Expanding the Phenotypic Spectrum of SPG4: Autism Spectrum Disorder in Early-Onset and Complex SPAST-HSP and Case Study
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Clinical Assessment
3.2. Molecular Genetics
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fink, J.K. Hereditary spastic paraplegia. Curr. Neurol. Neurosci. Rep. 2006, 6, 65–76. [Google Scholar] [CrossRef]
- Walusinski, O. A historical approach to hereditary spastic paraplegia. Rev. Neurol. 2020, 176, 225–234. [Google Scholar] [CrossRef] [PubMed]
- Solowska, J.M.; Baas, P.W. Hereditary spastic paraplegia SPG4: What is known and not known about the disease. Brain 2015, 138 Pt 9, 2471–2484. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Giordani, G.M.; Diniz, F.; Fussiger, H.; Gonzalez-Salazar, C.; Donis, K.C.; Freua, F.; Ortega, R.P.M.; de Freitas, J.L.; Barsottini, O.G.P.; Rosemberg, S.; et al. Clinical and molecular characterization of a large cohort of childhood onset hereditary spastic paraplegias. Sci. Rep. 2021, 11, 22248. [Google Scholar] [CrossRef] [PubMed]
- Parodi, L.; Fenu, S.; Barbier, M.; Banneau, G.; Duyckaerts, C.; du Montcel, S.T.; Monin, M.-L.; Said, S.A.; Guegan, J.; E Tallaksen, C.M.; et al. Spastic paraplegia due to SPAST mutations is modified by the underlying mutation and sex. Brain 2018, 141, 3331–3342. [Google Scholar] [CrossRef]
- Mo, A.; Saffari, A.; Kellner, M.; Döbler-Neumann, M.; Jordan, C.; Srivastava, S.; Zhang, B.; Fink, J.K.; Smith, L.; Posey, J.E.; et al. Early-Onset and Severe Complex Hereditary Spastic Paraplegia Caused by De Novo Variants in SPAST. Mov. Disord. 2022, 37, 2440–2446. [Google Scholar] [CrossRef]
- Schieving, J.H.; de Bot, S.T.; A van de Pol, L.; I Wolf, N.; Brilstra, E.H.; Frints, S.G.; van Gaalen, J.; Misra-Isrie, M.; Pennings, M.; Verschuuren-Bemelmans, C.C.; et al. De novo SPAST mutations may cause a complex SPG4 phenotype. Brain 2019, 142, e31. [Google Scholar] [CrossRef] [PubMed]
- Saffari, A.; Ebrahimi-Fakhari, D. Reply to: Early-Onset and Severe Complex Hereditary Spastic Paraplegia Caused by De Novo Variants in SPAST. Mov. Disord. 2023, 38, 911–913. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Damásio, J.; Barbot, C.; Felgueiras, R.; Brandão, A.F.; Barros, J.; Oliveira, J.; Sequeiros, J. Early-Onset and Severe Complex Hereditary Spastic Paraplegia Caused by De Novo Variants in SPAST. Mov. Disord. 2023, 38, 910–911. [Google Scholar] [CrossRef]
- Svenson, I.K.; Kloos, M.T.; Gaskell, P.C.; Nance, M.A.; Garbern, J.Y.; Hisanaga, S.-I.; Pericak-Vance, M.A.; Ashley-Koch, A.E.; Marchuk, D.A. Intragenic modifiers of hereditary spastic paraplegia due to spastin gene mutations. Neurogenetics 2004, 5, 157–164. [Google Scholar] [CrossRef]
- Omidvar, M.E.; Torkamandi, S.; Rezaei, S.; Alipoor, B.; Omrani, M.D.; Darvish, H.; Ghaedi, H. Genotype–phenotype associations in hereditary spastic paraplegia: A systematic review and meta-analysis on 13,570 patients. J. Neurol. 2021, 268, 2065–2082. [Google Scholar] [CrossRef] [PubMed]
- Kang, H.M.; Kim, D.H.; Kim, M.; Min, Y.; Jeong, B.; Noh, K.H.; Lee, D.Y.; Cho, H.-S.; Kim, N.-S.; Jung, C.-R.; et al. FBXL17/spastin axis as a novel therapeutic target of hereditary spastic paraplegia. Cell Biosci. 2022, 12, 102. [Google Scholar] [CrossRef]
