Identification and Functional Speculation of Genes Related to Sex Pheromone Synthesis Expressed in the Gonads of Female Gynaephora qinghaiensis (Lepidoptera: Lymantriidae)
Abstract
1. Introduction
2. Materials and Methods
2.1. Insects
2.2. Total RNA Extraction
2.3. Library Construction and Quality Inspection
2.4. Transcriptome Data Assembly and Gene Annotation
2.5. Bioinformatics Analysis
2.6. RT-qPCR Detection of Target Genes
2.7. Primer Design and Synthesis
2.8. Data Analysis
3. Results
3.1. Transcriptome Sequence Assembly
3.2. Unigene Function Annotation
3.3. Bioinformatics Analysis
3.4. Physicochemical Properties of Genes
3.5. Phylogenetic Analysis
3.6. Analysis of Tissue Expression Profiles
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lucchi, A.; Sambado, P.; Juan Royo, A.B.; Bagnoli, B.; Conte, G.; Benelli, G. Disrupting mating of Lobesia botrana using sex pheromone aerosol devices. Environ. Sci. Pollut. Res. 2018, 25, 22196–22204. [Google Scholar] [CrossRef]
- Liang, Y.Y.; Luo, M.; Fu, X.G.; Zheng, L.X.; Wei, H.Y. Mating disruption of Chilo suppressalis from sex pheromone of another pyralid rice pest Cnaphalocrocis medinalis (Lepidoptera: Pyralidae). J. Insect Sci. 2020, 20, 19. [Google Scholar] [CrossRef]
- Hoshi, H.; Takabe, M.; Nakamuta, K. Mating disruption of a carpenter moth, Cossus insularis (Lepidoptera: Cossidae) in apple orchards with synthetic sex pheromone, and registration of the pheromone as an agrochemical. J. Chem. Ecol. 2016, 42, 606–611. [Google Scholar] [CrossRef]
- Wyatt, T.D. Fifty years of pheromones. Nature 2009, 457, 262–263. [Google Scholar] [CrossRef] [PubMed]
- Raina, A.K. Neuroendocrine control of sex pheromone biosynthesis in Lepidoptera. Annu. Rev. Entomol. 1993, 38, 329–349. [Google Scholar] [CrossRef] [PubMed]
- Zhu, S.Y.; Shaheen, T.Y.; Li, R.; Pei, P.; Zhao, X.; Li, Y.; Li, F.F.; Tang, G.G. Transcriptome analysis and identification of sex pheromone biosynthesis and transport related genes in Atrijuglans hetaohei (Lepidoptera: Gelechioidea). Insect Mol. Biol. 2021, 31, 273–285. [Google Scholar] [CrossRef] [PubMed]
- He, P.; Zhang, Y.F.; Hong, D.Y.; Wang, J.; Wang, X.L.; Zuo, L.H.; Tang, X.F.; Xu, W.M.; He, M. A reference gene set for sex pheromone biosynthesis and degradation genes from the diamondback moth, Plutella xylostella, based on genome and transcriptome digital gene expression analyses. BMC Genom. 2017, 18, 219. [Google Scholar] [CrossRef]
- Zhang, Y.N.; Zhu, X.Y.; Fang, L.P.; He, P.; Wang, Z.Q.; Chen, G.; Sun, L.; Ye, Z.F.; Deng, D.G.; Li, J.B. Identification and expression profiles of sex pheromone biosynthesis and transport related genes in Spodoptera litura. PLoS ONE 2015, 10, e0140019. [Google Scholar] [CrossRef]
- Gu, S.H.; Wu, K.M.; Guo, Y.Y.; Pickett, J.A.; Field, L.M.; Zhou, J.J.; Zhang, Y.J. Identification of genes expressed in the sex pheromone gland of the black cutworm Agrotis ipsilon with putative roles in sex pheromone biosynthesis and transport. BMC Genom. 2013, 14, 636. [Google Scholar] [CrossRef]
