Strong Linkage Disequilibrium and Proxy Effect of PPP1R16A rs109146371 for DGAT1 K232A in Japanese Holstein Cattle
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals and Ethical Statement
2.2. Phenotypic Data
2.3. DNA Extraction and Genotyping
2.4. Data Availability
2.5. Statistical Analysis
- is the overall mean,
- is the fixed effect of SNP genotype,
- is the fixed effect of parity,
- is the random effect of the cow,
- and is the residual error.
3. Results
3.1. Genotype and Allele Frequencies
3.2. Linkage Disequilibrium Between DGAT1 and PPP1R16A
3.3. Descriptive Statistics for Milk Traits
3.4. Association Analysis with Milk Traits
3.5. Model Comparisons for Independent Effects
4. Discussion
4.1. Strong LD Between DGAT1 K232A and PPP1R16A rs109146371
4.2. Implications for GWAS Interpretation and Genomic Selection
4.3. Limitations and Future Directions
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
LD | Linkage disequilibrium |
SNP | Single nucleotide polymorphism |
GWAS | Genome-wide association study |
DHI | Dairy Herd Improvement |
TMR | Total mixed ration |
LSM | Least squares mean |
HWE | Hardy–Weinberg equilibrium |
AIC | Akaike Information Criterion |
BIC | Bayesian Information Criterion |
WGS | Whole-genome sequencing |
References
- Grisart, B.; Coppieters, W.; Farnir, F.; Karim, L.; Ford, C.; Berzi, P.; Cambisano, N.; Mni, M.; Reid, S.; Simon, P.; et al. Positional candidate cloning of a QTL in dairy cattle: Identification of a missense mutation in the bovine DGAT1 gene with major effect on milk yield and composition. Genome Res. 2002, 12, 222–231. [Google Scholar] [CrossRef]
- Grisart, B.; Farnir, F.; Karim, L.; Cambisano, N.; Kim, J.J.; Kvasz, A.; Mni, M.; Simon, P.; Frere, J.M.; Coppieters, W.; et al. Genetic and functional confirmation of the causality of the DGAT1 K232A quantitative trait nucleotide in affecting milk yield and composition. Proc. Natl. Acad. Sci. USA 2004, 101, 2398–2403. [Google Scholar] [CrossRef]
- Winter, A.; Kramer, W.; Werner, F.A.; Kollers, S.; Kata, S.; Durstewitz, G.; Buitkamp, J.; Womack, J.E.; Thaller, G.; Fries, R. Association of a lysine-232/alanine polymorphism in a bovine gene encoding acyl-CoA:diacylglycerol acyltransferase (DGAT1) with variation at a quantitative trait locus for milk fat content. Proc. Natl. Acad. Sci. USA 2002, 99, 9300–9305. [Google Scholar] [CrossRef] [PubMed]
- Mahmoudi, P.; Rashidi, A. Strong evidence for association between K232A polymorphism of the DGAT1 gene and milk fat and protein contents: A meta-analysis. J. Dairy Sci. 2023, 106, 2573–2587. [Google Scholar] [CrossRef] [PubMed]
- Buitenhuis, B.; Janss, L.L.; Poulsen, N.A.; Larsen, L.B.; Larsen, M.K.; Sørensen, P. Genome-wide association and biological pathway analysis for milk-fat composition in Danish Holstein and Danish Jersey cattle. BMC Genom. 2014, 15, 1112. [Google Scholar] [CrossRef] [PubMed]
- Cole, J.B.; Wiggans, G.R.; Ma, L.; Sonstegard, T.S.; Lawlor, T.J.; Crooker, B.A.; Van Tassell, C.P.; Yang, J.; Wang, S.; Matukumalli, L.K.; et al. Genome-wide association analysis of thirty one production, health, reproduction and body conformation traits in contemporary U.S. Holstein cows. BMC Genom. 2011, 12, 408. [Google Scholar] [CrossRef]