- Riano, E.; Martignoni, M.; Mancuso, G.; Cartelli, D.; Crippa, F.; Toldo, I.; Siciliano, G.; Di Bella, D.; Taroni, F.; Bassi, M.T.; et al. Pleiotropic effects of spastin on neurite growth depending on expression levels. J. Neurochem. 2009, 108, 1277–1288. [Google Scholar] [CrossRef]
- Yokota, T.; Mishra, M.; Akatsu, H.; Tani, Y.; Miyauchi, T.; Yamamoto, T.; Kosaka, K.; Nagai, Y.; Sawada, T.; Heese, K. Brain site-specific gene expression analysis in Alzheimer’s disease patients. Eur. J. Clin. Investig. 2006, 36, 820–830. [Google Scholar] [CrossRef]
- Rehbach, K.; Kesavan, J.; Hauser, S.; Ritzenhofen, S.; Jungverdorben, J.; Schüle, R.; Schöls, L.; Peitz, M.; Brüstle, O. Multiparametric rapid screening of neuronal process pathology for drug target identification in HSP patient-specific neurons. Sci. Rep. 2019, 9, 9615. [Google Scholar] [CrossRef]
- Tarrade, A.; Fassier, C.; Courageot, S.; Charvin, D.; Vitte, J.; Peris, L.; Thorel, A.; Mouisel, E.; Fonknechten, N.; Roblot, N.; et al. A mutation of spastin is responsible for swellings and impairment of transport in a region of axon characterized by changes in microtubule composition. Hum. Mol. Genet. 2006, 15, 3544–3558. [Google Scholar] [CrossRef]
- Park, S.H.; Zhu, P.-P.; Parker, R.L.; Blackstone, C. Hereditary spastic paraplegia proteins REEP1, spastin, and atlastin-1 coordinate microtubule interactions with the tubular ER network. J. Clin. Investig. 2010, 120, 1097–1110. [Google Scholar] [CrossRef] [PubMed]
- Denton, K.R.; Lei, L.; Grenier, J.; Rodionov, V.; Blackstone, C.; Li, X.-J. Loss of Spastin Function Results in Disease-Specific Axonal Defects in Human Pluripotent Stem Cell-Based Models of Hereditary Spastic Paraplegia. Stem Cells 2014, 32, 414–423. [Google Scholar] [CrossRef] [PubMed]
- Riggs, E.R.; Andersen, E.F.; Cherry, A.M.; Kantarci, S.; Kearney, H.; Patel, A.; Raca, G.; Ritter, D.I.; South, S.T.; Thorland, E.C.; et al. Technical standards for the interpretation and reporting of constitutional copy-number variants: A joint consensus recommendation of the American College of Medical Genetics and Genomics (ACMG) and the Clinical Genome Resource (ClinGen). Genet. Med. 2020, 22, 245–257. [Google Scholar] [CrossRef]
- Li, H.; Durbin, R. Fast and accurate short read alignment with Burrows—Wheeler transform. Bioinformatics 2009, 25, 1754–1760. [Google Scholar] [CrossRef] [PubMed]
- McKenna, A.; Hanna, M.; Banks, E.; Sivachenko, A.; Cibulskis, K.; Kernytsky, A.; Garimella, K.; Altshuler, D.; Gabriel, S.; Daly, M.; et al. The Genome Analysis Toolkit: A MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 2010, 20, 1297–1303. [Google Scholar] [CrossRef] [PubMed]
- Karczewski, K.J.; Francioli, L.C.; Tiao, G.; Cummings, B.B.; Alfoldi, J.; Wang, Q.; Collins, R.L.; Laricchia, K.M.; Ganna, A.; Birnbaum, D.P.; et al. The mutational constraint spectrum quantified from variation in 141,456 humans. Nature 2020, 581, 434–443. [Google Scholar] [CrossRef]
- Quang, D.; Chen, Y.; Xie, X. DANN: A deep learning approach for annotating the pathogenicity of genetic variants. Bioinformatics 2015, 31, 761–763. [Google Scholar] [CrossRef]
- Kircher, M.; Witten, D.M.; Jain, P.; O‘Roak, B.J.; Cooper, G.M.; Shendure, J. A general framework for estimating the relative pathogenicity of human genetic variants. Nat. Genet. 2014, 46, 310–315. [Google Scholar] [CrossRef]