- Li, D.M.; Li, J.; Li, L.C. Study of Sex Pheromones in Illiberis pruni III: Observation of the morphological structure of sex pheromone secretion glands. Acta Agric. Boreali-Sin. 1997, 113–117. [Google Scholar]
- Yang, M.W.; Dong, S.L. A review of the male moth sex pheromone and its roles in the sex communication. J. Biosaf. 2006, 3, 179–186. [Google Scholar]
- Butenandt, V. Uber den sexsual-lockstoff des seidenspinners Bombyx mori. Reindarstellung und konstitution. Z. Naturforschung B 1959, 14, 283. [Google Scholar] [CrossRef]
- Matsumoto, S.; Ozawa, R.; Uchiumi, K.; Kurihara, M.; Mitsui, T. Intracellular signal transduction of PBAN action in the common cutworm, Spodoptera litura: Effects of pharmacological agents on sex pheromone production in vitro. Insect Biochem. Mol. Biol. 1995, 25, 1055–1059. [Google Scholar] [CrossRef]
- Luo, J.; Liu, X.Y.; Liu, L.; Zhang, P.Y.; Chen, L.J.; Gao, Q.; Ma, W.H.; Chen, L.Z.; Lei, C.L. De novo analysis of the Adelphocoris suturalis Jakovlev metathoracic scent glands transcriptome and expression patterns of pheromone biosynthesis-related genes. Gene 2014, 551, 271–278. [Google Scholar] [CrossRef]
- Tamaki, Y.Z. Z-11-hexadecenal and Z-11-hexadecenyl acteact: Sex pheromone components of the diamondback moth (Lepideptera: Plutellidae). Appl. Entomol. Zool. 1977, 12, 208–210. [Google Scholar] [CrossRef]
- Môttus, E.; Nômm, V.; Williams, I.H.; Liblikas, I. Optimization of Pheromone Dispensers for Diamondback Moth Plutella xylostella. J. Chem. Ecol. 1997, 23, 2145–2159. [Google Scholar] [CrossRef]
- Chisholm, M.D.; Steck, W.F.; Underhill, E.W.; Palaniswamy, P. Field trapping of diamondback moth Plutella xylostella using an improved four-component sex attractant blend. J. Chem. Ecol. 1983, 9, 113–118. [Google Scholar] [CrossRef]
- Koshihara, T.; Yamada, H. Attractant activity of the female Sex pheromone of diamondback moth, Plutella xylostella (L.), and analogue. Jpn. J. Appl. Entomol. Zool. 1980, 24, 6–12. [Google Scholar] [CrossRef]
- Ando, T.; Koshihara, T.; Yamada, H.; Vu, M.H.; Takahashi, N.; Tamaki, Y. Electroantennogram activities of Sex pheromone analogues and their synergistic effect on field attraction in the diamondback moth. Appl. Entomol. Zool. 1979, 14, 362–364. [Google Scholar] [CrossRef]
- Hao, X.Y.; Zhang, J.T.; Wang, R.; Cao, T.W.; Li, Y.L. Component Analysis of the Sex Pheromone Gland Secretion for Atrijuglans hetaohei Yang. J. Shanxi Agric. Univ. (Nat. Sci. Ed.) 2007, 27, 409–411. [Google Scholar]
- Jurenka, R. Insect pheromone biosynthesis. Top. Curr. Chem. 2004, 239, 97–132. [Google Scholar] [PubMed]
- Jurenka, R.A.; Subchev, M.; Abad, J.L.; Choi, M.Y.; Fabrias, G. Sex pheromone biosynthetic pathway for disparlure in the gypsy moth, Lymantria dispar. Proc. Natl. Acad. Sci. USA 2003, 100, 809–814. [Google Scholar] [CrossRef] [PubMed]
