The Complete Mitochondrial Genome of Aspidophorodon (Eoessigia) indicum (Hemiptera: Aphididae: Aphidinae) and Insights into Its Phylogenetic Position
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample Collection and DNA Extraction
2.2. Sequencing, Assembly, and Annotation
2.3. Sequence Analyses
2.4. Phylogenetic Analysis
3. Results and Discussion
3.1. Mitogenome Organization and Nucleotide Composition
3.2. Protein-Coding Genes
3.3. Transfer RNAs and Ribosomal RNAs
3.4. Control Region and Repeat Region
3.5. Phylogenetic Relationships
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Xu, Y.; Jiang, L.; Chen, J.; Kholmatov, B.R.; Qiao, G. Six new species of Aspidophorodon Verma, 1967 (Hemiptera, Aphididae, Aphidinae) from China. ZooKeys 2022, 1106, 1–55. [Google Scholar] [CrossRef]
- Chen, J.; Zhang, B.; Zhu, X.; Jiang, L.; Qiao, G. Review of the aphid genus Aspidophorodon Verma, 1967 with descriptions of three new species from China (Hemiptera: Aphididae: Aphidinae). Zootaxa 2015, 4028, 551–576. [Google Scholar] [CrossRef]
- Stekolshchikov, A.; Novgorodova, T. A new species of Aspidophorodon Verma (Hemiptera, Aphididae) from the Altai Republic. Zootaxa 2010, 2566, 39–44. [Google Scholar] [CrossRef]
- David, S.K.; Rajasingh, S.G.; Narayanan, K. New genus, new species and new morphs of aphids (Homoptera) from India. Orient. Insects 1972, 6, 35–43. [Google Scholar] [CrossRef]
- Chakrabarti, S.; Medda, P.K. Taxonomic studies on some aphids (Homoptera: Aphididae) from India. Orient. Insects 1989, 23, 133–141. [Google Scholar] [CrossRef]
- Chakrabarti, S.; Banerjee, P.K. Host alternation in aphids from western and northwest Himalaya, India. In Critical Issues in Aphid Biology; Kindlmann, P., Dixon, A.F.G., Eds.; University of South Bohemia: Ceské Budějovice, Česká Republika, 1993; pp. 43–53. [Google Scholar]
- De Jager, L.; Burger, N.F.V.; Botha, A.M. Complete mitochondrial genome of Diuraphis noxia (Hemiptera: Aphididae) from nine populations, SNP variation between populations, and comparison with other Aphididae species. Afr. Entomol. 2014, 22, 847–862. [Google Scholar] [CrossRef]
- Chen, J.; Wang, Y.; Jiang, L.; Qiao, G. Mitochondrial genome sequences effectively reveal deep branching events in aphids (Insecta: Hemiptera: Aphididae). Zool. Scr. 2017, 46, 706–717. [Google Scholar] [CrossRef]
- Zhang, X.; Li, C.; Jiang, L.; Qiao, G.; Chen, J. Characteristics and comparative analysis of mitochondrial genomes of the aphid genus Hyalopterus Koch (Hemiptera: Aphididae: Aphidinae). Insects 2024, 15, 389. [Google Scholar] [CrossRef]
- Favret, C. Aphid Species File. Available online: http://Aphid.SpeciesFile.org (accessed on 2 June 2025).