- Capomaccio, S.; Milanesi, M.; Bomba, L.; Cappelli, K.; Nicolazzi, E.L.; Williams, J.L.; Ajmone-Marsan, P.; Stefanon, B. Searching new signals for production traits through gene-based association analysis in three Italian cattle breeds. Anim. Genet. 2015, 46, 361–370. [Google Scholar] [CrossRef]
- Nayeri, S.; Sargolzaei, M.; Abo-Ismail, M.K.; May, N.; Miller, S.P.; Schenkel, F.; Moore, S.S.; Stothard, P. Genome-wide association for milk production and female fertility traits in Canadian dairy Holstein cattle. BMC Genet. 2016, 17, 75. [Google Scholar] [CrossRef]
- Jiang, L.; Liu, J.; Sun, D.; Ma, P.; Ding, X.; Yu, Y.; Zhang, Q. Genome Wide Association Studies for Milk Production Traits in Chinese Holstein Population. PLoS ONE 2010, 5, e13661. [Google Scholar] [CrossRef]
- Jiang, J.; Ma, L.; Prakapenka, D.; Vanraden, P.M.; Cole, J.B.; Da, Y. A Large-Scale Genome-Wide Association Study in U.S. Holstein Cattle. Front. Genet. 2019, 10, 412. [Google Scholar] [CrossRef]
- Wang, T.; Li, J.; Gao, X.; Song, W.; Chen, C.; Yao, D.; Ma, J.; Xu, L.; Ma, Y. Genome-wide association study of milk components in Chinese Holstein cows using single nucleotide polymorphism. Livest. Sci. 2020, 233, 103951. [Google Scholar] [CrossRef]
- Yang, Z.; Lian, Z.; Liu, G.; Deng, M.; Sun, B.; Guo, Y.; Liu, D.; Li, Y. Identification of genetic markers associated with milk production traits in Chinese Holstein cattle based on post genome-wide association studies. Anim. Biotechnol. 2021, 32, 67–76. [Google Scholar] [CrossRef]
- Bohlouli, M.; Halli, K.; Yin, T.; Gengler, N.; König, S. Genome-wide associations for heat stress response suggest potential candidate genes underlying milk fatty acid composition in dairy cattle. J. Dairy Sci. 2022, 105, 3323–3340. [Google Scholar] [CrossRef]
- Cortes-Hernández, J.G.; García-Ruiz, A.; Peñagaricano, F.; Montaldo, H.H.; Ruiz-López, F.J. Uncovering the genetic basis of milk production traits in Mexican Holstein cattle based on individual markers and genomic windows. PLoS ONE 2025, 20, e0314888. [Google Scholar] [CrossRef]
- Wang, X.; Wurmser, C.; Pausch, H.; Jung, S.; Reinhardt, F.; Tetens, J.; Thaller, G.; Fries, R. Identification and Dissection of Four Major QTL Affecting Milk Fat Content in the German Holstein-Friesian Population. PLoS ONE 2012, 7, e40711. [Google Scholar] [CrossRef] [PubMed]
- Leblanc, S. Assessing the Association of the Level of Milk Production with Reproductive Performance in Dairy Cattle. J. Reprod. Dev. 2010, 56, S1–S7. [Google Scholar] [CrossRef] [PubMed]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2025. [Google Scholar]
- Graffelman, J. Exploring Diallelic Genetic Markers: TheHardyWeinbergPackage. J. Stat. Softw. 2015, 64, 1–23. [Google Scholar] [CrossRef]
- Warnes, G.R.; Bolker, B.; Lumley, T. Genetics: Population Genetics; R package version 1.3.8.1.2. 2022. Available online: https://CRAN.R-project.org/package=genetics (accessed on 20 August 2025).
- Bates, D.; Mächler, M.; Bolker, B.; Walker, S. Fitting Linear Mixed-Effects Models Usinglme4. J. Stat. Softw. 2015, 67, 48. [Google Scholar] [CrossRef]
- Kuznetsova, A.; Brockhoff, P.B.; Christensen, R.H.B. lmerTest Package: Tests in Linear Mixed Effects Models. J. Stat. Softw. 2017, 82, 1–26. [Google Scholar] [CrossRef]
- Lenth, R.V. Emmeans: Estimated Marginal Means, Aka Least-Squares Means; R package version 1.8.8. 2023. Available online: https://CRAN.R-project.org/package=emmeans (accessed on 20 August 2025).
