | Hypertrophic cardiomyopathy |
HF | Heart failure |
ICD | Implantable cardioverter-defibrillator |
IQR | Interquartile range |
LA | Left atrium |
LGE | Late gadolinium enhancement |
LV | Left ventricle |
LVdd | Left ventricular diastolic diameter |
LVEF | Left ventricular ejection fraction |
LVOT | Left ventricular outflow tract |
NGS | Next generation sequencing |
NYHA | New York Heart Association |
P/LP | Pathogenic/likely pathogenic |
SCD | Sudden cardiac death |
SD | Standard deviation |
TTE | Transthoracic echocardiography |
VT | Ventricular tachycardia |
VUHSK | Vilnius University Hospital Santaros Klinikos |
References
- Arbelo, E.; Protonotarios, A.; Gimeno, J.R.; Arbustini, E.; Barriales-Villa, R.; Basso, C.; Bezzina, C.R.; Biagini, E.; Blom, N.A.; de Boer, R.A.; et al. 2023 ESC Guidelines for the management of cardiomyopathies: Developed by the task force on the management of cardiomyopathies of the European Society of Cardiology (ESC). Eur. Heart J. 2023, 44, 3503–3626. [Google Scholar] [CrossRef]
- Ingles, J.; Goldstein, J.; Thaxton, C.; Caleshu, C.; Corty, E.W.; Crowley, S.B.; Dougherty, K.; Harrison, S.M.; McGlaughon, J.; Milko, L.V.; et al. Evaluating the Clinical Validity of Hypertrophic Cardiomyopathy Genes. Circ. Genom. Precis. Med. 2019, 12, e002460. [Google Scholar] [CrossRef]
- Lopes, L.R.; Ho, C.Y.; Elliott, P.M. Genetics of hypertrophic cardiomyopathy: Established and emerging implications for clinical practice. Eur. Heart J. 2024, 45, 2727–2734. [Google Scholar] [CrossRef] [PubMed]
- Maron, B.J.; Rowin, E.J.; Maron, M.S. Global Burden of Hypertrophic Cardiomyopathy. JACC Heart Fail. 2018, 6, 376–378. [Google Scholar] [CrossRef]
- Jääskeläinen, P.; Vangipurapu, J.; Raivo, J.; Kuulasmaa, T.; Heliö, T.; Aalto-Setälä, K.; Kaartinen, M.; Ilveskoski, E.; Vanninen, S.; Hämäläinen, L.; et al. Genetic basis and outcome in a nationwide study of Finnish patients with hypertrophic cardiomyopathy. ESC Heart Fail. 2019, 6, 436–445. [Google Scholar] [CrossRef] [PubMed]
- Adalsteinsdottir, B.; Burke, M.; Maron, B.J.; Danielsen, R.; Lopez, B.; Diez, J.; Jarolim, P.; Seidman, J.; Seidman, C.E.; Ho, C.Y.; et al. Hypertrophic cardiomyopathy in myosin-binding protein C (MYBPC3) Icelandic founder mutation carriers. Open Heart 2020, 7, e001220. [Google Scholar] [CrossRef]
- Bonaventura, J.; Rowin, E.J.; Chan, R.H.; Chin, M.T.; Puchnerova, V.; Polakova, E.; Macek, M., Jr.; Votypka, P.; Batorsky, R.; Perera, G.; et al. Relationship Between Genotype Status and Clinical Outcome in Hypertrophic Cardiomyopathy. J. Am. Heart Assoc. 2024, 13, e033565. [Google Scholar] [CrossRef]
- Ho, C.Y.; Day, S.M.; Ashley, E.A.; Michels, M.; Pereira, A.C.; Jacoby, D.; Cirino, A.L.; Fox, J.C.; Lakdawala, N.K.; Ware, J.S.; et al. Genotype and Lifetime Burden of Disease in Hypertrophic Cardiomyopathy: Insights from the Sarcomeric Human Cardiomyopathy Registry (SHaRe). Circulation 2018, 138, 1387–1398. [Google Scholar] [CrossRef]
- Lopes, L.R.; Syrris, P.; Guttmann, O.P.; O’Mahony, C.; Tang, H.C.; Dalageorgou, C.; Jenkins, S.; Hubank, M.; Monserrat, L.; McKenna, W.J.; et al. Novel genotype–phenotype associations demonstrated by high-throughput sequencing in patients with hypertrophic cardiomyopathy. Heart 2015, 101, 294–301. [Google Scholar] [CrossRef] [PubMed]