- Adzhubei, I.A.; Schmidt, S.; Peshkin, L.; Ramensky, V.E.; Gerasimova, A.; Bork, P.; Kondrashov, A.S.; Sunyaev, S.R. A method and server for predicting damaging missense mutations. Nat. Methods 2010, 7, 248–249. [Google Scholar] [CrossRef]
- Vaser, R.; Adusumalli, S.; Leng, S.N.; Sikic, M.; Ng, P.C. SIFT missense predictions for genomes. Nat. Protoc. 2016, 11, 1–9. [Google Scholar] [CrossRef]
- Limongelli, I.; Marini, S.; Bellazzi, R. PaPI: Pseudo amino acid composition to score human protein-coding variants. BMC Bioinform. 2015, 16, 123. [Google Scholar] [CrossRef]
- Schwarz, J.M.; Cooper, D.N.; Schuelke, M.; Seelow, D. MutationTaster2: Mutation prediction for the deep-sequencing age. Nat. Methods 2014, 11, 361–362. [Google Scholar] [CrossRef]
- Richards, S.; Aziz, N.; Bale, S.; Bick, D.; Das, S.; Gastier-Foster, J.; Grody, W.W.; Hegde, M.; Lyon, E.; Spector, E.; et al. Standards and guidelines for the interpretation of sequence variants: A joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet. Med. Off. J. Am. Coll. Med. Genet. 2015, 17, 405–424. [Google Scholar] [CrossRef]
- Durkie, M.; Cassidy, E.J.; Berry, I.; Owens, M.; Turnbull, C.; Scott, R.H.; Taylor, R.W.; Deans, Z.C.; Ellard, S.; Baple, E.L.; et al. ACGS Best Practice Guidelines for Variant Classification in Rare Disease 2023. Assoc. Clin. Genet. Sci. 2023, v1, 1–54. [Google Scholar]
- Plagnol, V.; Curtis, J.; Epstein, M.; Mok, K.Y.; Stebbings, E.; Grigoriadou, S.; Wood, N.W.; Hambleton, S.; Burns, S.O.; Thrasher, A.J.; et al. A robust model for read count data in exome sequencing experiments and implications for copy number variant calling. Bioinformatics 2012, 28, 2747–2754. [Google Scholar] [CrossRef]
- Magi, A.; Tattini, L.; Cifola, I.; D’aUrizio, R.; Benelli, M.; Mangano, E.; Battaglia, C.; Bonora, E.; Kurg, A.; Seri, M.; et al. EXCAVATOR: Detecting copy number variants from whole-exome sequencing data. Genome Biol. 2013, 14, R120. [Google Scholar] [CrossRef]
- Martin, A.R.; Williams, E.; Foulger, R.E.; Leigh, S.; Daugherty, L.C.; Niblock, O.; Leong, I.U.S.; Smith, K.R.; Gerasimenko, O.; Haraldsdottir, E.; et al. PanelApp crowdsources expert knowledge to establish consensus diagnostic gene panels. Nat. Genet. 2019, 51, 1560–1565. [Google Scholar] [CrossRef]
- Chelban, V.; Tucci, A.; Lynch, D.S.; Polke, J.M.; Santos, L.; Jonvik, H.; Groppa, S.; Wood, N.W.; Houlden, H. Truncating mutations in SPAST patients are associated with a high rate of psychiatric comorbidities in hereditary spastic paraplegia. J. Neurol. Neurosurg. Psychiatry 2017, 88, 681–687. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Matthews, A.; Tarailo-Graovac, M.; Price, E.; Blydt-Hansen, I.; Ghani, A.; Drögemöller, B.; Robinson, W.; Ross, C.; Wasserman, W.; Siden, H.; et al. A de novo mosaic mutation in SPAST with two novel alternative alleles and chromosomal copy number variant in a boy with spastic paraplegia and autism spectrum disorder. Eur. J. Med Genet. 2017, 60, 548–552. [Google Scholar] [CrossRef] [PubMed]
- Chen, R.; Du, S.; Yao, Y.; Zhang, L.; Luo, J.; Shen, Y.; Xu, Z.; Zeng, X.; Zhang, L.; Liu, M.; et al. A Novel SPAST Mutation Results in Spastin Accumulation and Defects in Microtubule Dynamics. Mov. Disord. 2022, 37, 598–607. [Google Scholar] [CrossRef]