- Barde, P.; Barde, M. What to use to express the variability of data: Standard deviation or standard error of mean? Perspect. Clin. Res. 2012, 3, 113–116. [Google Scholar] [CrossRef]
- Wang, Q.; Bovenhuis, H. Combined use of milk infrared spectra and genotypes can improve prediction of milk fat composition. J. Dairy Sci. 2020, 103, 2514–2522. [Google Scholar] [CrossRef]
- Gothwal, A.; Magotra, A.; Bangar, Y.C.; Malik, B.S.; Yadav, A.S.; Garg, A.R. Candidate K232A mutation of DGAT1 gene associated with production and reproduction traits in Indian Dairy cattle. Anim. Biotechnol. 2023, 34, 2608–2616. [Google Scholar] [CrossRef] [PubMed]
- Elzaki, S.; Korkuć, P.; Arends, D.; Reissmann, M.; Brockmann, G.A. Effects of DGAT1 on milk performance in Sudanese Butana × Holstein crossbred cattle. Trop. Anim. Health Prod. 2022, 54, 142. [Google Scholar] [CrossRef] [PubMed]
- Tumino, S.; Criscione, A.; Moltisanti, V.; Marletta, D.; Bordonaro, S.; Avondo, M.; Valenti, B. Feeding System Resizes the Effects of DGAT1 Polymorphism on Milk Traits and Fatty Acids Composition in Modicana Cows. Animals 2021, 11, 1616. [Google Scholar] [CrossRef] [PubMed]
- Matamoros, C.; Dechow, C.D.; Harvatine, K.J. Interaction of DGAT1 polymorphism, parity, and acetate supplementation on feeding behavior, milk synthesis, and plasma metabolites. J. Dairy Sci. 2023, 106, 7613–7629. [Google Scholar] [CrossRef]
- Fink, T.; Lopdell, T.J.; Tiplady, K.; Handley, R.; Johnson, T.J.J.; Spelman, R.J.; Davis, S.R.; Snell, R.G.; Littlejohn, M.D. A new mechanism for a familiar mutation-bovine DGAT1 K232A modulates gene expression through multi-junction exon splice enhancement. BMC Genom. 2020, 21, 591. [Google Scholar] [CrossRef]
- Gaiani, N.; Bourgeois-Brunel, L.; Rocha, D.; Boulling, A. Analysis of the impact of DGAT1 p.M435L and p.K232A variants on pre-mRNA splicing in a full-length gene assay. Sci. Rep. 2023, 13, 8999. [Google Scholar] [CrossRef]
Genotypes | Alleles | p-Value | ||||
---|---|---|---|---|---|---|
n | Frequency (%) | n | Frequency (%) | |||
KK (K) | 12 | 4.7 | 124 | 24.2 | ||
DGAT1 p. K232A | KA | 100 | 39.1 | 0.374 | ||
AA (A) | 144 | 56.2 | 388 | 75.8 | ||
CC (C) | 15 | 5.9 | 133 | 26.0 | ||
PPP1R16A | CT | 103 | 40.2 | 0.542 | ||
rs109146371 | TT(T) | 138 | 53.9 | 379 | 74.0 |
PPP1R16A rs109146371 | LD Test | |||||
---|---|---|---|---|---|---|
DGAT1 p. K232A | CC | CT | TT | r2 | D′ | |
KK | 12 | 0 | 0 | |||
KA | 3 | 97 | 0 | 0.91 | 0.9962 | |
AA | 0 | 6 | 138 |
Parity and Milk Traits | Mean ± SD (Min–Max) |
---|---|
Parity | 2.63 ± 1.54 (1–9) |
305-day Milk Yield (kg) | 10,350.54 ± 1760.15 (4895.5–15,938.1) |
Fat percentage | 3.78 ± 0.38 (2.63–5.07) |