- Olivotto, I.; Girolami, F.; Ackerman, M.J.; Nistri, S.; Bos, J.M.; Zachara, E.; Ommen, S.R.; Theis, J.L.; Vaubel, R.A.; Re, F.; et al. Myofilament protein gene mutation screening and outcome of patients with hypertrophic cardiomyopathy. Mayo Clin. Proc. 2008, 83, 630–638. [Google Scholar] [CrossRef]
- Neubauer, S.; Kolm, P.; Ho, C.Y.; Kwong, R.Y.; Desai, M.Y.; Dolman, S.F.; Appelbaum, E.; Desvigne-Nickens, P.; DiMarco, J.P.; Friedrich, M.G.; et al. Distinct Subgroups in Hypertrophic Cardiomyopathy in the NHLBI HCM Registry. J. Am. Coll. Cardiol. 2019, 74, 2333–2345. [Google Scholar] [CrossRef]
- Lee, S.-P.; Ashley, E.A.; Homburger, J.; Caleshu, C.; Green, E.M.; Jacoby, D.; Colan, S.D.; Arteaga-Fernández, E.; Day, S.M.; Girolami, F.; et al. Incident Atrial Fibrillation Is Associated with MYH7 Sarcomeric Gene Variation in Hypertrophic Cardiomyopathy. Circ. Heart Fail. 2018, 11, e005191. [Google Scholar] [CrossRef] [PubMed]
- Weissler-Snir, A.; Hindieh, W.; Gruner, C.; Fourey, D.; Appelbaum, E.; Rowin, E.; Care, M.; Lesser, J.R.; Haas, T.S.; Udelson, J.E.; et al. Lack of Phenotypic Differences by Cardiovascular Magnetic Resonance Imaging in MYH7 (β-Myosin Heavy Chain)- Versus MYBPC3 (Myosin-Binding Protein C)-Related Hypertrophic Cardiomyopathy. Circ. Cardiovasc. Imaging 2017, 10, e005311. [Google Scholar] [CrossRef]
- Höller, V.; Seebacher, H.; Zach, D.; Schwegel, N.; Ablasser, K.; Kolesnik, E.; Gollmer, J.; Waltl, G.; Rainer, P.P.; Verheyen, S.; et al. Myocardial Deformation Analysis in MYBPC3 and MYH7 Related Sarcomeric Hypertrophic Cardiomyopathy—The Graz Hypertrophic Cardiomyopathy Registry. Genes 2021, 12, 1469. [Google Scholar] [CrossRef] [PubMed]
- Bileišienė, N.; Barysienė, J.; Mikštienė, V.; Preikšaitienė, E.; Marinskis, G.; Keževičiūtė, M.; Utkus, A.; Aidietis, A. Aborted Cardiac Arrest in LQT2 Related to Novel KCNH2 (hERG) Variant Identified in One Lithuanian Family. Medicina 2021, 57, 721. [Google Scholar] [CrossRef]
- Grigaitė, J.; Šiaurytė, K.; Audronytė, E.; Preikšaitienė, E.; Burnytė, B.; Pranckevičienė, E.; Ekkert, A.; Utkus, A.; Jatužis, D. Novel In-Frame Deletion in HTRA1 Gene, Responsible for Stroke at a Young Age and Dementia-A Case Study. Genes 2021, 12, 1955. [Google Scholar] [CrossRef]
- Lek, M.; Karczewski, K.J.; Minikel, E.V.; Samocha, K.E.; Banks, E.; Fennell, T.; O’Donnell-Luria, A.H.; Ware, J.S.; Hill, A.J.; Cummings, B.B.; et al. Analysis of protein-coding genetic variation in 60,706 humans. Nature 2016, 536, 285–291. [Google Scholar] [CrossRef] [PubMed]
- Karczewski, K.J.; Francioli, L.C.; Tiao, G.; Cummings, B.B.; Alföldi, J.; Wang, Q.; Collins, R.L.; Laricchia, K.M.; Ganna, A.; Birnbaum, D.P.; et al. The mutational constraint spectrum quantified from variation in 141,456 humans. Nature 2020, 581, 434–443. [Google Scholar] [CrossRef]
- Richards, S.; Aziz, N.; Bale, S.; Bick, D.; Das, S.; Gastier-Foster, J.; Grody, W.W.; Hegde, M.; Lyon, E.; Spector, E.; et al. Standards and guidelines for the interpretation of sequence variants: A joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet. Med. 2015, 17, 405–423. [Google Scholar] [CrossRef]
- 2024 AHA/ACC/AMSSM/HRS/PACES/SCMR Guideline for the Management of Hypertrophic Cardiomyopathy: A Report of the American Heart Association/American College of Cardiology Joint Committee on Clinical Practice Guidelines. Available online: https://www.ahajournals.org/doi/epub/10.1161/CIR.0000000000001250 (accessed on 2 May 2025).