- Hagström, Å.K.; Albre, J.; Tooman, L.K.; Thirmawithana, A.H.; Corcoran, J.; Löfstedt, C.; Newcomb, R.D. A novel fatty acyl desaturase from the pheromone glands of Ctenopseustis obliquana and C. herana with specific Z5-desaturase activity on myristic acid. J. Chem. Ecol. 2014, 40, 63–70. [Google Scholar] [CrossRef] [PubMed]
- Matsumoto, S.; Ohnishi, A.; Lee, J.M.; Hull, J.J. Unraveling the pheromone biosynthesis activating neu ropeptide (PBAN) signal transduction cascade that regulates sex pheromone production in moths. Vitam. Horm. 2010, 83, 425–445. [Google Scholar]
- Roelofs, W.L.; Rooney, A.P. Molecular genetics and evolution of pheromone biosynthesis in Lepidoptera. Proc. Natl. Acad. Sci. USA 2003, 100, 9179–9184. [Google Scholar] [CrossRef]
- Knipple, D.C.; Rosenfield, C.L.; Nielsen, R.; You, K.M.; Jeong, S.E. Evolution of the integral membrane desaturase gene family in moths and flies. Genetics 2002, 162, 1737–1752. [Google Scholar] [CrossRef]
- Chen, D.S.; Dai, J.Q.; Han, S.C. Identification of the pheromone biosynthesis genes from the sex pheromone gland transcriptome of the diamondback moth, Plutella xylostella. Sci. Rep. 2017, 7, 16255. [Google Scholar] [CrossRef]
- Grapputo, A.; Thrimawithana, A.H.; Steinwender, B.; Newcomb, R.D. Differential gene expression in the evolution of sex pheromone communication in New Zealand’s endemic leafroller moths of the genera Ctenopseustis and Planotortrix. BMC Genom. 2018, 19, 94. [Google Scholar] [CrossRef]
- Yang, Y.; Tao, J.; Zong, S. Identification of putative Type-I sex pheromone biosynthesis-related genes expressed in the female pheromone gland of Streltzoviella insularis. PLoS ONE 2020, 15, e0227666. [Google Scholar] [CrossRef]
- Yan, Q.; Yang, T.T.; Dong, S.L. Review of research on the hybrid pheromone systemin lepidopteran insects. Chin. J. Appl. Entomol. 2023, 60, 323–334. [Google Scholar]
- Yu, R.; Yang, S.; Zhao, Y.H.; Ji, L.L. Overview Of Pheromone Pesticide Registration in China and Abroad and Policy Suggestions. Pestic. Sci. Adm. 2019, 40, 6–9+20. [Google Scholar]
- Nan, Y.B.; Liu, Z.L.; Kou, G.X.; Wang, K.X.; Li, R.R.; Zhou, Y.T. Observations on the Ultrastructure of adult Gynaephora qinghaiensis antennal sensilla and tissue expression analysis of GqinOBPs. Plant Prot. 2024, 50, 15–25+71. [Google Scholar]
- Yang, A.L. Grassland caterpillars in some areas of Qinghai in Tibet are seriously infested. Pratacult. Sci. 2002, 5, 73. [Google Scholar]
- Wang, H.Z.; Zhong, X.; Lin, H.F.; Li, S.S.; Yi, J.Q.; Zhang, G.R.; Liu, X.; Gu, L. Genetic Diversity and Population Structure of Gynaephora qinghaiensis in Yushu Prefecture, Qinghai Province Based on the Mitochondrial COI Gene. Biochem. Genet. 2021, 59, 1396–1412. [Google Scholar] [CrossRef]
- Cao, J.; Xu, H.; Pan, X.B.; Rong, Y.P. Study on the Status of Invasive Plants in Chinese Grassland. Acta Agrestia Sin. 2020, 1, 1–11. [Google Scholar]