Protein percentage | 3.33 ± 0.21 (2.72–4.1) |
SNF percentage | 8.84 ± 0.26 (7.94–9.69) |
LSM ± SE | |||||
---|---|---|---|---|---|
SNP | Genotype | 305-day Milk Yield (kg) | Fat (%) | Protein (%) | SNF (%) |
KK | 9753.96 b ± 381.72 | 4.27 a ± 0.08 | 3.39 a ± 0.05 | 8.87 a ± 0.06 | |
DGAT1 | KA | 10346.24 b ± 186.27 | 3.96 b ± 0.04 | 3.36 b ± 0.02 | 8.82 b ± 0.03 |
p. K232A | AA | 10842.49 a ± 175.62 | 3.57 c ± 0.04 | 3.19 b ± 0.02 | 8.64 b ± 0.03 |
p-value | p < 0.001 *** | p < 0.001 *** | p < 0.001 *** | p < 0.001 *** | |
LSM ± SE | |||||
SNP | Genotype | 305-day Milk Yield (kg) | Fat (%) | Protein (%) | SNF (%) |
CC | 9695.84 b ± 350.56 | 4.24 a ± 0.08 | 3.38 a ± 0.05 | 8.84 a ± 0.06 | |
PPP1R16A | CT | 10374.97 b ± 185.3 | 3.93 b ± 0.04 | 3.34 a ± 0.02 | 8.81 a ± 0.03 |
rs109146371 | TT | 10846.4 a ± 176.18 | 3.57 c ± 0.04 | 3.2 b ± 0.02 | 8.64 b ± 0.03 |
p-value | p < 0.001 *** | p < 0.001 *** | p < 0.001 *** | p < 0.001 *** |
Milk Traits | Model | AIC | BIC | logLik | LRT (χ2) | df | p-Value |
---|---|---|---|---|---|---|---|
305-day milk yield | DGAT1 only | 10,928 | 10,985.8 | −5451 | |||
DGAT1 + PPP1R16A | 10,930.3 | 10,997 | −5450.1 | 1.71 | 2 | 0.425 | |
Fat percentage | DGAT1 only | 183.1 | 240.9 | −78.5 | |||
DGAT1 + PPP1R16A | 186.1 | 252.8 | −78 | 0.96 | 2 | 0.618 | |
Protein percentage | DGAT1 only | −552.3 | −494.4 | 289.1 | |||
DGAT1 + PPP1R16A | −552.1 | −485.3 | 291 | 3.79 | 2 | 0.15 | |
SNF percentage | DGAT1 only | −294.2 | −236.3 | 160.1 | |||
DGAT1 + PPP1R16A | −293.3 | −226.5 | 161.6 | 3.1 | 2 | 0.212 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Akiyama, Y.; Ando, T.; Nozaki, N.; Arif, M.; Ide, Y.; Wang, S.; Miura, N. Strong Linkage Disequilibrium and Proxy Effect of PPP1R16A rs109146371 for DGAT1 K232A in Japanese Holstein Cattle. Genes 2025, 16, 1000. https://doi.org/10.3390/genes16091000
Akiyama Y, Ando T, Nozaki N, Arif M, Ide Y, Wang S, Miura N. Strong Linkage Disequilibrium and Proxy Effect of PPP1R16A rs109146371 for DGAT1 K232A in Japanese Holstein Cattle. Genes. 2025; 16(9):1000. https://doi.org/10.3390/genes16091000
Chicago/Turabian StyleAkiyama, Yoshiyuki, Takaaki Ando, Nobuhiro Nozaki, Mohammad Arif, Yutaro Ide, Shaohsu Wang, and Naoki Miura. 2025. "Strong Linkage Disequilibrium and Proxy Effect of PPP1R16A rs109146371 for DGAT1 K232A in Japanese Holstein Cattle" Genes 16, no. 9: 1000. https://doi.org/10.3390/genes16091000
APA StyleAkiyama, Y., Ando, T., Nozaki, N., Arif, M., Ide, Y., Wang, S., & Miura, N. (2025). Strong Linkage Disequilibrium and Proxy Effect of PPP1R16A rs109146371 for DGAT1 K232A in Japanese Holstein Cattle. Genes, 16(9), 1000. https://doi.org/10.3390/genes16091000