- Cuesta-Llavona, E.; Lorca, R.; Salgado, M.; García-Lago, C.; Rodríguez-Reguero, J.; Rodríguez-López, R.; Escribano-Hernández, V.; Peña-Cabia, A.; Vázquez-Coto, D.; Pascual, I.; et al. Retrospective variant reclassification and resequencing in hypertrophic cardiomyopathy: A reference unit centre experience. Eur. J. Prev. Cardiol. 2024, 31, e38–e41. [Google Scholar] [CrossRef]
- Fernandez-Falgueras, A.; Coll, M.; Iglesias, A.; Tiron, C.; Campuzano, O.; Brugada, R. The importance of variant reinterpretation in inherited cardiovascular diseases: Establishing the optimal timeframe. PLoS ONE 2024, 19, e0297914. [Google Scholar] [CrossRef]
- Horgan, S.; Kotwal, H.; Malan, A.; Sekhri, N.; Lopes, L.R. Reassessment and reclassification of variants of unknown significance in patients with cardiomyopathy in a specialist department. J. Med. Genet. 2025, 62, 185–190. [Google Scholar] [CrossRef]
- Christian, S.; Cirino, A.; Hansen, B.; Harris, S.; Murad, A.M.; Natoli, J.L.; Malinowski, J.; Kelly, M.A. Diagnostic validity and clinical utility of genetic testing for hypertrophic cardiomyopathy: A systematic review and meta-analysis. Open Heart 2022, 9, e001815. [Google Scholar] [CrossRef]
- Lopes, L.R.; Rahman, M.S.; Elliott, P.M. A systematic review and meta-analysis of genotype-phenotype associations in patients with hypertrophic cardiomyopathy caused by sarcomeric protein mutations. Heart 2013, 99, 1800–1811. [Google Scholar] [CrossRef]
- Zhou, N.; Weng, H.; Zhao, W.; Tang, L.; Ge, Z.; Tian, F.; Meng, F.; Pan, C.; Shu, X. Gene-echocardiography: Refining genotype-phenotype correlations in hypertrophic cardiomyopathy. Eur. Heart J. Cardiovasc. Imaging 2023, 25, 127–135. [Google Scholar] [CrossRef] [PubMed]
- Lopes, L.R.; Losi, M.-A.; Sheikh, N.; Laroche, C.; Charron, P.; Gimeno, J.; Kaski, J.P.; Maggioni, A.P.; Tavazzi, L.; Arbustini, E.; et al. Association between common cardiovascular risk factors and clinical phenotype in patients with hypertrophic cardiomyopathy from the European Society of Cardiology (ESC) EurObservational Research Programme (EORP) Cardiomyopathy/Myocarditis registry. Eur. Heart J. Qual. Care Clin. Outcomes 2022, 9, 42–53. [Google Scholar] [CrossRef]
- Robyns, T.; Breckpot, J.; Nuyens, D.; Vandenberk, B.; Corveleyn, A.; Kuiperi, C.; Van Aelst, L.; Van Cleemput, J.; Willems, R. Clinical and ECG variables to predict the outcome of genetic testing in hypertrophic cardiomyopathy. Eur. J. Med. Genet. 2020, 63, 103754. [Google Scholar] [CrossRef]