- Wang, X.L.; Zhang, W.G. Feeding Habit and Spatial Pattern of Gynaephora alpherakii Larvae. Acta Agrestia Sin. 2006, 14, 84–88. [Google Scholar]
- Nan, Y.B.; Tang, D.J.; Yang, Y.C.; Kong, Y.S.; Zhou, Y.T. Identification and Expression Profiling of Chemoreceptor protein Genes in Gynaephora qinghaiensis (Lepidoptera: Lymantriidae). Acta Agrestia Sin. 2023, 31, 3299–3309. [Google Scholar]
- Zhang, Q.L.; Yuan, M.L. Current status and prospect of Gynaephora qinghaiensis research. Pratacult. Sci. 2013, 30, 638–646. [Google Scholar]
- Wall, C.; Garthwaite, D.G.; Smyth, J.A.; Sherwood, A.J. The efficacy of sex-attractant monitoring for the pea moth, Cydia nigricana, in England, 1980–1985. Ann. Appl. Biol. 2010, 110, 223–229. [Google Scholar] [CrossRef]
- Tamaki, Y.; Noguchi, H.; Sugie, H.; Sato, R.; Kariya, A. Minor component of the female sex-attractant pheromone of smaller tea tortrix moth (Lepidoptera: Tortricidae): Isolation and identification. Appl. Entomol. Zool. 1979, 14, 101–113. [Google Scholar] [CrossRef]
- Bao, G.S.; Wang, H.S. Effects of female’s sex pheromone of Gynaephora alpherakii on attracting male moth by extracting four organic solvents. Chin. Qinghai J. Anim. Vet. Sci. 2015, 45, 10–12. [Google Scholar]
- Shen, N.Y.; Zen, L.; Zhang, X.C.; Shan, Z.; Zhou, Z.R.; Yan, S.S.; Gao, X.C. A study of sex pheromones in Gynaephora qinghaiensis. Chin. J. Grassl. 1983, 1, 43–49. [Google Scholar]
- Batista-Pereira, L.G.; Santangelo, E.M.; Stein, K.; Unelius, C.R.; Eiras, A.E.; Corrêa, A.G. Electrophysiological studies and identification of possible sex pheromone components of Brazilian populations of the sugarcane borer, Diatraea saccharalis. Z. Naturforschung C 2002, 57, 753–758. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Zhang, Q.L.; Wang, X.T.; Yang, X.Z.; Li, X.P.; Yuan, M.L. Selection of reference genes for qRT-PCR and expression analysis of high-altitude-related genes in grassland caterpillars (Lepidoptera: Erebidae: Gynaephora) along an altitude gradient. Ecol. Evol. 2017, 7, 9054–9065. [Google Scholar] [CrossRef]
- Yang, P.; Xie, S.A.; Gon, X.F.; Che, X.R.; Wang, Y.L.; Lv, S.J. Analysis of the transcriptome and chemoreception-related genes of Agrilus zanthoxylumi (Coleoptera: Buprestidae). Acta Entomol. Sin. 2019, 62, 547–560. [Google Scholar]
- Pape, M.E.; Lopez, C.F.; Kim, K.H. Physiological regulation of acetyl-CoA carboxylase gene expression: Effects of diet, diabetes, and lactation on acetyl-CoA carboxylase mRNA. Arch. Biochem. Biophys. 1988, 267, 104–109. [Google Scholar] [CrossRef]
- Volpe, J.J.; Vagelos, P.R. Saturated fatty acid biosynthesis and its regulation. Annu. Rev. Biochem. 1973, 42, 21–60. [Google Scholar] [CrossRef]
- Tang, J.D.; Charlton, R.E.; Jurenka, R.A.; Wolf, W.A.; Phelan, P.L.; Sreng, L.; Roelofs, W.L. Regulation of pheromone biosynthesis by a brain hormone in two moth species. Proc. Natl. Acad. Sci. USA 1989, 86, 1806–1810. [Google Scholar] [CrossRef]