- Choi, H.; Shin, S.; Jung, S.; Clarke, D.J.; Lee, S. Molecular phylogeny of Macrosiphini (Hemiptera: Aphididae): An evolutionary hypothesis for the Pterocomma-group habitat adaptation. Mol. Phylogenet. Evol. 2018, 121, 12–22. [Google Scholar] [CrossRef] [PubMed]
- Park, J.; Lee, W. The complete mitochondrial genome of Uroleucon erigeronense (Thomas, 1878) (Hemiptera: Aphididae). Mitochondrial DNA Part B Resour. 2022, 7, 84–86. [Google Scholar] [CrossRef]
- Zhang, H.; Lu, C.; Liu, Q.; Zou, T.; Qiao, G.; Huang, X. Insights into the evolution of aphid mitogenome features from new data and comparative analysis. Animals 2022, 12, 1970. [Google Scholar] [CrossRef] [PubMed]
- von Dohlen, C.D.; Rowe, C.A.; Heie, O.E. A test of morphological hypotheses for tribal and subtribal relationships of Aphidinae (Insecta: Hemiptera: Aphididae) using DNA sequences. Mol. Phylogenet. Evol. 2006, 38, 316–329. [Google Scholar] [CrossRef]
- Nováková, E.; Hypša, V.; Klein, J.; Foottit, R.G.; von Dohlen, C.D.; Moran, N.A. Reconstructing the phylogeny of aphids (Hemiptera: Aphididae) using DNA of the obligate symbiont Buchnera aphidicola. Mol. Phylogenet. Evol. 2013, 68, 42–54. [Google Scholar] [CrossRef]
- Bolger, A.M.; Lohse, M.; Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 2014, 30, 2114–2120. [Google Scholar] [CrossRef] [PubMed]
- Dierckxsens, N.; Mardulyn, P.; Smits, G. NOVOPlasty: De novo assembly of organelle genomes from whole genome data. Nucleic Acids Res. 2017, 45, e18. [Google Scholar] [CrossRef]
- Donath, A.; Jühling, F.; Al-Arab, M.; Bernhart, S.H.; Reinhardt, F.; Stadler, P.F.; Middendorf, M.; Bernt, M. Improved annotation of protein-coding genes boundaries in metazoan mitochondrial genomes. Nucleic Acids Res. 2019, 47, 10543–10552. [Google Scholar] [CrossRef]
- Kumar, S.; Stecher, G.; Li, M.; Knyaz, C.; Tamura, K. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 2018, 35, 1547–1549. [Google Scholar] [CrossRef]
- Darty, K.; Denise, A.; Ponty, Y. VARNA: Interactive drawing and editing of the RNA secondary structure. Bioinformatics 2009, 25, 1974–1975. [Google Scholar] [CrossRef]
- Benson, G. Tandem repeats finder: A program to analyze DNA sequences. Nucleic Acids Res. 1999, 27, 573–580. [Google Scholar] [CrossRef] [PubMed]
- Grant, J.R.; Enns, E.; Marinier, E.; Mandal, A.; Herman, E.K.; Chen, C.; Graham, M.; Domselaar, G.V.; Stothard, P. Proksee: In-depth characterization and visualization of bacterial genomes. Nucleic Acids Res 2023, 51, W484–W492. [Google Scholar] [CrossRef]
- Zhang, D.; Gao, F.; Jakovlié, I.; Zou, H.; Zhang, J.; Li, W.X.; Wang, G.T. PhyloSuite: An integrated and scalable desktop platform for streamlined molecular sequence data management and evolutionary phylogenetics studies. Mol. Ecol. Resour. 2020, 20, 348–355. [Google Scholar] [CrossRef]
- Xiang, C.; Gao, F.; Jakovlié, I.; Lei, H.; Hu, Y.; Zhang, H.; Zou, H.; Wang, G.; Zhang, D. Using PhyloSuite for molecular phylogeny and tree-based analyses. iMeta 2023, 2, e87. [Google Scholar] [CrossRef]
- Perna, N.; Kocher, T. Patterns of nucleotide composition at fourfold degenerate sites of animal mitochondrial genomes. J. Mol. Evol. 1995, 41, 353–358. [Google Scholar] [CrossRef]
- Rozas, J.; Ferrer-Mata, A.; Sánchez-DelBarrio, J.C.; Guirao-Rico, S.; Librado, P.; Ramos-Onsins, S.E.; Sánchez-Gracia, A. DnaSP 6: DNA sequence polymorphism analysis of large data sets. Mol. Biol. Evol. 2017, 34, 3299–3302. [Google Scholar] [CrossRef]