- Captur, G.; Manisty, C.H.; Raman, B.; Marchi, A.; Wong, T.C.; Ariga, R.; Bhuva, A.; Ormondroyd, E.; Lobascio, I.; Camaioni, C.; et al. Maximal Wall Thickness Measurement in Hypertrophic Cardiomyopathy: Biomarker Variability and its Impact on Clinical Care. JACC Cardiovasc. Imaging 2021, 14, 2123–2134. [Google Scholar] [CrossRef] [PubMed]
- Mascia, G.; Olivotto, I.; Brugada, J.; Arbelo, E.; Di Donna, P.; Della Bona, R.; Canepa, M.; Porto, I. Sport practice in hypertrophic cardiomyopathy: Running to stand still? Int. J. Cardiol. 2021, 345, 77–82. [Google Scholar] [CrossRef] [PubMed]
- Lopes, L.R.; Brito, D.; Belo, A.; Cardim, N.; Portuguese Registry of Hypertrophic Cardiomyopathy. Genetic characterization and genotype-phenotype associations in a large cohort of patients with hypertrophic cardiomyopathy—An ancillary study of the Portuguese registry of hypertrophic cardiomyopathy. Int. J. Cardiol. 2019, 278, 173–179. [Google Scholar] [CrossRef]
- Fronza, M.; Raineri, C.; Valentini, A.; Bassi, E.M.; Scelsi, L.; Buscemi, M.L.; Turco, A.; Castelli, G.; Ghio, S.; Visconti, L.O. Relationship between electrocardiographic findings and Cardiac Magnetic Resonance phenotypes in patients with Hypertrophic Cardiomyopathy. IJC Heart Vasc. 2016, 11, 7–11. [Google Scholar] [CrossRef] [PubMed]
- Sedaghat-Hamedani, F.; Kayvanpour, E.; Tugrul, O.F.; Lai, A.; Amr, A.; Haas, J.; Proctor, T.; Ehlermann, P.; Jensen, K.; Katus, H.A.; et al. Clinical outcomes associated with sarcomere mutations in hypertrophic cardiomyopathy: A meta-analysis on 7675 individuals. Clin. Res. Cardiol. 2018, 107, 30–41. [Google Scholar] [CrossRef] [PubMed]
- Buongiorno, A.L.; Blandino, A.; Bianchi, F.; Masi, A.S.; Pierri, A.; Mabritto, B.; Bongioanni, S.; Grossi, S.; Mascia, G.; Porto, I.; et al. Effectiveness of 2014 ESC HCM-Risk-SCD score in prediction of appropriate implantable-cardioverter-defibrillator shocks. J. Cardiovasc. Med. 2023, 24, 313. [Google Scholar] [CrossRef]
- Dicorato, M.M.; Basile, P.; Naccarati, M.L.; Carella, M.C.; Dentamaro, I.; Falagario, A.; Cicco, S.; Forleo, C.; Guaricci, A.I.; Ciccone, M.M.; et al. Predicting New-Onset Atrial Fibrillation in Hypertrophic Cardiomyopathy: A Review. J. Clin. Med. 2025, 14, 2018. [Google Scholar] [CrossRef]
- Antonopoulos, A.S.; Kasiakogias, A.; Kouroutzoglou, A.; Touloupaki, M.; Briasoulis, A.; Papatheodorou, E.; Rigopoulos, A.G.; Antonakaki, D.; Laina, A.; Tsioufis, K.; et al. Atrial fibrillation burden and management in cardiomyopathies: Current evidence and unmet needs. Trends Cardiovasc. Med. 2025, 35, 284–293. [Google Scholar] [CrossRef]