- Bjostad, L.B.; Roelofs, W.L. Sex pheromone biosynthesis from radiolabeled fatty acids in the redbanded leafroller moth. J. Biol. Chem. 1981, 256, 7936–7940. [Google Scholar] [CrossRef]
- Moto, K.; Yoshiga, T.; Yamamoto, M.; Takahashi, S.; Okano, K.; Ando, T.; Nakata, T.; Matsumoto, S. Pheromone gland-specific fatty-acyl reductase of the silkmoth, Bombyx mori. Proc. Natl. Acad. Sci. USA 2003, 100, 9156–9161. [Google Scholar] [CrossRef]
- Beekwilder, J.; Alvarez-Huerta, M.; Neef, E.; Verstappen, F.W.A.; Bouwmeester, H.J.; Aharoni, A. Functional characterization of enzymes forming volatile esters from strawberry and banana. Plant Physiol. 2004, 135, 1865–1878. [Google Scholar] [CrossRef]
- Kalscheuer, R.; Stoveken, T.; Luftmann, H.; Malkus, U.; Reichelt, R.; Steinbuchel, A. Neutral lipid biosynthesis in engineered Escherichia coli: Jojoba oil-like wax esters and fatty acid butyl esters. Appl. Environ. Microbiol. 2006, 72, 1373–1379. [Google Scholar] [CrossRef]
- Zhu, S.Y. Analysis of Genes Related to Sex Pheromone Biosynthesis and Transport in Atrijuglans hetaohei Yang. Ph.D. Thesis, Northwest A&F University, Xianyang, China, 2021; pp. 27–53. [Google Scholar]
- Cook, O.; Hildebrand, M. Enhancing LC-PUFA production in Thalassiosira pseudonana by overexpressing the endogenous fatty acid elongase genes. J. Appl. Phycol. 2016, 28, 897–905. [Google Scholar] [CrossRef]
- Morse, D.; Meighen, E.A. Pheromone biosynthesis: Enzymatic studies in lepidoptera. In Pheromone Biochemistry; Academic Press: Cambridge, MA, USA, 1987; pp. 121–158. [Google Scholar]
Sample | Read Sum | BaseSum (Gb) | GC (%) | N (%) | Q20 (%) | CycleQ20 (%) | Q30 (%) |
---|---|---|---|---|---|---|---|
X.1 | 25,560,576 | 7.719 | 39.6 | 0.01 | 98.56 | 100 | 96.14 |
X.2 | 24,505,823 | 7.400 | 39.28 | 0.01 | 98.67 | 100 | 96.42 |
X.3 | 25,499,053 | 7.700 | 39.64 | 0.01 | 98.57 | 100 | 96.21 |
Average | 25,188,484 | 7.607 | 39.51 | 0.01 | 98.60 | 100 | 96.26 |
Length Range | Transcripts | Percentage/% | Unigenes | Percentage/% |
---|---|---|---|---|
300–500 | 39,928 | 28.60% | 22,694 | 40.24% |
500–1000 | 41,164 | 29.49% | 16,624 | 29.47% |
1000–2000 | 30,922 | 22.15% | 9273 | 16.44% |
2000+ | 27,585 | 19.76% | 7812 | 13.85% |
Total | 139,599 | 56,403 |
Anno_Database | Annotated_Number | Percentage/% | 300 ≤ Length < 1000 | Length ≥ 1000 |
---|---|---|---|---|
COG_Annotation | 4865 | 8.6 | 935 | 3930 |
GO_Annotation | 10,228 | 18.13 | 2691 | 7537 |
KEGG_Annotation | 20,576 | 36.48 | 8824 | 11,752 |
KOG_Annotation | 10,721 | 19.01 | 2826 | 7895 |
Pfam_Annotation | 11,603 | 20.57 | 2787 | 8816 |
Swissprot_Annotation | 11,001 | 19.50 | 2919 | 8082 |
NR_Annotation | 13,781 | 24.43 | 4000 | 9781 |
All_Annotated | 20,729 | 36.75 | 8941 | 11,788 |
Gene | Nucleotide | Transmembrane Domains | CDS | Amino Acid | Blastp Test and Verify | |||
---|---|---|---|---|---|---|---|---|
Length/bp | Integrity | Length/aa | Species | GenBank Accession | E-Value | Identity/% | ||