- Stothard, P. The sequence manipulation suite: JavaScript programs for analyzing and formatting protein and DNA sequences. BioTechniques 2000, 28, 1102–1104. [Google Scholar] [CrossRef] [PubMed]
- Ortiz-Rivas, B.; Martínez-Torres, D. Combination of molecular data support the existence of three main lineages in the phylogeny of aphids (Hemiptera: Aphididae) and the basal position of the subfamily Lachninae. Mol. Phylogenet. Evol. 2010, 55, 305–317. [Google Scholar] [CrossRef]
- Du, C.; Chen, J.; Jiang, L.; Qiao, G. Phylogeny of drepanosiphine aphids sensu lato (Hemiptera, Aphidoidea) inferred from molecular and morphological data. Curr. Zool. 2021, 67, 501–513. [Google Scholar] [CrossRef]
- Owen, C.L.; Miller, G.L. Phylogenomics of the Aphididae: Deep relationships between subfamilies clouded by gene tree discordance, introgression and the gene tree anomaly zone. Syst. Entomol. 2022, 47, 470–486. [Google Scholar] [CrossRef]
- Katoh, K.; Standley, D.M. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol. Biol. Evol. 2013, 30, 772–780. [Google Scholar] [CrossRef] [PubMed]
- Capella-Gutiérrez, S.; Silla-Martinez, I.M.; Gabaldón, T. trimAl: A tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 2009, 25, 1972–1973. [Google Scholar] [CrossRef]
- Talavera, G.; Castresana, J. Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. Syst. Biol. 2007, 56, 564–577. [Google Scholar] [CrossRef]
- Minh, B.Q.; Schmidt, H.A.; Chernomor, O.; Schrempf, D.; Woodhams, M.D.; von Haeseler, A.; Lanfear, R. IQ-TREE 2: New models and efficient methods for phylogenetic inference in the genomic era. Mol. Biol. Evol. 2020, 37, 1530–1534. [Google Scholar] [CrossRef]
- Lanfear, R.; Frandsen, P.; Wright, A.; Senfeld, T.; Calcott, B. PartitionFinder 2: New methods for selecting partitioned models of evolution for molecular and morphologica phylogenetic analyses. Mol. Biol. Evol. 2016, 34, 772–773. [Google Scholar] [CrossRef]
- Ronquist, F.; Teslenko, M.; van der Mark, P.; Ayres, D.; Darling, A.; Höhna, S.; Larget, B.; Liu, L.; Suchard, M.; Huelsenbeck, J. MrBayes 3.2: Efficient Bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 2012, 61, 539–542. [Google Scholar] [CrossRef]
- Rambaut, A. FigTree v.1.4.4. Available online: http://tree.bio.ed.ac.uk/software/figtree/ (accessed on 18 June 2025).
- Letunic, I.; Bork, P. Interactive Tree of Life (iTOL) v6: Recent updates to the phylogenetic tree display and annotation tool. Nucleic Acids Res 2024, 52, W78–W82. [Google Scholar] [CrossRef]
- Clary, D.O.; Wolstenholme, D.R. The mitochondrial DNA molecular of Drosophila yakuba: Nucleotide sequence, gene organization, and genetic code. J. Mol. Evol. 1985, 22, 252–271. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Wang, Y.; Qin, M.; Jiang, L.; Qiao, G. The mitochondrial genome of Greenidea psidii van der Goot (Hemiptera: Aphididae: Greenideinae) and comparisons with other Aphididae aphids. Int. J. Biol. Macromol. 2019, 122, 824–832. [Google Scholar] [CrossRef]
- Voronova, N.; Levykina, S.; Warner, D.; Shulinski, R.; Bandarenka, Y.; Zhorov, D. Characteristic and variability of five complete aphid mitochondrial genomes: Aphis fabae mordvilkoi, Aphis craccivora, Myzus persicae, Therioaphis tenera and Appendiseta robiniae (Hemiptera; Sternorrhyncha; Aphididae). Int. J. Biol. Macromol. 2020, 149, 187–206. [Google Scholar] [CrossRef]