- Madaudo, C.; Parlati, A.L.M.; Di Lisi, D.; Carluccio, R.; Sucato, V.; Vadalà, G.; Nardi, E.; Macaione, F.; Cannata, A.; Manzullo, N.; et al. Artificial intelligence in cardiology: A peek at the future and the role of ChatGPT in cardiology practice. J. Cardiovasc. Med. 2024, 25, 766. [Google Scholar] [CrossRef] [PubMed]
Variable | All (N = 214) | With P/LP Variants (N = 92) | Without P/LP Variants (N = 122) | p Value |
---|---|---|---|---|
Female sex, n (%) | 90 (42.1%) | 38 (41.3%) | 52 (42.6%) | 0.847 |
Age at onset of symptoms (years) | 50.0 (37.0–61.0) | 41.5 (31.0–56.0) | 52.5 (45.0–63.0) | <0.001 |
Age at HCM diagnosis (years) | 52.0 (38.0–62.0) | 43.5 (32.3–58.0) | 54.0 (45.8–65.0) | <0.001 |
Septal LV hypertrophy, n (%) | 180 (84.1%) | 85 (92.4%) | 95 (77.9%) | 0.004 |
Asymmetric LV hypertrophy, n (%) | 200 (93.5%) | 91 (98.9%) | 109 (89.3%) | 0.005 |
LVOT obstruction, n (%) | 80 (37.4%) | 30 (32.6%) | 50 (41.0%) | 0.210 |
LV apical aneurism, n (%) | 9 (4.2%) | 2 (2.2%) | 7 (5.7%) | 0.306 |
5-year HCM SCD risk score at primary evaluation | 2.2 (1.7–3.2) | 2.7 (1.9–3.8) | 1.9 (1.5–2.6) | <0.001 |
Family history of HCM, n (%) | 23 (10.7%) | 19 (20.7%) | 4 (3.3%) | <0.001 |
Family history of SCD, n (%) | 29 (13.6%) | 18 (19.6%) | 11 (9.0%) | 0.026 |
Primary arterial hypertension, n (%) | 150 (70.1%) | 51 (55.4%) | 99 (81.1%) | <0.001 |
Coronary arterial disease, n (%) | 39 (18.2%) | 8 (8.7%) | 31 (25.4%) | 0.002 |
Dyslipidaemia, n (%) | 117 (54.7%) | 41 (44.6%) | 76 (62.3%) | 0.010 |
Diabetes, n (%) | 20 (9.3%) | 4 (4.3%) | 16 (13.1%) | 0.029 |
NYHA class, n (%) | ||||
I | 21 (9.8%) | 10 (10.9%) | 11 (9.0%) | 0.903 |
II | 75 (35.0%) | 32 (34.8%) | 43 (35.2%) | |
III | 51 (23.8%) | 20 (21.7%) | 31 (25.4%) | |
ECG | ||||
Signs of LV hypertrophy, n (%) 1 | 158 (74.5%) | 60 (66.7%) | 98 (80.3%) | 0.024 |
Negative T waves in lateral leads, n (%) 2 | 129 (60.6%) | 40 (44.0%) | 89 (73.0%) | <0.001 |
No repolarization abnormalities, n (%) 2 | 71 (33.3%) | 43 (47.3%) | 28 (23.0%) | <0.001 |
TTE | ||||
Maximal LV wall thickness (mm) | 17.0 (15.0–20.0) | 17.5 (15.0–21.0) | 17.0 (15.0–19.0) | 0.009 |
LVdd (cm) | 4.8 ± 0.6 | 4.7 ± 0.6 | 5.0 ± 0.6 | 0.002 |
LA size (cm) | 4.3 (3.8–4.7) | 4.2 (3.7–4.6) | 4.3 (4.0–4.8) | 0.072 |
CMRi | ||||
LVEF (%) 3 | 72.0 (63.0–77.0) | 71.0 (63.5–76.0) | 72.0 (61.5–78.0) | 0.679 |
Maximal LV wall thickness (mm) 3 | 19.0 (17.0–22.0) | 21.0 (18.0–23.0) | 18.0 (16.0–20.0) | <0.001 |
Myocardial mass index (g/m2) 4 | 90 (74.0–104.5) | 86.5 (73.0–103.0) | 91.0 (75.0–109.0) | 0.161 |
LGE present, n (%) 3 | 161 (88.0%) | 77 (91.7%) | 84 (84.8%) | 0.158 |
