Insights into Genomic Patterns of Homozygosity in the Endangered Dülmen Wild Horse Population
Abstract
1. Introduction
2. Materials and Methods
2.1. Ethical Approval
2.2. Sample Collection and Genotype Data
2.3. Runs of Homozygosity and Fixation Index
2.4. Effective Population Size and ROH Islands
2.5. Statistical Analysis of ROH and Breeding Success Rates of Stallions
3. Results
3.1. ROH and Inbreeding Coefficients
3.2. Effective Population Size
3.3. ROH Islands and Consensus ROH
3.4. Inbreeding by Birth Years
3.5. Breeding Success Rates of Stallions and Inbreeding
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Opora, J. Die Wildbahngestüte Westfalens: Geschichte, Entwicklung und Zukunft. Ph.D. Thesis, Tierärztliche Hochschule Hannover, Hannover, Germany, 2006. [Google Scholar]
- Duderstadt, S.; Distl, O. Genetic Diversity and Population Structure of Dülmen Wild, Liebenthal and Polish Konik Horses in Comparison with Przewalski, Sorraia, German Draught and Riding Horses. Animals 2024, 14, 2221. [Google Scholar] [CrossRef]
- Duderstadt, S.; Distl, O. Influence of Sires on Population Substructure in Dülmen Wild Horses. Animals 2024, 14, 2904. [Google Scholar] [CrossRef]
- Fornal, A.; Kowalska, K.; Zabek, T.; Piestrzynska-Kajtoch, A.; Musiał, A.D.; Ropka-Molik, K. Genetic Diversity and Population Structure of Polish Konik Horse Based on Individuals from All the Male Founder Lines and Microsatellite Markers. Animals 2020, 10, 1569. [Google Scholar] [CrossRef]
- Fornal, A.; Kowalska, K.; Zabek, T.; Piestrzynska-Kajtoch, A.; Musiał, A.D.; Ropka-Molik, K. Genetic Variability and Population Structure of Polish Konik Horse Maternal Lines Based on Microsatellite Markers. Genes 2021, 12, 546. [Google Scholar] [CrossRef] [PubMed]
- Aberle, K.S.; Hamann, H.; Drögemuller, C.; Distl, O. Genetic diversity in German draught horse breeds compared with a group of primitive, riding and wild horses by means of microsatellite DNA markers. Anim. Genet. 2004, 35, 270–277. [Google Scholar] [CrossRef] [PubMed]
- Druml, T.; Curik, I.; Baumung, R.; Aberle, K.; Distl, O.; Sölkner, J. Individual-based assessment of population structure and admixture in Austrian, Croatian and German draught horses. Heredity 2007, 98, 114–122. [Google Scholar] [CrossRef] [PubMed]
- Howard, J.T.; Pryce, J.E.; Baes, C.; Maltecca, C. Invited review: Inbreeding in the genomics era: Inbreeding, inbreeding depression, and management of genomic variability. J. Dairy Sci. 2017, 100, 6009–6024. [Google Scholar] [CrossRef]
- Gurgul, A.; Jasielczuk, I.; Semik-Gurgul, E.; Pawlina-Tyszko, K.; Stefaniuk-Szmukier, M.; Szmatoła, T.; Polak, G.; Tomczyk-Wrona, I.; Bugno-Poniewierska, M. A genome-wide scan for diversifying selection signatures in selected horse breeds. PLoS ONE 2019, 14, e0210751. [Google Scholar] [CrossRef]
- Polak, G.; Gurgul, A.; Jasielczuk, I.; Szmatoła, T.; Krupiński, J.; Bugno-Poniewierska, M. Suitability of pedigree information and genomic methods for analyzing inbreeding of Polish cold-blooded horses covered by conservation programs. Genes 2021, 12, 429. [Google Scholar] [CrossRef] [PubMed]
- Kaminski, S.; Hering, D.M.; Jaworski, Z.; Zabolewicz, T.; Rusc, A.; Kaminski, S.; Hering, D.M.; Jaworski, Z.; Zabolewicz, T.; Rusc, A. Assessment of genomic inbreeding in Polish Konik horses. Pol. J. Vet. Sci. 2017, 20, 603–605. [Google Scholar] [CrossRef]