- Jühling, F.; Pütz, J.; Bernt, M.; Donath, A.; Middendorf, M.; Florentz, C.; Stadler, P.F. lmproved systematic tRNA gene annotation allows new insights into the evolution of mitochondrial tRNA structures and into the mechanisms of mitochondrial genome rearrangements. Nucleic Acids Res. 2011, 40, 2833–2845. [Google Scholar] [CrossRef] [PubMed]
- Cameron, S. Insect mitochondrial genomics: Implications for evolution and phylogeny. Annu. Rev. Entomol. 2014, 59, 95–117. [Google Scholar] [CrossRef] [PubMed]
- Wolstenholme, D.R. Animal mitochondrial DNA: Structure and evolution. Int. Rev. Cytol. 1992, 141, 173–216. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Hewitt, G. Insect mitochondrial control region: A review of its structure, evolution and usefulness in evolutionary studies. Biochem. Syst. Ecol. 1997, 25, 99–120. [Google Scholar] [CrossRef]
- Wang, Y.; Huang, X.; Qiao, G. Comparative analysis of mitochondrial genomes of five aphid species (Hemiptera: Aphididae) and phylogenetic implications. PLoS ONE 2013, 8, e77511. [Google Scholar] [CrossRef]
- Song, H.; Donthu, R.K.; Hall, R.; Hon, L.; Weber, E.; Badger, J.H.; Giordano, R. Description of soybean aphid (Aphis glycines Matsumura) mitochondrial genome and comparative mitogenomics of Aphididae (Hemiptera: Sternorrhyncha). Insect Biochem. Mol. Biol. 2019, 113, 103208. [Google Scholar] [CrossRef]
- Zhang, H.; Liu, Q.; Lu, C.; Deng, J.; Huang, X. The first complete mitochondrial genome of Lachninae species and comparative genomics provide new insights into the evolution of gene rearrangement and the repeat region. Insects 2021, 12, 55. [Google Scholar] [CrossRef]
- Li, C.L.; Jiang, L.Y.; Qiao, G.X.; Chen, J. Sequencing and phylogenetic analysis of the complete mitochondrial genomes of Chaitophorinae (Hemiptera: Aphididae). Acta Entomol. Sin. 2025. Available online: https://link.cnki.net/urlid/11.1832.q.20250527.0943.002 (accessed on 20 June 2025).
- Blackman, R.L.; Eastop, V.F. Aphids on the World’s Plants: An Online Identification and Information Guide. Available online: http://www.aphidsonworldsplants.info/ (accessed on 2 June 2025).
Gene | Strand | Position | Length (bp) | Anticodon | Start Codon | Stop Codon | Intergenic Nucleotides (bp) |
---|---|---|---|---|---|---|---|
cox1 | J | 1–1531 | 1531 | ATA | T | 0 | |
trnL2 | J | 1532–1599 | 68 | TAA | 3 | ||
cox2 | J | 1603–2274 | 672 | ATA | TAA | 2 | |
trnK | J | 2277–2349 | 73 | CTT | 0 | ||
trnD | J | 2350–2416 | 67 | GTC | 0 | ||
atp8 | J | 2417–2575 | 159 | ATC | TAA | –20 | |
atp6 | J | 2556–3209 | 654 | ATT | TAA | –1 | |
cox3 | J | 3209–3994 | 786 | ATG | TAA | 4 | |
trnG | J | 3999–4064 | 66 | TCC | 0 | ||
nad3 | J | 4065–4418 | 354 | ATA | TAA | –1 | |
trnA | J | 4418–4480 | 63 | TGC | –1 | ||
trnR | J | 4480–4544 | 65 | TCG | –1 | ||
trnN | J | 4544–4608 | 65 | GTT | –1 | ||
trnS1 | J | 4608–4668 | 61 | GCT | 7 | ||
trnE | J | 4676–4738 | 63 | TTC | 0 | ||
Repeat region | 4739–5896 | 1158 | 0 | ||||
trnF | N | 5897–5960 | 64 | GAA | 0 | ||
nad5 | N | 5961–7691 | 1731 | ATT | TAA | 362 | |
trnH | N | 8054–8117 | 64 | GTG | 0 | ||
nad4 | N | 8118–9426 | 1309 | ATA | T | 8 | |
nad4L | N | 9435–9725 | 291 | ATG | TAA | 1 | |