- Ramakrishnan, S.; Mohan, N.; Dong, Z.; Liu, M.; Qiang, L. Unraveling Isoform Complexity: The Roles of M1- and M87-Spastin in Spastic Paraplegia 4 (SPG4). Mov. Disord. 2025, 40, 420–430. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lasser, M.; Tiber, J.; Lowery, L.A. The Role of the Microtubule Cytoskeleton in Neurodevelopmental Disorders. Front. Cell. Neurosci. 2018, 12, 165. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Zhang, G.; Ji, Z.; Lin, H. Molecular and cellular mechanisms of spastin in neural development and disease (Review). Int. J. Mol. Med. 2021, 48, 218. [Google Scholar] [CrossRef] [PubMed]
- Vajente, N.; Norante, R.; Redolfi, N.; Daga, A.; Pizzo, P.; Pendin, D. Microtubules Stabilization by Mutant Spastin Affects ER Morphology and Ca2+ Handling. Front. Physiol. 2019, 10, 1544. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Costa, A.C.; Sousa, M.M. The Role of Spastin in Axon Biology. Front. Cell Dev. Biol. 2022, 10, 934522. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Sherwood, N.T.; Sun, Q.; Xue, M.; Zhang, B.; Zinn, K.; Bate, M. Drosophila Spastin Regulates Synaptic Microtubule Networks and Is Required for Normal Motor Function. PLoS Biol. 2004, 2, e429. [Google Scholar] [CrossRef]
- Posey, J.E.; Harel, T.; Liu, P.; Rosenfeld, J.A.; James, R.A.; Akdemir, Z.H.C.; Walkiewicz, M.; Bi, W.; Xiao, R.; Ding, Y.; et al. Resolution of Disease Phenotypes Resulting from Multilocus Genomic Variation. N. Engl. J. Med. 2017, 376, 21–31. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
Patients | Spast Mutation | Variant Type | Location (cDNA) | Additional Genomic Variants | SPG4 Form | Motor Phenotype | Neuropsychiatric Phenotype | Spastin Domains |
---|---|---|---|---|---|---|---|---|
Chelban et al., 2017 [34] | Deletion of exons 1−17 | Large deletion | Full Gene Loss | X | Complex | CTS | ASD | AAA Hotspot |
Chelban et al., 2017 [34] | c.1408G>T | Missense | c.1408 | X | Complex | CTS − PN (motor and sensory) | ASD − memory deficit − seizures − dysphagia | AAA Hotspot |
Chelban et al., 2017 [34] | c.1635_1636 insAA | Frameshift | c.1635_1636 | X | Complex | CTS | Asperger | AAA Hotspot |
Our patient | c.1330G>T and c.1333A>T | De novo missense | c.1330−1333 | X | Complex | CTS | Severe ASD | AAA Hotspot |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Quaranta, C.A.; Gardani, A.; Andorno, G.; Pichiecchio, A.; Gana, S.; Borgatti, R.; Orcesi, S. Expanding the Phenotypic Spectrum of SPG4: Autism Spectrum Disorder in Early-Onset and Complex SPAST-HSP and Case Study. Genes 2025, 16, 970. https://doi.org/10.3390/genes16080970
Quaranta CA, Gardani A, Andorno G, Pichiecchio A, Gana S, Borgatti R, Orcesi S. Expanding the Phenotypic Spectrum of SPG4: Autism Spectrum Disorder in Early-Onset and Complex SPAST-HSP and Case Study. Genes. 2025; 16(8):970. https://doi.org/10.3390/genes16080970
Chicago/Turabian StyleQuaranta, Carlo Alberto, Alice Gardani, Giulia Andorno, Anna Pichiecchio, Simone Gana, Renato Borgatti, and Simona Orcesi. 2025. "Expanding the Phenotypic Spectrum of SPG4: Autism Spectrum Disorder in Early-Onset and Complex SPAST-HSP and Case Study" Genes 16, no. 8: 970. https://doi.org/10.3390/genes16080970
APA StyleQuaranta, C. A., Gardani, A., Andorno, G., Pichiecchio, A., Gana, S., Borgatti, R., & Orcesi, S. (2025). Expanding the Phenotypic Spectrum of SPG4: Autism Spectrum Disorder in Early-Onset and Complex SPAST-HSP and Case Study. Genes, 16(8), 970. https://doi.org/10.3390/genes16080970