ACC1 | 381 | 1 | No | 126 | Helicoverpa assulta | AKD01721.1 | 2 × 10−41 | 61.07% |
DES1 | 990 | 5 | Yes | 329 | S. exigua | ARD71185.1 | 0 | 74.61% |
DES2 | 966 | 4 | Yes | 321 | S. exigua | ARD71182.1 | 0 | 86.60% |
DES3 | 1098 | 5 | Yes | 365 | Grapholita molesta | AUC64291.1 | 1 × 10−147 | 67.45% |
DES4 | 993 | 4 | Yes | 330 | S. insularis | QLI61972.1 | 3 × 10−161 | 69.13% |
DES5 | 1368 | 5 | Yes | 455 | Agrotis segetum | AID66662.1 | 0 | 76.77% |
DES6 | 939 | 2 | Yes | 312 | Danaus plexippus plexippus | OWR48667.1 | 3 × 10−152 | 70.67% |
DES7 | 1116 | 4 | Yes | 371 | Spodoptera littoralis | AAQ74260.1 | 0 | 79.40% |
DES8 | 1065 | 4 | Yes | 354 | Sesamia inferens | AII21941.1 | 0 | 82.77% |
AR1 | 1023 | 0 | Yes | 340 | H. assulta | ATJ44537.1 | 0 | 77.35% |
AR2 | 1014 | 0 | Yes | 337 | H. assulta | ATJ44541.1 | 0 | 71.77% |
AR3 | 504 | 0 | Yes | 167 | H. assulta | ATJ44498.1 | 2 × 10−81 | 68.86% |
AR4 | 801 | 0 | Yes | 266 | Helicoverpa armigera | ATJ44502.1 | 2 × 10−129 | 59.63% |
AR5 | 927 | 0 | Yes | 308 | H. assulta | ATJ44539.1 | 0 | 80.65% |
AR6 | 1167 | 0 | Yes | 388 | H. armigera | ATJ44505.1 | 3 × 10−165 | 58.40% |
FAR1 | 1557 | 2 | Yes | 518 | Pectinophora gossypiella | XP_049883830.1 | 0 | 68.42% |
FAR2 | 384 | 0 | NO | 127 | S. insularis | QLI61998.1 | 9 × 10−83 | 96.88% |
FAR3 | 1602 | 2 | Yes | 533 | H. armigera | AKD01766.1 | 0 | 78.30% |
FAR4 | 1395 | 0 | Yes | 464 | H. assulta | AKD01789.1 | 0 | 64.77% |
FAR5 | 1566 | 1 | Yes | 521 | H. armigera | AKD01770.1 | 0 | 76.06% |
FAR6 | 705 | 0 | Yes | 234 | H. armigera | AKD01771.1 | 2 × 10−120 | 81.19% |
FAR7 | 1578 | 2 | Yes | 525 | Helicoverpa zea | XP_047038839.1 | 0 | 80.04% |
FAS1 | 495 | 0 | Yes | 164 | H. armigera | XP_049700707.1 | 3 × 10−82 | 77.44% |
FAS2 | 744 | 0 | Yes | 247 | Dioryctria abietella | QZC92075.1 | 1 × 10−123 | 69.35% |
FAS3 | 783 | 0 | Yes | 260 | Spodoptera frugiperda | XP_050550085.1 | 3 × 10−120 | 68.58% |
FAS4 | 564 | 0 | Yes | 187 | S. litura | XP_022831505.1 | 2 × 10−107 | 87.23% |
FAS5 | 519 | 0 | Yes | 172 | H. armigera | XP_049699195.1 | 2 × 10−71 | 67.82% |
ACT1 | 531 | 0 | Yes | 176 | Ostrinia furnacalis | XP_028157379.1 | 2 × 10−91 | 74.12% |
ACT2 | 732 | 0 | Yes | 243 | D. p. plexippus | OWR41901.1 | 1 × 10−93 | 63.51% |
ACT3 | 783 | 0 | Yes | 260 | Trichoplusia ni | XP_026730350.1 | 3 × 10−137 | 73.46% |
ACT4 | 1410 | 0 | Yes | 469 | Spodoptera littoralis | CAB3515140.1 | 0 | 69.79% |
Protein | Amino Acids | Molecular Weight/KD | Isoelectricpoint/PI | Negatively Charged Residues | Positively Charged Residues | Instability Index | Aliphatic Index | Average Hydropathicity |
---|---|---|---|---|---|---|---|---|
ACC1 | 127 | 14.05 | 4.96 | 20 | 13 | 55.12 | 63.78 | −0.613 |
DES1 | 329 | 37.56 | 6.89 | 31 | 30 | 40.27 | 104.62 | 0.141 |
DES2 | 321 | 37.28 | 8.93 | 26 | 31 | 39.14 | 97.73 | 0.117 |
DES3 | 365 | 41.77 | 9.3 | 25 | 37 | 37.3 | 84.88 | −0.095 |
DES4 | 330 | 38.55 | 9.04 | 27 | 34 | 30.02 | 89.27 | −0.111 |