trnT | J | 9727–9788 | 62 | TGT | 2 | ||
trnP | N | 9791–9856 | 66 | TGG | 1 | ||
nad6 | J | 9858–10,352 | 495 | ATT | TAA | –1 | |
cob | J | 10,352–11,467 | 1116 | ATG | TAA | 11 | |
trnS2 | J | 11,479–11,543 | 65 | TGA | 10 | ||
nad1 | N | 11,554–12,489 | 936 | ATT | TAA | 0 | |
trnL1 | N | 12,490–12,554 | 65 | TAG | 0 | ||
rrnL | N | 12,555–13,817 | 1263 | 0 | |||
trnV | N | 13,818–13,879 | 62 | TAC | 10 | ||
rrnS | N | 13,890–14,659 | 770 | 0 | |||
Control region | 14,660–15,794 | 1135 | 0 | ||||
trnI | J | 15,795–15,858 | 64 | GAT | –3 | ||
trnQ | N | 15,856–15,921 | 66 | TTG | 5 | ||
trnM | J | 15,927–15,993 | 67 | CAT | 0 | ||
nad2 | J | 15,994–16,971 | 978 | ATA | TAA | –2 | |
trnW | J | 16,970–17,031 | 62 | TCA | –8 | ||
trnC | N | 17,024–17,091 | 68 | GCA | 4 | ||
trnY | N | 17,096–17,160 | 65 | GTA | 1 |
T% | C% | A% | G% | A + T% | AT Skew | GC Skew | |
---|---|---|---|---|---|---|---|
Whole mitogenome | 38.2 | 10.5 | 45.9 | 5.4 | 84.1 | 0.092 | –0.319 |
Protein-coding genes | 47.3 | 9.5 | 35.0 | 8.1 | 82.3 | –0.149 | –0.080 |
1st codon positions | 39.4 | 8.9 | 40.3 | 11.4 | 79.7 | 0.012 | 0.122 |
2nd codon positions | 52.6 | 13.7 | 23.2 | 10.5 | 75.8 | –0.388 | –0.129 |
3rd codon positions | 50.1 | 5.9 | 41.6 | 2.4 | 91.7 | –0.092 | –0.430 |
Protein-coding genes-J | 42.1 | 12.4 | 38.6 | 6.9 | 80.7 | –0.044 | –0.286 |
Protein-coding genes-N | 55.6 | 5.0 | 29.4 | 10.1 | 85.0 | –0.308 | 0.336 |
tRNA genes | 41.4 | 6.1 | 43.8 | 8.7 | 85.2 | 0.028 | 0.175 |
rRNA genes | 45.8 | 5.0 | 38.8 | 10.5 | 84.6 | –0.083 | 0.357 |
Control region | 44.8 | 7.2 | 44.6 | 3.4 | 89.4 | –0.002 | –0.358 |
Repeat region | 38.0 | 8.2 | 52.0 | 1.8 | 90.0 | 0.156 | –0.640 |
Gene | Ka | Ks | Ka/Ks |
---|---|---|---|
apt6 | 0.2062 | 0.6915 | 0.2982 |
atp8 | 0.4471 | 0.3497 | 1.2785 |
cox1 | 0.0528 | 0.7935 | 0.0665 |
cox2 | 0.0934 | 0.8912 | 0.1048 |
cox3 | 0.1259 | 0.6156 | 0.2045 |
cob | 0.1114 | 0.7901 | 0.1410 |
nad1 | 0.1256 | 0.4042 | 0.3107 |
nad2 | 0.2001 | 0.611 | 0.3275 |
nad3 | 0.1768 | 0.5424 | 0.3260 |
nad4 | 0.1524 | 0.3251 | 0.4688 |
nad4L | 0.1253 | 0.3344 | 0.3747 |
nad5 | 0.1459 | 0.3484 | 0.4188 |
nad6 | 0.2589 | 0.6453 | 0.4012 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ding, J.; Zhang, X.; Jiang, L.; Qiao, G.; Chen, J. The Complete Mitochondrial Genome of Aspidophorodon (Eoessigia) indicum (Hemiptera: Aphididae: Aphidinae) and Insights into Its Phylogenetic Position. Genes 2025, 16, 979. https://doi.org/10.3390/genes16080979
Ding J, Zhang X, Jiang L, Qiao G, Chen J. The Complete Mitochondrial Genome of Aspidophorodon (Eoessigia) indicum (Hemiptera: Aphididae: Aphidinae) and Insights into Its Phylogenetic Position. Genes. 2025; 16(8):979. https://doi.org/10.3390/genes16080979
Chicago/Turabian StyleDing, Jiayu, Xiaolu Zhang, Liyun Jiang, Gexia Qiao, and Jing Chen. 2025. "The Complete Mitochondrial Genome of Aspidophorodon (Eoessigia) indicum (Hemiptera: Aphididae: Aphidinae) and Insights into Its Phylogenetic Position" Genes 16, no. 8: 979. https://doi.org/10.3390/genes16080979
APA StyleDing, J., Zhang, X., Jiang, L., Qiao, G., & Chen, J. (2025). The Complete Mitochondrial Genome of Aspidophorodon (Eoessigia) indicum (Hemiptera: Aphididae: Aphidinae) and Insights into Its Phylogenetic Position. Genes, 16(8), 979. https://doi.org/10.3390/genes16080979