- Szmatoła, T.; Gurgul, A.; Jasielczuk, I.; Oclon, E.; Ropka-Molik, K.; Stefaniuk-Szmukier, M.; Polak, G.; Tomczyk-Wrona, I.; Bugno-Poniewierska, M. Assessment and distribution of runs of homozygosity in horse breeds representing different utility types. Animals 2022, 12, 3293. [Google Scholar] [CrossRef]
- Druml, T.; Neuditschko, M.; Grilz-Seger, G.; Horna, M.; Ricard, A.; Mesarič, M.; Cotman, M.; Pausch, H.; Brem, G. Population networks associated with runs of homozygosity reveal new insights into the breeding history of the Haflinger horse. J. Hered. 2018, 109, 384–392. [Google Scholar] [CrossRef]
- Grilz-Seger, G.; Neuditschko, M.; Ricard, A.; Velie, B.; Lindgren, G.; Mesarič, M.; Cotman, M.; Horna, M.; Dobretsberger, M.; Brem, G. Genome-wide homozygosity patterns and evidence for selection in a set of European and near eastern horse breeds. Genes 2019, 10, 491. [Google Scholar] [CrossRef]
- Kasarda, R.; Moravčíková, N.; Kadlečík, O.; Trakovická, A.; Halo, M.; Candrák, J. Level of inbreeding in Norik of Muran horse: Pedigree vs. genomic data. Acta Univ. Agric. Silvic. Mendel. Brun. 2019, 67, 1457–1463. [Google Scholar] [CrossRef]
- Mancin, E.; Ablondi, M.; Mantovani, R.; Pigozzi, G.; Sabbioni, A.; Sartori, C. Genetic variability in the Italian heavy draught horse from pedigree data and genomic information. Animals 2020, 10, 1310. [Google Scholar] [CrossRef] [PubMed]
- Gmel, A.I.; Mikko, S.; Ricard, A.; Velie, B.D.; Gerber, V.; Hamilton, N.A.; Neuditschko, M. Using high-density SNP data to unravel the origin of the Franches-Montagnes horse breed. Genet. Sel. Evol. 2024, 56, 53. [Google Scholar] [CrossRef]
- Schurink, A.; Shrestha, M.; Eriksson, S.; Bosse, M.; Bovenhuis, H.; Back, W.; Johansson, A.M.; Ducro, B.J. The genomic makeup of nine horse populations sampled in the Netherlands. Genes 2019, 10, 480. [Google Scholar] [CrossRef]
- Grilz-Seger, G.; Druml, T.; Neuditschko, M.; Dobretsberger, M.; Horna, M.; Brem, G. High-resolution population structure and runs of homozygosity reveal the genetic architecture of complex traits in the Lipizzan horse. BMC Genom. 2019, 20, 174. [Google Scholar] [CrossRef] [PubMed]
- Curik, I.; Ferenčaković, M.; Sölkner, J. Inbreeding and runs of homozygosity: A possible solution to an old problem. Livest. Sci. 2014, 166, 26–34. [Google Scholar] [CrossRef]
- Ablondi, M.; Dadousis, C.; Vasini, M.; Eriksson, S.; Mikko, S.; Sabbioni, A. Genetic diversity and signatures of selection in a native italian horse breed based on SNP data. Animals 2020, 10, 1005. [Google Scholar] [CrossRef]
- Grilz-Seger, G.; Druml, T.; Neuditschko, M.; Mesarič, M.; Cotman, M.; Brem, G. Analysis of ROH patterns in the Noriker horse breed reveals signatures of selection for coat color and body size. Anim. Genet. 2019, 50, 334–346. [Google Scholar] [CrossRef]
- Metzger, J.; Karwath, M.; Tonda, R.; Beltran, S.; Águeda, L.; Gut, M.; Gut, I.G.; Distl, O. Runs of homozygosity reveal signatures of positive selection for reproduction traits in breed and non-breed horses. BMC Genom. 2015, 16, 764. [Google Scholar] [CrossRef]
- Sigurðardóttir, H.; Ablondi, M.; Kristjansson, T.; Lindgren, G.; Eriksson, S. Genetic diversity and signatures of selection in Icelandic horses and Exmoor ponies. BMC Genom. 2024, 25, 772. [Google Scholar] [PubMed]