DES5 | 455 | 53.34 | 8.65 | 42 | 47 | 39.09 | 89.82 | −0.164 |
DES6 | 312 | 36.14 | 8.77 | 28 | 32 | 44.41 | 81.92 | −0.241 |
DES7 | 371 | 42.78 | 6.43 | 40 | 36 | 36.49 | 94.07 | −0.091 |
DES8 | 354 | 40.95 | 8.81 | 33 | 37 | 34.52 | 87.34 | −0.149 |
AR1 | 340 | 39.12 | 6.55 | 44 | 43 | 36.43 | 88.24 | −0.389 |
AR2 | 337 | 37.83 | 5.77 | 40 | 35 | 36.42 | 96.26 | −0.166 |
AR3 | 167 | 19.06 | 9.23 | 18 | 23 | 29.46 | 92.75 | −0.249 |
AR4 | 266 | 30.12 | 5.86 | 31 | 28 | 33.34 | 97.48 | −0.161 |
AR5 | 309 | 34.98 | 8.78 | 35 | 40 | 24.63 | 89.58 | −0.286 |
AR6 | 388 | 43.87 | 8.37 | 43 | 46 | 40.27 | 97.99 | −0.147 |
FAR1 | 518 | 59.15 | 7.87 | 61 | 63 | 35.18 | 101.62 | −0.069 |
FAR2 | 128 | 14.03 | 5.1 | 16 | 11 | 21.41 | 101.17 | 0.022 |
FAR3 | 533 | 60.50 | 6.24 | 63 | 60 | 27.81 | 94.93 | −0.082 |
FAR4 | 464 | 53.11 | 8.99 | 51 | 60 | 33.01 | 90.32 | −0.138 |
FAR5 | 521 | 59.30 | 8.82 | 55 | 62 | 40.43 | 107.52 | −0.052 |
FAR6 | 234 | 27.17 | 9.43 | 22 | 30 | 42.35 | 100.73 | −0.024 |
FAR7 | 525 | 59.44 | 8.53 | 59 | 64 | 36.56 | 99.9 | 0.025 |
FAS1 | 165 | 18.91 | 5.29 | 25 | 16 | 45.17 | 86.79 | −0.339 |
FAS2 | 248 | 27.39 | 6.05 | 26 | 21 | 44.06 | 100.28 | 0.025 |
FAS3 | 261 | 29.17 | 7.08 | 31 | 31 | 31.03 | 90.04 | −0.324 |
FAS4 | 188 | 20.50 | 8.52 | 20 | 22 | 31.73 | 107.34 | 0.128 |
FAS5 | 173 | 18.77 | 6.41 | 17 | 16 | 38.05 | 95.95 | 0.042 |
ACT1 | 176 | 19.93 | 5.81 | 26 | 24 | 38.92 | 65.97 | −0.553 |
ACT2 | 243 | 27.43 | 4.71 | 37 | 25 | 42.17 | 77.45 | −0.322 |
ACT3 | 260 | 29.41 | 6.61 | 36 | 35 | 20.31 | 83.35 | −0.361 |
ACT4 | 469 | 51.87 | 8.75 | 50 | 57 | 31.14 | 84.22 | −0.359 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Z.; Gao, S.; Han, H.; Wang, X.; Kou, G.; Wang, H.; Zhou, Y. Identification and Functional Speculation of Genes Related to Sex Pheromone Synthesis Expressed in the Gonads of Female Gynaephora qinghaiensis (Lepidoptera: Lymantriidae). Genes 2025, 16, 1046. https://doi.org/10.3390/genes16091046
Liu Z, Gao S, Han H, Wang X, Kou G, Wang H, Zhou Y. Identification and Functional Speculation of Genes Related to Sex Pheromone Synthesis Expressed in the Gonads of Female Gynaephora qinghaiensis (Lepidoptera: Lymantriidae). Genes. 2025; 16(9):1046. https://doi.org/10.3390/genes16091046
Chicago/Turabian StyleLiu, Zhanling, Shujing Gao, Haibin Han, Xiaorui Wang, Guixiang Kou, Haishun Wang, and Yuantao Zhou. 2025. "Identification and Functional Speculation of Genes Related to Sex Pheromone Synthesis Expressed in the Gonads of Female Gynaephora qinghaiensis (Lepidoptera: Lymantriidae)" Genes 16, no. 9: 1046. https://doi.org/10.3390/genes16091046
APA StyleLiu, Z., Gao, S., Han, H., Wang, X., Kou, G., Wang, H., & Zhou, Y. (2025). Identification and Functional Speculation of Genes Related to Sex Pheromone Synthesis Expressed in the Gonads of Female Gynaephora qinghaiensis (Lepidoptera: Lymantriidae). Genes, 16(9), 1046. https://doi.org/10.3390/genes16091046