LGE present in septum, n (%) 3 | 94 (51.1%) | 50 (59.5%) | 44 (44.0%) | 0.036 |
Follow-up and outcomes | ||||
Duration of follow-up (years) | 4.2 (1.6–6.8) | 4.5 (1.9–8.6) | 3.7 (1.1–5.9) | 0.011 |
5-year HCM SCD risk score during follow-up | 2.3 (1.7–3.6) | 2.8 (1.9–4.6) | 2.0 (1.5–3.4) | <0.001 |
Septal myectomy, n (%) | 10 (4.7%) | 5 (5.4%) | 5 (4.1%) | 0.748 |
Alcohol septal ablation, n (%) | 17 (7.9%) | 6 (6.5%) | 11 (9.0%) | 0.504 |
Indication for ICD implantation, n (%) | 59 (27.6%) | 36 (39.1%) | 23 (18.9%) | 0.001 |
Pacemaker implantation, n (%) | 13 (6.1%) | 3 (3.3%) | 10 (8.2%) | 0.135 |
Heart transplantation or LV assisted device implantation, n (%) | 3 (1.4%) | 3 (3.3%) | 0 (0.0%) | 0.078 |
Atrial fibrillation, n (%) | 62 (29.0%) | 27 (29.3%) | 35 (28.7%) | 0.916 |
Ventricular tachycardia, n (%) | 43 (20.1%) | 23 (25.0%) | 20 (16.4%) | 0.120 |
Stroke (%) | 12 (5.6%) | 3 (3.3%) | 9 (7.4%) | 0.195 |
All-cause mortality, n (%) | 3 (1.4%) | 3 (3.3%) | 0 (0.0%) | 0.078 |
Sustained advanced heart failure (NYHA functional class III/IV) | 53 (24.8%) | 22 (23.9%) | 31 (25.4%) | 0.802 |
Progression from NYHA functional class I/II to class III/IV | 31 (14.5%) | 13 (14.1%) | 18 (14.8%) | 0.898 |
Heart failure composite | 60 (28.0%) | 28 (30.4%) | 32 (26.2%) | 0.498 |
Overall composite | 97 (45.3%) | 44 (47.8%) | 53 (43.4%) | 0.524 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Žebrauskienė, D.; Sadauskienė, E.; Puronaitė, R.; Masiulienė, R.; Vaišnorė, R.; Bratčikovienė, N.; Valevičienė, N.; Barysienė, J.; Jakaitienė, A.; Preikšaitienė, E. Genotype-Phenotype Relationship in Hypertrophic Cardiomyopathy. Genes 2025, 16, 1090. https://doi.org/10.3390/genes16091090
Žebrauskienė D, Sadauskienė E, Puronaitė R, Masiulienė R, Vaišnorė R, Bratčikovienė N, Valevičienė N, Barysienė J, Jakaitienė A, Preikšaitienė E. Genotype-Phenotype Relationship in Hypertrophic Cardiomyopathy. Genes. 2025; 16(9):1090. https://doi.org/10.3390/genes16091090
Chicago/Turabian StyleŽebrauskienė, Dovilė, Eglė Sadauskienė, Roma Puronaitė, Rūta Masiulienė, Ramunė Vaišnorė, Nomeda Bratčikovienė, Nomeda Valevičienė, Jūratė Barysienė, Audronė Jakaitienė, and Eglė Preikšaitienė. 2025. "Genotype-Phenotype Relationship in Hypertrophic Cardiomyopathy" Genes 16, no. 9: 1090. https://doi.org/10.3390/genes16091090
APA StyleŽebrauskienė, D., Sadauskienė, E., Puronaitė, R., Masiulienė, R., Vaišnorė, R., Bratčikovienė, N., Valevičienė, N., Barysienė, J., Jakaitienė, A., & Preikšaitienė, E. (2025). Genotype-Phenotype Relationship in Hypertrophic Cardiomyopathy. Genes, 16(9), 1090. https://doi.org/10.3390/genes16091090