- Ablondi, M.; Viklund, Å.; Lindgren, G.; Eriksson, S.; Mikko, S. Signatures of selection in the genome of Swedish warmblood horses selected for sport performance. BMC Genom. 2019, 20, 717. [Google Scholar] [CrossRef]
- Nolte, W.; Thaller, G.; Kuehn, C. Selection signatures in four German warmblood horse breeds: Tracing breeding history in the modern sport horse. PLoS ONE 2019, 14, e0215913. [Google Scholar] [CrossRef] [PubMed]
- Sievers, J.; Distl, O. Genomic patterns of Homozygosity and Genetic Diversity in the Rhenish German Draught Horse. Genes 2025, 16, 327. [Google Scholar] [CrossRef]
- Purcell, S.; Neale, B.; Todd-Brown, K.; Thomas, L.; Ferreira, M.A.; Bender, D.; Maller, J.; Sklar, P.; De Bakker, P.I.; Daly, M.J. PLINK: A tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 2007, 81, 559–575. [Google Scholar] [CrossRef]
- Meyermans, R.; Gorssen, W.; Buys, N.; Janssens, S. How to study runs of homozygosity using PLINK? A guide for analyzing medium density SNP data in livestock and pet species. BMC Genom. 2020, 21, 94. [Google Scholar] [CrossRef] [PubMed]
- Lencz, T.; Lambert, C.; DeRosse, P.; Burdick, K.E.; Morgan, T.V.; Kane, J.M.; Kucherlapati, R.; Malhotra, A.K. Runs of homozygosity reveal highly penetrant recessive loci in schizophrenia. Proc. Natl. Acad. Sci. USA 2007, 104, 19942–19947. [Google Scholar] [CrossRef]
- Purfield, D.C.; Berry, D.P.; McParland, S.; Bradley, D.G. Runs of homozygosity and population history in cattle. BMC Genet. 2012, 13, 70. [Google Scholar] [CrossRef]
- McQuillan, R.; Leutenegger, A.-L.; Abdel-Rahman, R.; Franklin, C.S.; Pericic, M.; Barac-Lauc, L.; Smolej-Narancic, N.; Janicijevic, B.; Polasek, O.; Tenesa, A. Runs of homozygosity in European populations. Am. J. Hum. Genet. 2008, 83, 359–372. [Google Scholar] [CrossRef] [PubMed]
- Sved, J. Linkage disequilibrium and homozygosity of chromosome segments in finite populations. Theor. Popul. Biol. 1971, 2, 125–141. [Google Scholar] [CrossRef]
- Gutiérrez, J.; Cervantes, I.; Goyache, F. Improving the estimation of realized effective population sizes in farm animals. J. Anim. Breed. Genet. 2009, 126, 327–332. [Google Scholar] [CrossRef]
- Doekes, H.P.; Curik, I.; Nagy, I.; Farkas, J.; Kövér, G.; Windig, J.J. Revised calculation of Kalinowski’s ancestral and new inbreeding coefficients. Diversity 2020, 12, 155. [Google Scholar] [CrossRef]
- Harrison, P.W.; Amode, M.R.; Austine-Orimoloye, O.; Azov, A.G.; Barba, M.; Barnes, I.; Becker, A.; Bennett, R.; Berry, A.; Bhai, J. Ensembl 2024. Nucleic Acids Res. 2024, 52, D891–D899. [Google Scholar] [CrossRef]
- Thomas, P.D.; Ebert, D.; Muruganujan, A.; Mushayahama, T.; Albou, L.P.; Mi, H. PANTHER: Making genome-scale phylogenetics accessible to all. Protein Sci. 2022, 31, 8–22. [Google Scholar] [CrossRef]
- Mi, H.; Muruganujan, A.; Huang, X.; Ebert, D.; Mills, C.; Guo, X.; Thomas, P.D. Protocol Update for large-scale genome and gene function analysis with the PANTHER classification system (v.14.0). Nat. Protoc. 2019, 14, 703–721. [Google Scholar] [CrossRef] [PubMed]
- Howard, J.T.; Tiezzi, F.; Huang, Y.; Gray, K.A.; Maltecca, C. A heuristic method to identify runs of homozygosity associated with reduced performance in livestock. J. Anim. Sci. 2017, 95, 4318–4332. [Google Scholar] [CrossRef] [PubMed]
- Baes, C.F.; Makanjuola, B.O.; Miglior, F.; Marras, G.; Howard, J.T.; Fleming, A.; Maltecca, C. Symposium review: The genomic architecture of inbreeding: How homozygosity affects health and performance. J. Dairy Sci. 2019, 102, 2807–2817. [Google Scholar] [CrossRef]
- Tian, X.; Pascal, G.; Monget, P. Evolution and functional divergence of NLRP genes in mammalian reproductive systems. BMC Evol. Biol. 2009, 9, 202. [Google Scholar] [CrossRef]
- Tong, Z.-B.; Gold, L.; Pfeifer, K.E.; Dorward, H.; Lee, E.; Bondy, C.A.; Dean, J.; Nelson, L.M. Mater, a maternal effect gene required for early embryonic development in mice. Nat. Genet. 2000, 26, 267–268. [Google Scholar] [CrossRef] [PubMed]
- Peng, H.; Liu, F.; Li, W.; Zhang, W. Knockdown of NLRP5 arrests early embryogenesis in sows. Anim. Reprod. Sci. 2015, 163, 151–156. [Google Scholar] [CrossRef] [PubMed]
- Romar, R.; De Santis, T.; Papillier, P.; Perreau, C.; Thélie, A.; Dell’Aquila, M.E.; Mermillod, P.; Dalbiès-Tran, R. Expression of maternal transcripts during bovine oocyte in vitro maturation is affected by donor age. Reprod. Domest. Anim. 2011, 46, e23–e30. [Google Scholar] [CrossRef] [PubMed]
- Ponsuksili, S.; Brunner, R.M.; Goldammer, T.; Kühn, C.; Walz, C.; Chomdej, S.; Tesfaye, D.; Schellander, K.; Wimmers, K.; Schwerin, M. Bovine NALP5, NALP8, and NALP9 genes: Assignment to a QTL region and the expression in adult tissues, oocytes, and preimplantation embryos. Biol. Reprod. 2006, 74, 577–584. [Google Scholar] [CrossRef]
- Cassandri, M.; Smirnov, A.; Novelli, F.; Pitolli, C.; Agostini, M.; Malewicz, M.; Melino, G.; Raschellà, G. Zinc-finger proteins in health and disease. Cell Death Discov. 2017, 3, 17071. [Google Scholar] [CrossRef]
- Emerson, R.O.; Thomas, J.H. Adaptive evolution in zinc finger transcription factors. PLoS Genet. 2009, 5, e1000325. [Google Scholar] [CrossRef]
- Kamaliyan, Z.; Clarke, T.L. Zinc finger proteins: Guardians of genome stability. Front. Cell Dev. Biol. 2024, 12, 1448789. [Google Scholar] [CrossRef] [PubMed]
Year of Siring | Birth Year | Year of Auction | Stallions | Mares | Males Genotyped | Males at Auctions |
---|---|---|---|---|---|---|
2011 | 2012 | 2013 | 2 | 238 | 25 | 46 |
2012 | 2013 | 2014 | 3 | 371 | 12 | 27 |
2013 | 2014 | 2015 | 2 | 389 | 15 | 33 |
2014 | 2015 | 2016 | 2 | 389 | 25 | 45 |
2015 | 2016 | 2017 | 2 | 429 | 28 | 28 |
2016 | 2017 | 2018 | 2 | 430 | 35 | 35 |
2017 | 2018 | 2019 | 2 | 389 | 24 | 24 |
2018 | 2019 | 2020 | 2 | 374 | 31 | 31 |
2019 | 2020 | 2021 | 2 | 368 | 41 | 41 |
2020 | 2021 | 2022 | 2 | 404 | 37 | 37 |
2021 | 2022 | 2023 | 2 | 374 | 34 | 34 |
2022 | 2023 | 2024 | 3 | 376 | 30 | 30 |
Total | 14 | 337 | 411 |
ROH Items | Mean | SD | 95% CI | 75% CI | Min | Max |
---|---|---|---|---|---|---|
Average number of ROH | 27.96 | 7.692 | 16–41 | 22–33 | 7 | 52 |
Average ROH length (Mb) | 8.237 | 2.573 | 4.488–13.105 | 6.610–9.773 | 2.884 | 22.208 |
Combined ROH length (Mb) | 239.614 | 120.222 | 82.586–471.985 | 151.183–306.979 | 20.188 | 777.280 |
Inbreeding Coefficients | Mean | SD | Median | Mode | 95% CI | 75% CI |
---|---|---|---|---|---|---|
FIS | −0.023 | 0.064 | −0.031 | −0.089 | −0.105–0.106 | −0.065–0.012 |
FHOM | 0.694 | 0.019 | 0.691 | 0.682 | 0.668–0.742 | 0.680–0.703 |
FROH | 0.107 | 0.030 | 0.098 | - | 0.037–0.211 | 0.068–0.137 |
FHAT1 | −0.121 | 0.104 | −0.123 | - | −0.270–0.051 | −0.190–0.060 |
FHAT2 | −0.018 | 0.098 | −0.007 | - | −0.165–0.121 | −0.073–0.044 |
FHAT3 | −0.018 | 0.045 | −0.022 | - | −0.080–0.068 | −0.048–0.005 |
FROH>4 | 0.093 | 0.054 | 0.083 | - | 0.023–0.197 | 0.053–0.121 |
FROH>8 | 0.076 | 0.050 | 0.066 | - | 0.014–0.178 | 0.040–0.104 |
FROH>16 | 0.049 | 0.042 | 0.038 | - | 0.000–0.135 | 0.000–0.071 |
FROH>32 | 0.020 | 0.029 | 0.014 | - | 0.000–0.084 | 0.000–0.030 |
FROH>2.25 | 0.103 | 0.054 | 0.093 | - | 0.033–0.207 | 0.063–0.133 |
FROH>3.33 | 0.096 | 0.054 | 0.086 | - | 0.027–0.203 | 0.056–0.124 |
FROH>5 | 0.088 | 0.052 | 0.079 | - | 0.022–0.187 | 0.051–0.117 |
FROH>10 | 0.068 | 0.049 | 0.058 | - | 0.007–0.168 | 0.034–0.093 |
FROH>16.67 | 0.047 | 0.042 | 0.037 | 0.000–0.134 | 0.018–0.067 | |
FROH>25 | 0.030 | 0.035 | 0.016 | 0.000–0.097 | 0.000–0.045 | |
FROH>33.33 | 0.019 | 0.029 | 0.000 | 0.000–0.081 | 0.000–0.025 | |
FROH-2–4 | 0.013 | 0.004 | 0.013 | - | 0.007–0.021 | 0.011–0.016 |
FROH-4–8 | 0.016 | 0.008 | 0.016 | - | 0.005–0.030 | 0.010–0.022 |
FROH-8–16 | 0.027 | 0.015 | 0.026 | - | 0.004–0.055 | 0.016–0.036 |
FROH-16–32 | 0.029 | 0.021 | 0.026 | - | 0.000–0.070 | 0.014–0.042 |
ECA | Start Position (bp) | End Position (bp) | Number of SNPs | Number of Genes |
---|---|---|---|---|
1 | 109,383,207 | 112,700,094 | 75 | 13 |
1 | 146,406,089 | 148,462,968 | 26 | 37 |
4 | 74,950,902 | 75,460,147 | 42 | 4 |
5 | 44,433,546 | 47,256,602 | 78 | 32 |
5 | 48,223,003 | 51,341,691 | 70 | 29 |
7 | 49,803,523 | 51,698,577 | 63 | 13 |
9 | 35,261,007 | 36,940,286 | 39 | 7 |
10 | 24,145,681 | 26,370,021 | 62 | 61 |
10 | 27,584,754 | 28,501,938 | 29 | 14 |
10 | 68,150,825 | 72,903,290 | 142 | 16 |
Inbreeding | Pearson Correlation | Regression Cofficient (b) | bSE | p-Value |
---|---|---|---|---|
FIS-stallion | −0.293 | −1.225 | 0.971 | 0.2240 |
FROH-stallion | −0.282 | −1.422 | 1.173 | 0.2421 |
FROH>4-stallion | −0.294 | −1.563 | 1.231 | 0.2210 |
FROH>8-stallion | −0.284 | −1.626 | 1.330 | 0.2384 |
FROH>16-stallion | −0.335 | −2.814 | 1.920 | 0.1609 |
FROH>32-stallion | −0.427 | −8.915 | 4.574 | 0.0680 |
FROH>10-stallion | −0.265 | −1.700 | 1.498 | 0.2725 |
FROH>16.67-stallion | −0.331 | −2.779 | 1.924 | 0.1667 |
FROH>25-stallion | −0.320 | −4.135 | 2.965 | 0.1811 |
FROH>33.33-stallion | −0.427 | −8.915 | 4.574 | 0.0680 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Duderstadt, S.; Distl, O. Insights into Genomic Patterns of Homozygosity in the Endangered Dülmen Wild Horse Population. Genes 2025, 16, 1054. https://doi.org/10.3390/genes16091054
Duderstadt S, Distl O. Insights into Genomic Patterns of Homozygosity in the Endangered Dülmen Wild Horse Population. Genes. 2025; 16(9):1054. https://doi.org/10.3390/genes16091054
Chicago/Turabian StyleDuderstadt, Silke, and Ottmar Distl. 2025. "Insights into Genomic Patterns of Homozygosity in the Endangered Dülmen Wild Horse Population" Genes 16, no. 9: 1054. https://doi.org/10.3390/genes16091054
APA StyleDuderstadt, S., & Distl, O. (2025). Insights into Genomic Patterns of Homozygosity in the Endangered Dülmen Wild Horse Population. Genes, 16(9), 1054. https://doi.org/10.3390/genes16091054